Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Значение трансурановых элементов

    Значение трансурановых элементов [c.149]

    При бомбардировке урана-238 нейтронами получается уран-239, при распаде которого образуются два первых трансурановых элемента — нептуний и плутоний последний имеет важное значение как источник ядерной энергии  [c.45]

    Периодический закон стал основой для учения о строении сложных атомов, для проверки различных гипотез. Учение о строении сложных атомов со своей стороны явилось физической основой периодического закона и тем самым содействовало его развитию. Велико значение периодического закона для становления и развития ядерной физики и получения трансурановых элементов, из которых 101-й получил название менделевий в честь автора периодического закона [по предложению Сиборга и его сотрудников (США)]. [c.22]


    При переработке топлива на радиохимических заводах в выбросах присутствуют Н, С, Сз, " 1 и радиоактивные изотопы трансурановых элементов. В формировании доз облучения населения большое значение имеют радионуклиды Н, " С, Кг, " 1, которые в процессе миграции рассеиваются по всему земному шару. Однако доза облучения населения за счет всего топливного ядерного цикла небольшая и составляет не более [c.33]

    За АМ природных элементов, состоящих из смеси изотопов, принимают среднее значение АМ изотопов с учетом их долей. У элементов, не имеющих устойчивых природных изотопов, а иногда только у трансурановых элементов вместо АМ указывают величину МЧ. Итак, АМ — усредненная масса всех изотопов элемента относительно 1/12 массы изотопа углерода-12, принятой равной 12,000000 (точно), как стандарта. Она меньще суммы масс составляющих атом ч-ц на величину дефекта массы. Уст. назв. АМ — атомный вес. [c.26]

    Цветные реакции Ри (IV) и Np (IV) не полностью идентичны цветным реакциям Zr, Th, U (IV). Благодаря определенным различиям в химических свойствах (разница в значении pH начала гидролиза, различная комплексообразующая способность и т. д.) оптимальные условия реакций несколько отличаются, на чем основано избирательное определение одного элемента на фоне других. Все эти специфические особенности поведения ионов трансурановых элементов в растворах требуют дальнейшего тщательного изучения. [c.137]

    Помимо активации в результате одиночного захвата нейтрона, в ряде случаев существенное значение имеет активация в результате двойного и многократного захвата нейтронов. При этом довольно часто сечения активации для реакций последовательного захвата нейтронов оказываются весьма большими. С помощью этих реакций могут быть получены не только радиоактивные изотопы обычных элементов, но и значительные количества трансурановых элементов [38]. [c.23]

    Простота сорбционных опытов и возможность использования их при работе с веществами самой различной природы — от инертных газов до трансурановых элементов и веществ биохимического значения вследствие многообразия сорбентов делает сорбционный метод весьма эффективным и перспективным для разнообразных случаев концентрирования. [c.321]

    В таблице периодической системы, приведенной в конце этого тома, под названиями отдельных элементов определенными символами показано строение их атомов. Значение этих символов разъясняется на стр. 146. При рассмотрении таблицы сразу же обнаруживается, что элементы, стоящие один под другим, проявляют сходство в строении атомов. Далее выясняются типичные различия в строении между элементами главных и побочных подгрупп периодической системы. Особенности строения лантанидов (появление 4/-оболочки), которые приводят к тому, что они образуют отдельное семейство, отчетливо отражаются приводимыми в таблице -символами. Такая же особенность (образование 5/-оболочки) имеет место и в случае трансурановых элементов. В дальнейшем на многочисленных примерах будет показано, как в общем химическое поведение элементов можно установить по химическому строению и как при этом правило, найденное на основании периодической системы, оказывается обусловленным закономерностями атомного строения. [c.41]


    В ряде случаев распределительная хроматография имеет преимущества перед обычной экстракцией [704, 708]. Ее особенно выгодно использовать для разделения элементов с близкими свойствами (имеющих мало различающиеся константы экстракции), например редкоземельных. Колонка удобна для работы с высокоактивными растворами, когда обычные делительные воронки использовать нельзя, а лабораторные экстракторы мало пригодны для дистанционного управления. При хроматографировании с обращенными фазами можно работать с очень малыми объемами органического растворителя (порядка 1 мл и даже меньше), причем можно применять растворители, образующие устойчивые эмульсии. Хроматографическая колонка позволяет определять коэффициенты раснределения по выходным кривым, что имеет значение для тех случаев, когда обычным путем коэффициент распределения определить трудно (трансурановые элементы). К недостаткам распределительной хроматографии относится трудность использования реагентов, не обеспечивающих быстрой экстракции, поэтому, например, ТТА мало удобен. [c.219]

    Правило Клечковского дает возможность определять электронные структуры как для известных элементов, так и для еще неизвестных трансурановых элементов. Безусловно, основное значение правила Клечковского заключается в его предсказательном характере. Если в соответствии с правилом Клечковского девятнадцатый электрон атома калия находится на 45-орбитали, то это означает, что энергия электрона на 45-орбитали меньше, чем энергия его на Зс -орбитали. Однако соотношение энергий электронов на 45- и Зб -орбиталях в дальнейшем изменяется. На рис. 10, где показано изменение энергий электронов на всех орбиталях в зависимости от заряда ядра, можно видеть, что, начиная со скандия, энергии электронов на Зй -подуровне оказываются меньше, чем на 45-подуровне. Например, у атома титана сначала будут отрываться электроны с 45-подуровня, а затем с З -подуровня. [c.69]

    Современную радиохимию нельзя представить себе без ионного обмена (и, в частности, ионообменной хроматографии на смолах, бумаге, неорганических ионообменниках), который применяется в самых различных ее областях в масштабах от ультрамикроанализа до крупных промышленных установок. В настояшее время методом ионного-обмена успешно решены многие препаративные и технологические задачи получение радиоактивных индикаторов высокой радиохимической чистоты без носителя, концентрирование искусственных радиоактивных изотопов из атмосферных осадков и сбросных вод и др. Особое значение имеют ионный обмен и хроматография в аналитической химии радиоэлементов. Советские химики выполнили работы по качественному и количественному анализу смесей лантаноидов и трансурановых элементов (А. П. Виноградов, Д. И. Рябчиков, П. Н. Палей, К. В. Чмутов, [c.25]

    Все описанные приемы оказываются малоэффективными при разделении близких по свойствам элементов. Такую классическую проблему неорганической химии, как разделение редкоземельных элементов, имеющую важное значение и в прикладной радиохимии,, еще нельзя считать решенной. В настоящее время проводятся многочисленные исследования, направленные, в частности, на создание экстракционных методов разделения этих металлов. Совершенно аналогичную и очень важную задачу представляет собой и разделение трехвалентных трансплутониевых элементов. При решении этих задач, как правило, возникает необходимость в разделении упомянутых групп элементов, так как при ядерном синтезе трансурановых элементов образуются и редкоземельные элементы. [c.120]

    В химии урана и трансурановых элементов большое значение приобрели также электролитические методы окисления или восстановления. Так, для получения осадка тетрафторида урана, являющегося одним из наиболее важных промежуточных продуктов производства гексафторида урана и металлического урана, применяется электролитическое восстановление иона уранила до урана (IV) с последующим осаждением ир4 с помощью НР [445]. [c.179]

    Трудность получения плотных и прочных слоев при электролитическом осаждении урана и трансурановых элементов заключается главным образом в том, что эти элементы осаждаются на катоде не в виде металлов, а в форме гидроокисей или других нерастворимых соединений, в зависимости от условий электролиза. Плотность тока и кислотность раствора оказывают большое влияние на процесс электроосаждения плутония [458]. Материал катода не имеет в данном случае существенного значения, так как в отличие от металлических осадков гидроокиси не могут входить в кристаллическую решетку металла, из которого изготовлен катод. [c.182]

    Значительная разница в скоростях электролитического выделения урана, нептуния и плутония в одних и тех же условиях (см. рис. 2.58), по-видимому, объясняется различной устойчивостью их пятивалентных ионов, являющихся промежуточными продуктами первой стадии восстановления в прикатодной области. Ион нептуния (V) является самым устойчивым из трех перечисленных элементов, и потому при своем движении к катоду он не претерпевает диспропорционирования на четырех- и шестивалентную формы. В отсутствие посторонних окислителей нептуний (V) сразу же разряжается на катоде и восстанавливается, вероятно, до двуокиси. При этих же условиях уран (V) вследствие своей неустойчивости претерпевает ряд окислительно-восстановительных процессов, что замедляет процесс его электролитического выделения. Устойчивость плутония (V) является средней между устойчивостью урана (V) и нептуния (V), и в соответствии с этим скорость его выделения на катоде будет промежуточной. Отсюда следует, что окислительно-восстановительные реакции на электродах и устойчивость различных валентных состояний урана и трансурановых элементов имеют существенное значение для их электролитического выделения. [c.185]


    В мировой литературе появилось большое число работ, посвященных изучению новых экстракционных систем, поискам более эффективных растворителей, развитию теории экстракции. Подробный обзор опытных данных по применению экстракции в аналитической химии содержится в переведенной на русский язык книге Моррисона и Фрейзера Экстракция в аналитической химии , ГХИ, Л., 1960. В монографии В. М. Вдовенко Химия урана и трансурановых элементов , Изд. АН СССР, М.-Л., 1960, описаны экстракционные методы, применяемые при регенерации ядерного горючего. Большое значение имеет химическая теория экстракции металлов, изложенная в книге В. В. Фомина Химия экстракционных процессов , Атомиздат, М., 1960. Тем не менее Жидкостная экстракция Альдерса в значительной степени сохраняет свое значение, поскольку в ней рассматриваются вопросы, почти не затрагиваемые в других монографиях. [c.5]

    В последнее время торий, уран и некоторые трансурановые элементы приобрели исключительно важное значение в связи с проблемой получения и использования ядерной энергии. [c.242]

    Т. широко применяют в аналитич. химии для отделения и разделения элементов методами экстракции, для концентрирования при определении следов металлов, при переработке ядерного горючего, разделения элементов, близких по химич. свойствам, как, напр., редкоземельных или трансурановых элементов. К преимуществам Т. как экстрагента относятся высокие коэфф. распределения ионов металлов в системе вода—Т.— органич. растворители, что позволяет в большинстве случаев достигнуть практически полного извлечения, нелетучесть в широком интервале темп-р, вследствие чего работа с пим безопасна, малая растворимость в воде, малая чувствительность к радиоактивным излучениям, химическая инертность. Из р-ров нитратов Т. экстрагирует U ( 1), Се (IV), Zr, Hf, Th, Pu (IV), Ru (VI), РЗЭ, Np (IV), Np (VI), Am (VI), Au (IJI), Fe (III), S , Pa (IV). При определенных условиях уран может быть отделен практически от всех элементов. Для экстракции Т. применяют в виде р-ров в различных органич. растворителях (бензол, хлороформ, спирты, эфиры и т. д.) при этом снижаются коэфф. распределения, но увеличивается селективность. Для повышения селективности, кроме того, имеет большое значение применение различных маскирующих комплексообразующих в-в (в особенности комплексонов), а также выбор концентрации Т. в инертном растворителе, концент-)ации высаливателей и концентрация азотной к-ты. [c.128]

    ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ (за-урановые элементы) — радиоактивные химические элементы, расположенные вслед за ураном в конце периодической системы элементов Д. И. Менделеева. Т. э. имеют п. н. 93—103, принадлежат к группе актиноидов. Все изотопы Т. э. обладают периодами полураспада, значительно меньшими, чем возраст Земли, поэтому они отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Исследование физических свойств Т. э. показало, что они аналоги лантаноидов. Из всех Т. э. наибольшее значение имеет зврц как ядерное топливо, используется в изотопных источниках тока, применяемых для питания радиоаппаратуры на спутниках и др. [c.253]

    Нынешняя (для середины 80-х годов) искусственная верхняя граница периодической системы — достигнутый предел синтеза — отвечает значению 2=108. Первые трансурановые элементы — Np, Pu, Am и m сейчас уже можно получить в больших количествах в результате облучения урана и плутония в промышленных энергетических реакторах. Даже америций и кюрий ныне выделяют килограммами. Транскюриевые элементы Вк, f и Fm в виде изотопов Вк, 253 д 2S7p извлекаются химическими [c.99]

    Казалось бы, даже один акт деления в массе урана, сопровождающийся выделением нейтронов, должен привести к цепной реакции. Однако на самом деле на протекание цепной реакции оказывает влияние еще ряд факторов. Природный уран состоит в основном из смеси двух изотопов — и235 238 Содержание первого в природной смеси составляет 0,712%, второго —99,28%. Уран-235 делится под воздействием нейтронов с малой энергией (тепловых нейтронов), в то время как претерпевает деление при облучении быстрыми нейтронами. Кроме того, 13 захватывает выделяющиеся прй делении и нейтроны, превращаясь в и (о дальнейших превращениях и см. ниже — в разделе о трансурановых элементах). При этом происходит реакция и (п, 7) и . Эти обстоятельства приводят к тому, что в природном уране возникшая цепная реакция быстро затухает. Незатухающую цепную реакцию можно осуществить двумя путями. Первый из них заключается в разделении изотопов урана. В массе и , свободного от примеси тяжелого изотопа, цепная реакция проходит, не прерываясь. В чистом и убыль нейтронов происходит лишь за счет вылета нейтронов за пределы данного куска металла. Однако, если масса этого куска становится больше определенного значения, или, как говорят, превышает критическую массу, то цепная реакция быстро распространяется по всей массе урана. Поскольку в каждый момент довольно значительное число ядер и претерпевает спонтанный распад, сопровождающийся вылетом нейтронов, то, очевидно, что достаточно массе урана-235 превысить критическое значение, как неизбежно возникает взрыв. [c.88]

    Нейтронные пучки практически используются при синтезе радионуклидов, получении трансурановых элементов, в хим. анализе (см. Нейтронно-абсорбционный ана.гиз, Активационный анализ), горном деле (нейтронный каротаж), ней тронной авторадиографии (см. Радиография). В земной атмосфере свободные Н. непрерывно образуются в результате взаимод. космич. излучения с ядрами атомов, входящих в состав воздуха. Эти Н. приводят к непрерывному образованию в атмосфере радиоактивного С при ядерной р-ции Ы(п, р) С, на чем основаи радиоуглеродный метод геохронологии. Об имеющих практич. значение источниках Н. см. в ст. Нейтронные источники. [c.205]

    Энергии связи электронов 5/-, 7з-оболочек, участвующих в оптических переходах атомов урана и других тяжелых элементов, имеют очень близкие значения, а сам атом урана обладает низким ионизационным потенциалом. Спектр урана, как и других трансурановых элементов, является чрезвычайно сложным. В нем вместе с линиями нейтральных атомов присутствуют линии однократноио-низированных атомов, поэтому спектр урана представляет собо11 сплошную сетку линий, расположенных на фоне интенсивного непрерывного спектра. В связи с этим обычные методы спектрального анализа не могут применяться для успешного определения малых количеств примесей в уране. [c.358]

    За открытие распределительного варианта хроматографии Мартин и Синг в 1952 г. получили Нобелевскую премию. В 1952—53 гг. Мартин и Джеймс осуществили вариант газовой распределительной хроматографии, разделив смеси на смешанном сорбенте из силикона ДС-550 и стеариновой кислоты. С этого времени наиболее интенсивное развитие получил метод газовой хроматографии Метод привлекал внимание своей экспрессностью и простотой и быстро завоевал признание исследователей. После этого развитием хроматографических методов разделения и анализа занялась большая группа талантливых ученых и инженеров, которые развили теорию метода, создали постепенно усложнявшиеся приборы, нашли оригинальные и часто остроумные приемы и комбинации хроматографических вариантов, колонок, детекторов, систем включения и переключения колонок и детекторов. Стали регулярно проводиться хроматографические конференции и симпозиумы, первый из которых состоялся в 1956 г. в Лондоне. Хроматография стала не только интересным полем реализадИи творческих замыслов, но и весьма полезным аналитическим мето-дом. Часть блестящих ученых занимались развитием самого метода, другие — его применением. Например, Сиборг осуществил разделение нескольких десятков атймов трансурановых элементов. Исключительное значение имело создание в 1956 г. Голеем капиллярного варианта хроматографии, а в 1962 г. Порат и Фло-дин создали вариант ситовой хроматографии и применили его для разделения высокомолекулярных соединений. С середины 70-х годов начинается период интенсивного развития жидкостной хроматографии, с середины 80-х годов практическое использование флюидной хроматографии и полная компьютеризация всего хроматографического процесса. [c.15]

    Исследуемые образцы в виде капли раствора обьино помещают на ленточку из рения, вольфрама или тантала и высушивают инфракрасными лучами. При анализе через ленточку пропускают электрический ток, поднимая ее температуру до необходимого значения (500-2500 °С). Некоторые добавки (бораты, силикаты и др.) благоприятствуют образованию положительных ионов. Иногда для получения ионов пробу испаряют с одной ленточки, а ионизацию производят на поверхности другой, более раскаленной ленточки. Такой вариант предпочтительнее, так как ток ионов при повышенных температурах возрастает на несколько порядков. ТИ-источиики с двумя горячими ленточками часто используются для анализа трансурановых элементов ввиду очень высокой эффективности ионизации и, следовательно, малого размера пробы, необходимой для анализа. Одним из значительных преимуществ ТИ-источника является отсутствие в нем электронного луча, что приводит к резкому уменьшению числа и интенсивности фоновых пиков в масс-спектрах. [c.847]

    Значение калифорния подчеркивается уже тем, что программа накопления трансурановых элементов в современных ядерийх реакторах ориентирована в основном на получение калифорция-252. В США этот изотоп уже производят в граммовых количествах. [c.432]

    НПр Является последним радиоактивным элементом, который встречается в природе, Все остальные, так называемые трансурановые элементы, получены искусственно. Его общее содержание на Земле оценивается в ЗТО масс. долей, %, Известно более 100 минералгов, содержащих Зфан, однако промышленное значение имеют лишь некоторые из них уранинит -иОг, наст фан [c.121]

    Соосаждение и адсорбция могут использоваться не только для получения твердых веществ с заданным содержанием и раснределением примесей, но и для очистки солей от примесей и тем самым для получения чистых веществ. Эти процессы имеют также большое значение для отделения и концентрирования радиоактивных изотопов. Методом соосаждения были выделены и открыты Марией н Пьером Кюри полоний и радий, Ирен и Фредериком Жолио-Кюри — искусственные радиоактивные изотопы фосфора и кремния, Ганом и Штрассманом — продукты деления урана — радиоактивные изотопы лантана и бария, Сиборгом с сотр. — плутоний и ряд других трансурановых элементов. Таким образом, решающие открытия в области ядерной физики и радиохимии были сделаны с помощью методов соосаждения. [c.42]

    Для неспециалистов в главе 2 приводятся основные положения химии, которые находят применение в атомной технологии . В главах 3 и 4 раскрывается сущность явления радиоактивности, ядерных реакций и радиохимии. После главы, посвященной вопросам образования, распада и химии продуктов деления, рассматривается химия тория, протактиния, урана и трансурановых элементов. Особо подчеркиваются свойства, имеющие большое значение в современной технологии или в технологии булущето. В остальной части книги рассмотрена химическая технология атомных материалов. В заключительных главах рассмотрены выделение металлов из руд, регенерация облученного атомного горючего, уда- [c.11]

    Плутоний является потенциально ценным ядерным горючим и основным продуктом облучения урана нейтронами. Другие трансурановые элементы были открыты как промежуточные продукты при производстве плутония или получены в результате опытных облучений. Природные плутоний и нептуний, образовавшиеся б урановых рудах вследствие наличия в них естественных источников нейтронов, обнаружены. в слишком малых количествах, чтобы иметь какое-либо практическое значение. Основные гтзотоиы, встречающиеся в ядерном горючем действующих реакторов, приведены в табл. 7.1. [c.149]

    Неитуний-239, нолученный при облучении нейтронами, был первым исследованным трансурановым элементом он имеет значение как предшественник II как меченый атом для изучения химии нептуния. Нептуний-237 образуется в реакторе при облучении как [c.149]

    Ионный обмен имел исключительное значение при идентификации трансурановых элементов он имеет большое значение и для предыдущих элементов, особенно если речь идет о малых количествах вещества. Из предыдущего материала видно, что в случае лантанидов (гл. 31) положительные трехзарядные ионы можно элюировать из колонны с катионообменной смолой при помощи комплексообразователей, например буферных растворов цитрата, лактата или а-оксибутирата, и что порядок элюирования повторяет порядок значений радиусов гидратированных ионов, так что первым вымывается лютеций, а последним — лантан. Предполагая, что аналогичный порядок будет наблюдаться для актинидов, и экстраполируя значения, полученные для самых легких актинидов, например для и", Мр" и Ры" , можно очень точно (с точностью до капли) предсказать, когда будут элюироваться ионы тяжелых актинидов при заданных условиях. Использование этих принципов позволило Сиборгу и его сотрудникам выделить и охарактеризовать тяжелые актиниды, даже если в растворе присутствовало лишь несколько атомов данного элемента. [c.566]

    Метод ионообменной хроматографии в настоящее время широко используется для получения чистых препаратов редкоземельных элементов (РЗЭ) [1—4]. Известно большое число различных методик хроматографического разделения смесей РЗЭ, но многие из них носят эмпирический характер. Наряду с этим в литературе имеется ряд сообщений, посвященных выбору условий хроматографического разделения смесей. Мейер и Тонкине [5] использовали теорию тарелок для описания процесса элюирования РЗЭ раствором лимонной кислоты теоретические кривые вымывания совпали с опытными. Метод расчета применим также для определения чистоты РЗЭ, разделяемых при помощи процесса элюирования. Корниш [6], используя выражение, данное Глюкауфом для высоты, эквивалентной теоретической тарелке (ВЭТТ), применил теорию тарелок для предсказания условий разделения смесей ряда элементов. В работах Масловой, Назарова и Чмутова [7,8] была рассчитана величина ВЭТТ для процесса вымывания церия раствором молочной кислоты, что дало возможность произвести расчет кривой элюирования и установить условия получения элемента с заданной степенью чистоты. В работе тех же авторов [8] на примере разделения церия и прометия молочной и пирофосфорной кислотами был проведен расчет процесса градиентного элюирования РЗЭ, с использованием теории Фрейлинга. Расчет удовлетворительно совпадает с экспериментальными данными. В работах Еловича и сотр. [9—12] получено выражение для расчета процесса разделения близких по свойствам элементов. На примере разделения трансурановых элементов при помощи ЭДТА показано решающее значение комплексообразования по сравнению с обычным ионным обменом. В работах Материной, Сафоновой и Чмутова[13] рассмотрена возможность применения фронтального анализа в ионообменной комплексообразовательной хроматографии. Авторы изучали процесс комплексообразования в зависимости от pH среды. Маторина [14] изучила зависимость равновесного коэффициента разделения от pH [c.170]

    Гродхадное практическое значение урана и трансурановых элементов, с применением которых связано решение задачи использования внутриатомной энергии, объясняет то, что химия этих элементов за очень короткий промежуток времени была изучена отнюдь не в меньшей степени, чем химия давно известных элементов. Разумеется, это в полной мере относится и к области комплексных соединений актинидов, различные превращения которых лежат в основе технологии переработки ядерного горючего. В самой общей форме можно сказать, что актиниды склонны к образованию ацидокомплексов с кислородсодержащими лигандамн, а также с ионами фтора. Ионы хлора, брома и иода также могут давать комплексы с ионами актинидов, но способность к комплексному сочетанию меньше, чем у фтора, и надает с увеличением атомного веса галогена. Комплексы с аммиаком и аминами, вообще говоря, малохарактерны для актинидов, как и для лантанидов. То же самое можно сказать и о комплексах с лигандами, координирующимися при посредстве серы. Однако связи через азот (и серу) все же могут образоваться в случае внутрикомплексных соединений, стабилизированных за счет циклообразования. Таково, напрпмер, положение для производных этилендиаминтетрауксусной кислоты. [c.572]

    Другим перспективным и весьма простым методом разделения близких по свойствам металлов с мало различающимися значениями К является распределительная (экстракционная) хроматография [908[. В этом методе органическая фаза сорбируется на инертном носителе, наполняющем хроматографическую колонку. В качестве носителя обычно используется силиконированный силикагель, мелкозернистый тефлон, поливинилхлорид или полиэтилен, которые способны прочно удерживать на своей поверхности органическую фазу и на которых не происходят в заметной степени никакие химические или абсорбционные процессы. После нанесения разделяемой смеси на колонку проводится вымывание отдельных элементов подходящим элюентом. За счет многократного повторения процесса экстракции и реэкстракции можно, таким образом, селективно разделить даже редкоземельные и трансурановые элементы. [c.71]

    Сведений об электролитическом восстановленрш и окислении нептуния и других трансурановых элементов значительно меньше. Однако, исходя из значений окислительных потенциалов различных пар, например для нептуния (см. гл. III), и данных, приведенных Сиборгом и Кацем [449], можно полагать, что одноэлектронные процессы и в этом случае осуществляются без особых затруднений. [c.180]

    РАДИОАКТИВНЫЕ ЭЛЕМЕНТЫ — химические элементы, все изотопы к-рых радиоактивны. К числу Р. э. относятся технеций 43ТС, прометий ехРт и все элементы конца периодич. системы, начиная с полония 84Р0, как природные —до урана 92 , так и полученные искусственным путем трансурановые элементы. Систематизация свойств атомных ядер приводит к выводу, что каждому данному заряду ядра Z отвечает нек-рое значение массового числа А, при к-ром наблюдается наибольшая устойчивость изотопов этого элемента с другой стороны, и среди изобаров с данным массовым числом А и различными атомными номерами 2 какой-то из них оказывается самым устойчивым (см. Изотопы). Связь между 2 п А для наиболее устойчивых изотопов характеризуется следующим полуэмпирич. уравнением  [c.239]


Смотреть страницы где упоминается термин Значение трансурановых элементов: [c.432]    [c.216]    [c.189]    [c.432]    [c.275]    [c.91]    [c.107]    [c.48]    [c.49]    [c.154]   
Смотреть главы в:

Химия в атомной технологии -> Значение трансурановых элементов




ПОИСК





Смотрите так же термины и статьи:

Элементы трансурановые



© 2025 chem21.info Реклама на сайте