Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура кристалла и структурный тип

    В 1890 г. Е. С. Федоров математически доказал, что при 32 видах внешней симметрии возможны 230 вариантов их сочетаний для создания внутренней структуры кристаллов. Структурный тип кристаллов характеризует относительное расположение атомов в пространстве без указания расстояний между ними. Для выяснения структурного типа кристалла обычно рассматривают его элементарную ячейку. Элементарной ячейкой (рис. 39) называют наименьшую часть кристалла, которая имеет все особенности структуры, характерные для данной решетки. Координационное число частиц в гранецентрированной [c.287]


    Применения рентгеновских лучей. Интерференция рентгеновских лучей за последнее время получила широкое применение для определения структуры кристаллов структурный анализ). Постоянную кристаллической решетки, т. е. расстояние между ее главными плоскостями, можно легко определить для кристаллов, имеющих простое строение, путем измерения всего лишь нескольких углов отражения. Вычисление ее производят на основании уравнения (1). Но и для веществ с очень сложным строением можно лишь на основании существования рентгеновских интерференций судить по крайней мере о том, являются ли эти вещества кристаллическими, т. е. построенными упорядоченно, или нет, так как только при кристаллическом строении, как это следует из теории, имеются условия для возникновения четких интерференционных полос или колец. В случае очень мелких кристалликов по методу Дебая — Шеррера получаются только расплывчатые, т. е. более или менее широкие интерференционные кольца, причем эти кольца тем шире, чем мельче кристаллики, так что по ширине интерференционных колец можно судить о величине кристалликов. Если диаметр кристалликов значительно меньше 1 т]х, то отчетливых интерференционных колец вообще не удается наблюдать. [c.210]

    СК Реальные кристаллы. Описанная в 50 внутренняя структура кристалла, характеризующаяся строгой пространственной периодичностью, представляет собой известную идеализацию. Исследование строения реальных кристаллов показало, что во всяком кристалле эта периодичность всегда несколько нарушена. В реальных кристаллах наблюдаются дефекты структуры. Число этих дефектов ч их тип оказывают влияние на некоторые свойства кристаллических веществ. В ряде случаев эго влияние очень сильно, а некоторые из таких структурно-чувств и тельных свойств имеют очень большое практическое значение. [c.162]

    Низкотемпературные свойства нефтяных фракций имеют чрезвычайно важное значение при их использовании. При понижении температуры нефтепродукты теряют подвижность из-за выделения надмолекулярных структур (кристаллов) алканов и образования структурного каркаса, а также из-за повышения структурной вязкости. Кроме того, с понижением температуры растворенная в нефтяной фракции вода может выделяться в виде кристаллов льда. [c.24]

    Очевидно, что на кинетику растворения фуллеренов оказывают значительное влияние структурные особенности твердой фазы, из которой фуллерены переводят в раствор. Плотная гранецентрированная кубическая структура кристаллов фуллерита С60, характеризуемая величиной энергии связи молекул, равной 0,4 эВ при 25 °С [30], является фактором, по всей видимости, понижающим общую скорость растворения фуллерита. Углеродная матрица Ф-сажи, имеющая рыхлую аморфную структуру, слабо препятствует взаимодействию молекул фуллеренов и растворителя, а также обусловливает большую поверхность контакта фаз, что в целом приводит к увеличению скорости выхода фуллеренов в раствор. [c.48]


    Как мы уже отмечали, атомы представляют собой первичные, а молекулы и макромолекулы — вторичные структурные единицы разного порядка. Очевидно, атомы и молекулы нульмерны. Это видно из того, что все молекулярные кристаллы относятся к островным структурам. Но макромолекулы могут быть нуль-, одно-, двух- и трехмерными, что соответствующим образом определяет конфигурацию тех структур, которые они образуют. Интересно, что компактные трехмерные макромолекулы, имеющие приблизительно сферическую форму, могут играть роль нульмерных структурных единиц соответствующего порядка. Это же относится к надмолекулярные структурным единицам. Например, известны глобулярные кристаллы, структурными единицами которых являются тела вирусов, т. е. надмолекулярные структуры. [c.159]

    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]

    Структура кристалла образуется самопроизвольно. Структурные единицы в процессе кристаллизации складываются в должном порядке, так как только при этом они достаточно прочно присоединяются к поверхности кристалла, теряя часть своей энергии, которая выделяется в окружающую среду. При данных температуре и давлении другие кристаллические структуры для данного состава вещества обычно не существуют. Другое дело самопроизвольное образование структуры некристаллического вещества. Насколько его энергетическое состояние отличается от равновесного, какой из бесчисленного количества возможных вариантов структуры реализуется, в каждом данном случае зависит от условий, прежде всего от скорости отвердевания. [c.178]

    Полиморфизм. В зависимости от внешних условий одно и то же вещество может иметь разные по симметрии и структуре кристаллы. Способность данного твердого тела существовать в виде двух или нескольких кристаллических структур называется полиморфизмом. Различные кристаллические структурные формы вещества называются полиморфными модификациями. Явление полиморфизма очень распространено. Почти все вещества при известных условиях могут быть получены в различных модификациях. [c.144]

    Используя эти соотношения, можно объяснить наблюдаемый спектр ЯКР, а при неизвестной структуре кристалла, но при заданной формуле и симметрии молекулы представить возможные способы размещения молекул в решетке, т. е. получить по спектру ЯКР важную структурную информацию. [c.100]

    В то же время структурные рентгенографические измерения указывают, что расстояние между противоположно заряженными ионами в расплаве остается практически таким же, как и в твердом веществе, или даже несколько уменьшается. Эти данные могут быть объяснены на основе предположения о наличии пустот, или дырок, в структуре ионного расплава. Сравнение структуры кристалла и соответствующей жидкости (рис. 27, й и б) показывает, что в жидкости сохраняется лишь ближний порядок расположения ионов, тогда как уже вторая координационная оболочка в значительной степени нарушается. Дырки в расплаве непрерывно перемещаются, образуются и исчезают, увеличиваются в размере или становятся небольшими. Средний размер радиуса дырок близок к среднему ионному радиусу. Дырки образуются вследствие теплового движения компонентов жидкости, а также возникновения вакансий при движении ионов из объема к поверхности при плавлении вещества. Распределение дырок играет важную роль в процессах переноса в расплавах. [c.89]

    Спектр плотности кристалла в пространстве Фурье характеризуется трехмерной модулированной периодической функцией. Описание и анализ этой функции, так же как и периодической структуры кристалла, требуют владения языком структурной кристаллографии и знания теории симметрии кристаллов. [c.10]


    Итак, с помощью структурного анализа возможно определение а) периодической атомной структуры кристалла б) магнитной структуры магнетиков в) динамических нарушений (фонон-ных и магнонных спектров) г) типа и распределений статических структурных дефектов в реальных кристаллах д) структурного механизма фазовых переходов и структурных особенностей метастабильных состояний в твердых телах е) ближнего порядка в аморфных телах и в жидкостях ж) формы и строения частиц в растворах з) структуры газовых молекул и) фазового состава вещества. [c.15]

    Фурье-трансформанту элементарной ячейки Р (Н) в структурном анализе называют структурной амплитудой. Именно она содержит информацию о положении, координатах и типе атомов, образующих структуру кристалла. [c.28]

    Рассматривая строение кристаллических веществ, нужно различать понятия о структуре и структурном типе. Структурный тип характеризует относительное расположение атомов в пространстве без указания расстояний между ними. Когда мы хотим охарактеризовать структуру того или иного вещества, то кроме структурного типа должны указать также параметры элементарной ячейки. Наименование структурного типа дается по одному из веш,еств, имеющих решетку данного типа. Большое число структур может относиться к одному и тому же структурному типу. Так, например, многие А еталлы образуют кристаллы, принадлежащие к структурному типу магния. Ниже описаны некоторые структурные типы, характерные для неорганических веществ. [c.256]

    От расположения атомов в элементарной ячейке, т.е. от структуры кристалла, зависит только структурный фактор F - квадрат амплитуды волны, рассеянной одной элементарной ячейкой в направлении, определяемом индексами hkl. Структурный фактор Р равен произведению [c.181]

    Конечной целью исследований с применением дифракционных методов является расшифровка атомной структуры кристалла данного соединения. Одновременно решается также ряд частных структурных вопросов, которые важны для выяснения закономерностей структурообразования комплексов определяется дентатность и способ координации лиганда, структура хелатного кольца, наличие полимеризации и взаимодействия металл — металл, характер межмолекулярных взаимодействий в кристалле. [c.200]

    Предлагаемое вниманию читателя небольшое учебное пособие и было задумано как обзор основ теории анализа атомной структуры кристаллов, вводящий в курс дела неискушенного в этой области физико-химика. Автор полагает, что с ростом аппаратурных возможностей все большее число научных работников, главным образом химиков, будут принимать непосредственное участие в структурных исследованиях как одной из сторон своей повседневной работы. Следует, впрочем, подчеркнуть, что для всестороннего анализа получаемых результатов, их места и значения в общей совокупности кристаллохимических знаний всегда будут требоваться помощь и вмешательство специалиста в этой области. [c.4]

    Понятно поэтому, что изложение основ рентгеноструктурного анализа кристаллов немыслимо без предварительного ознакомления с некоторыми понятиями, представлениями и обозначениями, принятыми в структурной кристаллографии и в первую очередь в теории симметрии кристаллов. С этих представлений и целесообразно начать, предварительно оговорившись, что в задачу автора отнюдь не входит последовательное изложение всех основ теории симметрии. Будут рассматриваться лишь те ее аспекты, которые абсолютно необходимы для понимания особенностей дифракционных эффектов, возникающих при прохождении рентгеновских лучей через кристаллы, и правильного (грамотного) описания самой структуры кристалла. [c.5]

    Можно, однако, взять за основу несколько иную систему, операции симметрии, а именно повороты, инверсию и повороты, сопровождаемые инверсией в одной из точек, лежащих на оси поворота. В этом случае зеркальное отражение может рассматриваться как поворот на 180°, совмещенный с инверсией, а зеркальные повороты по определенным правилам, относящимся к порядку оси поворота, сводятся к инверсионным поворотам. В структурной кристаллографии принята именно эта вторая система опорных операций симметрии на ней основана номенклатура групп симметрии, характеризующих атомную структуру кристаллов. Применяется и совсем иной [c.15]

    С развитием техники структурных исследований, его массовости, прецизионности у рентгеноструктурного анализа появляются новые перспективы, возникают и становятся актуальными новые задачи, в частности задачи, лежащие за пределами того, что принято называть статической атомной структурой кристалла. [c.135]

    Автор этой книги назвал период 40—50-х годов эпохой романтического рентгеноструктурного анализа, так как расшифровка атомной структуры кристалла каждого соединения тогда представляла собой увлекательную задачу, похожую на решение шахматных головоломок. Каждый случай требовал своего индивидуального подхода, использования малейших намеков, содержащихся в рентгеновских данных или в физико-химических свойствах вещества. Применялись разнообразные весьма тонкие методы обработки экспериментального материала, призванные извлечь из него именно те детали структуры, которые представлялись ключевыми для дальнейшего продвижения в анализе расположения атомов. Высоко ценилось изящество приемов, позволявших добиться результата с минимальной затратой времени и средств на получение экспериментальных данных и на расчетные процедуры. Выполнением структурных исследований могли заниматься лишь высококвалифицированные специалисты. [c.3]

    Предлагаемое учебное пособие представляет собой обзор основ теории анализа атомной структуры кристаллов, предназначенный для студентов старших курсов университетов и полезный для научных работников-хи-миков, неискушенных в области рентгеноструктурного анализа и желающих принять участие в структурных исследованиях. [c.4]

    Основной недостаток полихроматического метода связан с тем, что все дифрагируемые кристаллом лучи рдг имеют разную длину волны, а это означает, что интенсивности дифракционных лучей в этом методе зависят не только от структуры кристалла, но и от распределения интенсивности по X в спектре первичного пучка. Последнее к тому же зависит от режима работы рентгеновской трубки. Эта и ряд других особенностей полихроматического метода резко сужают его возможности Б структурном анализе. Фактически он используется в основном для решения одной из побочных (предварительных) задач рентгеноструктурного анализа —для определения ориентации кристаллографических осей в исследуемом монокристалле. Такая задача возникает, во-первых, в тех случаях, когда исследуется обломок кристалла, не имеющий правильного габитуса, и, во-вторых, в тех случаях, когда для повышения прецизионности исследования кристаллу путем обкатки придается сферическая форма (см. гл. IV, 1 и гл. V, 4). Именно неподвижное положение исследуемого образца в камере Лауэ и делает полихроматический метод незаменимым для решения этой задачи. Ориентация кристаллографических осей находится по определенным правилам на основе расположения дифракционных пятен на пленке .  [c.68]

    Усовершенствование техники рентгеноструктурных исследований привело к значительному повышению точности измерения интенсивности дифракционных лучей. Одновременно разработка методов эффективного учета различных побочных факторов, влияющих на интенсивность, позволила существенно понизить потери в точности при переходе от интенсивности к структурным амплитудам, а следовательно, адекватно снизить уровень погрешности в определении электронной"" плотности, координат атомов и констант колебаний атомов. Это дает возможность направить рентгеноструктурный анализ на решение ряда новых физико-химических задач, лежащих за пределами статической атомной структуры кристалла. Это прежде всего следующие задачи а) анализ тепловых колебаний атомов в кристаллах б) анализ деталей распределения электронной плотности по атомам и между атомами в кристаллах в) использование структурных данных для оценки параметров, входящих в волновые функции и орбитальные энергии молекулярных систем. [c.180]

    Правильная структура кристалла характеризуется тем, то все узлы решетки заняты частицами, все междоузлия свободны. Если структурными элементами кристалла являются частицы двух типов А и В, количества которых находятся в стехиометрическом соотноше  [c.332]

    Структуру кристаллов изучают в разделах естествознания, называемых кристаллофизикой и кристаллохимией. Содержанием кристаллохимии является установление зависимости условий образования и физико-химических свойств кристаллов от их структуры и состава, изучение энергетики и выяснение природы химической связи в кристаллах. Основным методом исследований в кристаллохимии является рентгеноструктурный анализ, использующий явление дифракции рентгеновского излучения на кристаллах, открытое М. Лауэ и др. (1912). В последние десятилетия получили широкое распространение методы электронографии (дифракция быстролетящих электронов на кристаллической решетке) и нейтронографии (дифракция медленных, тепловых нейтронов на кристаллах). Каждый из этих методов обладает спецификой применения, ввиду чего совокупность их позволяет проводить структурные исследования самых различных образцов, существенно различающихся по своей природе. [c.319]

    Процесс прокаливания кокса сопровождается отрывом отдельных групп и атомов, дальнейшим углублением поликонденсации, что приводит к укрупнению углеродных сеток. Прокаленные коксы имеют хорошо упорядоченную структуру двумерных кристаллов. Структурная перестройка, а также удаление летучих вызывает объемные изменения кокса - усадку. Чем выше содержание летучих, тем больше объемная усадка материала. Она достигает у нефтяного пиролизного кокса 13— [c.157]

    Полиморфизм. В зависимости от внешних условий одно и то же твердое вещество может иметь разные по симметрии и структуре кристаллы. Способность данного твердого вещества существовать в виде двух или нескольких кристаллических структур называют полиморфизмом. Разные кристаллические структурные формы вещества называют полиморфными модификациями. [c.128]

    В основе описания структуры того или иного кристалла лежит представление о структурной единице — элементарной ячейке. Для кубических кристаллов структурная единица представляет собой маленький куб, который повторяется параллельно самому себе таким образом, что заполняет пространство, воспроизводя целый кристалл. [c.33]

    В реальных кристаллах атомы находятся в постоянном движении. Однако это движение гораздо больше ограничено, чем в жидкостях, не говоря уже о газах. Поскольку атомные ядра значительно меньше и тяжелее электронных облаков, их движение может быть очень хорошо описано малыми колебаниями относительно равновесных положений. В нашем рассмотрении симметрии кристаллов будем приближенно считать все структуры полностью жесткими. Между тем, в современном определении молекулярной структуры кристалла движение атомов должно быть учтено. Как при использовании методики структурного анализа, так и при интерпретации результатов должно приниматься во внимание движение атомов в кристалле. В этом месте дадим слово поэту [14]  [c.411]

    Праменення рентгеновских лучей. Интерференция рентгеновских лучей за последнее время получила широкое применение для определения структуры кристаллов структурный анализ). Постоянную кристаллической решетки, т. е. расстояние между ее главными плоскостями, можно легко определить для кристаллов, имеющих простое строение, путем измерения всего лишь нескольких углов отражения. Вычисление ее производят на основании уравнения (1). Но и для веществ с очень сложным строением можно лишь на основании существования рентгеновских интерференций судить по крайней мере о том, являются ли эти вещества кристаллическими, т. е. построенными упорядоченно или нет, так как только при кристаллической строении, как это следует из теории,, имеются условия [c.235]

    Пассивационные и концентрационные эффекты играют важную роль в процессах роста кристаллов, однако они не исчерпывают всех причин, вызывающих отклснение реальной картины кристаллизации от идеализированной модели Фольмера. Отклонения от модели Фольмера объясняются и нарушениями идеальной структуры кристалла, т. е. дефектами кристаллической решетки, и в первую очередь появлением участков с расположением структурных элементов, отличным от их расположения в идеальной решетке данного кристаллического тела, так называемых дислокаций. [c.338]

    Для интерпретации структурных результатов численных экспериментов очень важен вопрос формального определения водородной связи между молекулами воды. При анализе/-структур водородная связь вообще не может быть определена однозначным образом [386, 405, 406]. Это заключение согласуется с выводом Ю. И. Наберухина о том, что водородная связь может быть строго определена только для собственных структур, в частности, для / -структур [383]. Тем не менее вопрос о водородных связях в ансамбле /-структур столь важен, что, начиная уже с первых работ по моделированию водных систем, предлагались различные подходы к их поиску. При этом наметились две группы критериев водородных связей энергетические и геометрические. Согласно геометрическим критериям, любая пара молекул считается соединенной водородной связью, если расстояние между атомами кислорода, угол О—Н. .. О и (или) расстояние между атомом водорода и атомом кислорода не выходят за пределы некоторых значений, установленных на основании анализа данных о структурах кристаллов. Поскольку структуры кристаллов — это собственные (К) структуры, то прямое перенесение полученных для них зависимостей на мгновенные (/) структуры, собственно говоря, не правомерно. Согласно энергетическим критериям, любая пара молекул, энергия взаимодействия которой по модулю больше некоторой величины инв, считается соединенной водородной связью. Энергетический крите- [c.140]

    В связи с.этим совершенствованию технологии с целью улучшения технико-экономических показателей процесса депарафинизации уделяется" большое внимание. Кроме использования порционной подачи растворителя, замены ацетона на метилэтилкетон, создания комбинированных установок по производству низкозастывающих масел и парафинов вводятся в эксплуатацию укрупненные установки депарафинизации производительностью по сырью 90СГ—1100 т/сут при переработке дистиллятного сырья и 600—700 т/сут — для остаточного. Для создания условий кристаллизации, обеспечивающих образование При охлаждении раствора сырья крупных кристаллов твердых углеводородов, хорошо отделяемых от жидкой фазы, предложено обрабатывать суспензии твердых углеводородов ультразвуком, который разрушает пространственную Структуру кристаллов и резко снижает структурную вязкость. Это позволяет повысить скорость отделения твердой фазы от жидкой и получить более глубокообезмасленный парафин или церезин. [c.208]

    Молекулярные твердые соединения построены из молекул, соединенных друг с другом лишь ван-дер-ваальсовыми силами, включая в определенных случаях водородные связи, и состав этих веществ есть сумма составов всех молекул, вошедших в его структуру. Они образуют молекулярные кристаллы, структурными единицами которых служат молекулы. Молекулярные твердые соединения образуются в результате отвердевания, т.е. фазового превращения вещества, когда имеет место лишь межмолекулярное взаимодействие и не происходит разрыв существующих или образование новых химических связей. При образовании молекулярных кристаллов в условиях низких температур, исключающих межатомные взаимодействия, молекулы без сколько-нибудь существенных изменений входят в кристаллическую структуру, образуя настолько плотную упаковку, насколько позволяет конфигурация. молекул /69/. [c.107]

    При переходе вещества в твердое состояние молекулы независимо от конфигурации их остова и размеров могут служить нульмерными структурными единицами в молекулярных кристаллах, включая кристаллы соединений включения, обладающих структурой островного, цепочечного, слоистого и каркасного типа. Как мы уже видели, молекулы трехмерного строения, вроде Р458, неоцен-тана С (СНз) 4 или адамантана — симметричного трициклодекана С10Н16, в строении соответствующих молекулярных кристаллов играют роль точечных, нульмерных структурных единиц. Длинные цепочечные молекулы, например углеводорода —СшНза или полиэтилена, в соответствующих молекулярных кристаллах обычно складываются во вторичные структурные единицы, такие как слои в структуре кристаллов нормальных парафинов.  [c.90]

    При использовании монохроматического рентгеновского луча Применяют такие методы, как рентгенографирование в расходящемся луче, когда точечным источником монохроматического излучения освеш,ают монокристалл, или метод враш,ения и колебания монокристалла. В последнем случае для получения рентгенограммы вращения небольшой монокристалл освещается параллельным монохроматическим лучом, а кристалл при этом вращается вокруг оси, перпендикулярной к первичному пучку. Измерив интегральную интенсивность отражений и определив Набор структурных амплитуд, можно расшифровать атомную структуру кристалла. [c.153]

    В последние десятилетия наблюдалось бурное развитие рентгеноструктурного анализа (в первую очередь с использованием монокристаллов), а также других дифракционных методов исследования. Это обусловлено рядом причин. Одной из них явилось кардинальное усовершенствование рентгеновской аппаратуры, включая разработку ряда типов дифрактометров, управляемых ЭВМ, для съемки монокристаллов, внедрение новых способов регистрации рентгеновского излучения, использование монохроматоров. В результате точность экспериментальных данных резко возросла и появилась возможность решения принципиально новых задач (локализация легких атомов, определение деталей распределения электронной плотности на базе совместных данных нейтронографического и рентгеновского методов). Не менее важным обстоятельством явилась разработка комплексов программ обработки результатов измерений и определения структуры кристаллов, зачастую с недостаточно охарактеризованным химическим составом. Этой области применения рентгеноструктурного ана 1иза в химии посвящено несколько прекрасных монографий и учебников, и структурные разделы почти обязательно включаются в работы по синтезу новых соединений, так как дают непосредственные данные о пространственном расположении атомов в кристаллах а иногда являются и удобным способом определения химического состава, в особенности если известен качественный состав. [c.3]

    Основной недостаток полихроматического метода связан с тем, что интенсивности дифракционных лучей зависят в этом случае не только от структуры кристалла, но и от рас феделения интенсивности ио 1 в спектре первичного п . чка. Последнее к тому же зависит от режима работы рентгеновской трубки. Это, а также ряд других особенностей полихроматического метода делают его неудобным для решения задач структурного анализа кристаллов. Таким образом, в структурном анализе полихроматический метод, так же как и метод порошка, играет лишь вспомогательную роль. Основным является метод вращения .  [c.56]

    Принадлежность кристалла к той или иной пространственной группе устанавливается исследованием его структуры методами рентгено-структурного, электронографического и нейтронографического анализов [8, 9]. После того как рентгенограмма (или элек-тронограмма) получена и проиндицирована, можно установить, от каких плоскостей кристалла рефлексы отсутствуют. Знание закономерностей погасаний позволяет определить так называемую рентгеновскую группу, включающую одну или несколько федоровских групп. Полное определение атомной структуры кристалла возможно только после определения интенсивности рефлексов, так как значения координат частиц в элементарной ячейке влияют на величину структурной амплитуды, определяющей интенсивность рассеяния. [c.21]

    Подобным же образом структурную единицу кубического кристалла можно представить как куб, который при параллельном повторении заполняет пространство, образуя кубическую решетку, как показано на рис. 2.6. Для кубического кристалла структурную единицу можно описать, приняв ребро куба равным а значения координат х, у к г для каждого атома можно выразить в долях ребра куба структурной единицы. Таким образом, в плотнейшей кубической упаковке, примером которой может служить структура металлической меди, структурная единица— куб с ребром, равным а = У2х255 пм, и с четырьмя атомами в такой единице (элементарной ячейке), имеющими координаты х=0 у=0, 2=0 х=0, у= /2, 2=72 х=Ч2, У=0, 2=72 Х=У2, У =42, 2=0 как показано на рис. 2.7. Часто эти координаты пишут без символов X, у, г в таком случае говорят, что в структурной единице имеются че тыре атома меди при О О 0 О 7г 7г Ч2 О 7г Ч2 7г 0. Эти цифры назы вают координатами атомов в кубической структурной единице. [c.34]


Смотреть страницы где упоминается термин Структура кристалла и структурный тип: [c.70]    [c.203]    [c.175]    [c.16]    [c.287]    [c.123]   
Смотреть главы в:

Кристаллохимия Издание 2 -> Структура кристалла и структурный тип

Рентгеноструктурный анализ Том 1 Издание 2 -> Структура кристалла и структурный тип




ПОИСК





Смотрите так же термины и статьи:

Кристалл структура



© 2025 chem21.info Реклама на сайте