Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции карбонильной и карбоксильной групп

    Единственная химическая реакция, которая здесь будет рассматриваться, —это гидролиз. Он может осуществляться как ферментативным, так и химическим путем. Горячая разбавленная минеральная кислота медленно расщепляет амидные связи с образованием с учайных фрагментов, в конечном итоге приводя к простым аминокислотам. Контролируемый кислотный гидролиз разрушает белок с образованием смеси пептидов. Возможен также ферментативный гидролиз протеолитические ферменты очень разнообразны по своему специфическому действию. Некоторые из них, такие, как папаин или фицин, фактически неспецифичны и расщепляют белки до свободных аминокислот, в то время как другие — трипсин, химотрипсин и пепсин— гидролизуют только особые связи в белковых молекулах (ср. мальтаза, эмульсин и т. д., разд. 17.6 и 17.7). Так, пепсин расщепляет амидную связь между карбоксильной группой ди-карбоновой ь-аминокислоты и аминогруппой ароматической ь-аминокислоты при условии, что вторая карбоксильная кислотная группа дикарбоновой аминокислоты не связана. Химотрипсин менее специфичен и расщепляет амидную связь с карбонильной стороны ароматической ь-аминокислоты. Трипсин гидролизует амидные связи, включающие карбоксильные груп- [c.296]


    Реакции карбоксильной группы в а,р-ненасыщенных карбоновых кислотах практически не меняются под влиянием соседней двойной связи. С помощью обычных методов можно получить сложные эфиры, ацилхлориды, ангидриды, амиды и т.д. Однако химия двойной связи С = С за счет сопряжения с карбонильной группой видоизменяется очень существенно. Как показано с помощью канонических структур, электроотрицательная карбонильная группа перетягивает электронную плотность я-связи (гл. 2), вызывая уменьшение реакционной способности группы С = С при взаимодействии с электрофилами. [c.254]

    Вторая из приведенных реакций носит название реакция Дильса — Альдера, или диеновый синтез. Она легко протекает при нагревании бутадиена-11,3 ли его производного с подходящим образом замещенным этеном, содержащим, например, карбонильную или карбоксильную группу у атома углерода двойной связи  [c.131]

    Соединение сернистого газа с хлором в присутствии камфоры вероятно обусловлено остаточными валентностями ее кислорода органические соединения, содержащие карбонильную, карбоксильную группы или эфирный кислород, действуют как положительные катализаторы Реакция ингибируется органическими соединениями, содержащими нитро- или сульфитную группу или галоген 57 [c.332]

    Из опубликованных в этой области данных известно, что процесс окисления углеводородов [82, 213, 236, 274] протекает как ряд последовательных реакций через образование перекис-ных соединений (теория Баха). Он сопровождается дегидрированием, отщеплением атомов углерода сырья и образованием некоторых кислородных соединений сложных эфиров, гидроксильных, карбонильных и карбоксильных групп в зависимости от химических особенностей сырья и условий процесса [52] По-видимому, внедрение кислорода в молекулы сырья вызывает специфические спиновые взаимодействия, которые выражаются в создании локальных полей [19]. [c.33]

    Этот процесс протекает быстро (около 1 мин.), в результате чего в начальный период окисления заметно повышается концентрация свободных радикалов, а следовательно, и вероятность их встречи с кислородом. Б битуме повышается содержание перекисных, карбонильных и карбоксильных групп. При последующем окислении незначительно возрастает концентрация водорастворимых соединений, содержащих Fe " ", что можно объяснить следующей реакцией  [c.144]

    Вследствие такого смещения электронной плотности связь О —Н в гидроксигруппе ослабляется и атом водорода легко отщепляется в виде иона Н" . Поэтому именно гидроксигруппа участвует почти во всех реакциях она либо теряет протон (Н ), либо замещается при действии нуклеофильных реагентов Другой отличительной особенностью карбоксильной группы является то, что для нее не характерна карбонильная активность (в отличие от альдегидов и кетонов).  [c.381]


    Обратим внимание на вторую структурную составную часть карбоксила — карбонильную группу. Как повлияет соседство гидроксила на известные нам свойства связи С=0 Эти свойства определяются прежде всего способностью карбонильного углерода присоединять нуклеофильные реагенты, что зависит от величины положительного заряда на данном углеродном атоме. Из предыдущего рассмотрения понятно, что в карбоксильной группе положительный заряд карбонильного углерода в значительной степени погашен за счет перетягивания электронов от гидроксильного кислорода. Это значит, что карбонильные реакции будут свойственны карбоксильным соединениям в меньшей мере, чем альдегидам и кетонам. [c.191]

    Обнаружение новой полосы поглощения означает образование на поверхности промежуточного соединения. Однако наблюдение этой полосы еще не доказывает, что соответствующий промежуточный продукт важен для течения каталитической реакции. Так, инфракрасные спектры, полученные при адсорбции смеси ацетона и кислорода на окиси никеля, показывают наряду с полосами карбонильной группы наличие полосы окисленной энольной группы С—0 , а также карбоксильной группы [c.178]

    Это нуклеофильное присоединение к сг,р-ненасыщенным карбонильным соединениям (называемое реакция Михаэля ) не ограничивается кислотами, оно вообще характерно для а, 1-не-насыщенных сложных эфиров, кетонов, альдегидов, а также нитрилов. На самом деле а,р-ненасыщенные кислоты реагируют труднее, чем их эфиры или нитрилы, поскольку в используемых условиях карбоксильная группа обычно превращается в анион (наиболее сильные нуклеофилы являются также основаниями), который, будучи отрицательно заряженным, менее чувствителен к нуклеофильной атаке, чем незаряженная частица. Однако производные карбоновых кислот реагируют легко, например  [c.256]

    Карбоновые кислоты в качестве нуклеофильных агентов могут взаимодействовать с карбонильными производными. Однако нуклеофильность их мала. Поэтому в условиях, при которых совершаются обычно превращения органических веществ, карбоксильная группа не реагирует с карбоновыми кислотами. При высоких температурах можно добиться осуществления такой реакции, как это происходит, например, при нагревании уксусной кислоты до 700—900 °С. При этом образуется уксусный ангидрид, который в условиях реакции сразу превращается в кетен [см. схему (Г.3.34)]  [c.99]

    Эта реакция приводит к образованию карбонильной, а не карбоксильной группы, однако она все-таки приведена здесь как потенциальный способ получения кислот. По этой же причине описано превращение пиразолонов в ацетиленовые нли олефиновые кислоты 1б5] [c.232]

    Оттягивание электронов способствует появлению на карбонильном углероде некоторого б+ заряда, который облегчает реакцию между карбоксильной группой одной аминокислоты и аминной группой другой (см. синтез пептидов). [c.462]

    При облучении целлюлозы в атмосфере кислорода скорости процесса деструкции, реакции образования карбоксильных групп и реакции образования карбонильных групп лишь незначительно превышают скорости соответствующих реакций при проведении облучения в атмосфере азота [308]. При прогреве влажных целлюлозных волокон были сделаны наблюдения противоположного характера [310]. Это дало основания сделать вывод, что окислительная деструкция облученных целлюлозных волокон протекает более интенсивно при облучении на воздухе, чем нри облучении в вакууме. Сопоставление показателей, характеризующих окрашиваемость облученных образцов, привело к выводу, что у-излуче-ние вызывает лишь окисление целлюлозы, в то время как одновременное действие у-излучения и нейтронов приводит также и к гидролизу [311]. При обсуждении результатов, основанных на физических эффектах, следует учитывать, что большое значение могут иметь изменения морфологической структуры целлюлозы, связанные с изменением ее кристаллич1[ости, а также величины внутренней поверхности. Результаты химического анализа и определения изменения молекулярного веса целлюлозы лучпю характеризуют реакции, протекающие при радиационных воздействиях. Были опубликованы и другие работы, в которых было исследовано изменение свойств целлюлозы в зависимости от условий радиационного облучения [312—314]. [c.116]

    Р0 , НРО и НгРО ). Скорость реакции обмена во многих случаях существенно зависит от pH среды. Щелочи ускоряют обмен в бихроматах, хлоратах, иодатах, но заметно тормозят обмен в хроматах, нитратах, сульфитах и тиосульфатах. В кислой среде ускорение реакции обмена наблюдается для хроматов, хлоратов, нитратов. Для органических кислородных соединений установлено, что скорость обмена кислорода карбонильной и карбоксильной групп зависит от кислотности среды. Интересно, что с увеличением силы кислоты обмен облегчается. Это можно видеть на примере уксусной, моио-хлоруксусной и трихлоруксусной кислот. Скорость обмена растет при переходе от уксусной через монохлоруксусную к трихлоруксусной кислоте. Кислород спиртовых и фенильных гидроксильных групп обычно не подвергается обмену. Однако у третичного спирта трианизолкарбинола можно обнаружить обмен, катализируемый кислотами. В сахарах обменивается только один атом кислорода. [c.374]


    Соединения В и Г обязаны своим происхождением более высокой реакционной способности лнтийорганического соединения, которое будет вступать в реакцию по карбоксильной группе. Соединение с молекулярным весом около 84 и имеющее карбонильную группу может образоваться только при внутримолекулярной конденсации промежуточно образующегося монокарбоксильного литий-органического соедщ1ения. Это циклопентанон, что подтверждается данными ИК-спектра (гипсохромный эффект тс = о объясняется замыканием цикла). [c.240]

    Как видно из табл. 2, восстановление -циклогексанонпропионовой кислоты возможно лишь при температуре не ниже 80°С. Однако наряду с восстановлением карбонильной группы кислоты протекает и побочная реакция восстановления карбоксильной группы, которая становится особенно заметной при 130—270°С. В результате прямое восстановление -циклогексанонпропионовой кислоты в -циклогексилпропио-новую невозможно без предварительной защиты карбоксильной группы. [c.67]

    Хорошему окислению пропилена в ароматических углеводородах способствует добавление к реакционной смеси Na2 Oз [40] или К2СО3 [41] для нейтрализации образовавшихся кислот. По первому методу при конверсии 12,5% получают 28,8 мол. % окиси пропилена п 18 мол. % пропиленгликоля наряду с кислотами и эфирами. Для инициирования реакции рекомендуется вводить соединения с карбонильными пли карбоксильными группами, наиример пропионовый альдегид или ацетальдегид. По второму методу [41], благодаря специальной конструкции реакционной камеры, получают высокую конверсию (94,2%) и высокий выход на единицу объема в единицу времени 100 г/ч окиси пропилена и 50 г/ч пропиленгликоля. [c.77]

    При термоокислении ПДМС образуются формальдегид и параформ, окись и двуокись углерода, вода, метанол, муравьиная кислота и обычные продукты термодеструкции — циклосилоксаны, метан, водород. В окисленном полимере появляются боковые си-ланольные группы, в состав которых входит часть атомов водорода отщепившихся метильных групп, но в нем отсутствуют перекисные, карбонильные, карбоксильные и кремнийгидридные группы [66]. Накопление боковых силанольных групп приводит к ускорению как структурирования полимера в результате их конденсации, так и термодеструкции с выделением циклосилоксанов и метана по реакциям (34) и (35) [66, 67]. Потери массы очи щенного ПДМС за одинаковое время при 300 °С на воздухе в 2—3 раза выше, чем в вакууме. Термоокисление ингибируется различными антиоксидантами [66—68. Все имеющиеся данные [c.487]

    Кислород в асфальтенах находится в четырех основных функциональных группах гидроксильной, карбонильной, карбоксильной и сложноэфирной. При термодеструктивных процессах кислород способен перераспределяться между этими группами, одновременно выделяясь или поглощаясь из внешней среды, что может существенно повлиять на направление протекания реакций и соотнетст-венно на качество промежуточных и конечных продуктов, получаемых из асфальтенов. Наибольшее количество зольных компонентов (в том числе вачадия и никеля) концентрируется в первой фракции и в остатке асфальтенов. Предполагают, что ванадийпорфириновыс комплексы могут быть составной частью асфальтенов, хотя и не исключается их присутствие как сольватирующего агента. [c.28]

    Направляющее влияние некоторых групп, содержащихся в ароматическом ядре, при сульфировании и при других реакциях замещения неодинаково. Так, при сульфировании галоидобензолов образуются 100%-ные тгара-соединения, а при нитровании — смесь орто- и иара-соединений. Недавно опубликованы [1] подробные сравнительные данные о направляющем влиянии различных групп в реакциях нитрования и сульфирования. Во многих случаях изменение температуры реакции меняет положение вступающей в ядро сульфогруппы или ведет к перегруппировке первоначального продукта реакции с образованием более устойчивого изомера. Это особенно относится к нафталиновому ряду. Сульфат ртути также оказывает сильное влияние на строение продукта сульфирования, что заметно при сульфировании соединений, содержащих в ароматическом радикале карбонильную или карбоксильную группу. Этот эффект, вероятно, вызван меркурированием с последующей заменой ртути на сульфогруппы при действии избытка серного [c.8]

    Основываясь на своих собственных исследованиях модельных соединений, Бреслоу предложил второй механизм гидролиза пептидов карбоксипептидазой А, не включающий образования ацил-ферментного промежуточного соединения [221, 222]. По существу, в гидролизе пептидной связи участвуют ион цинка, карбоксильный ион и гидроксильная группа тирозина. 2п(П) ио-прежнему играет роль кислоты Льюиса, координируя карбонильный кислород, а карбоксильная группа действует скорее как общее основание. Это мож но утверждать, поскольку в присутствии СН3ОН (вместо воды) метанолиз пептидного субстрата не наблюдался из-за неблагоприятной константы равновесия. Таким образом, фермент не может включать метанол в переходное состояние (в реакции, катализируемой в обоих направлениях) ни в случае эфирных, ни в случае пептидных субстратов. Это означает, что для протекания гидролиза необходимо удаление в переходном состоянии обоих протонов молекулы воды. [c.348]

    Реактивы Гриньяра присоединяются к одной связи С = 0 СОг так же, как к карбонильной группе альдегида или кетона [355]. При этом, конечно, образуется соль карбоновой кислоты. Реакцию обычно проводят, выливая раствор реактива Гриньяра на сухой лед. Таким путем получены многие карбоновые кислоты, и эта реакция наряду с последовательностью реакций 10-103 и 16-5, а также с реакцией 18-9 является важным методом увеличения длины углеродной цени на один атом. А поскольку меченый СО2 коммерчески доступен, то это и хороший метод синтеза карбоновых кислот с меченой карбоксильной группой. Применялись и другие металлоорганические соединения (RLi, RNa, R aX и т. п.), но значительно реже. Образование соли карбоновой кислоты при прибавлении СО2 к реак- [c.375]

    С — дегидратация, начинающаяся с физической десорбции воды. В последующем выделяется связанная вода. Пэг раллельно при 100-200 С протекают конкурирующие реакции гидролиза целлюлозы [9-136], которые приводят к деполимеризации, образованию левоглюкозана, карбонильных и карбоксильных групп. Наблюдаемые в этом температурном интервале потери массы связаны с выделением НгО, СО и СОг- [c.619]

    Электронное строение карбоксилыюн группы. Мезомерия аниона, взаимное влияние гидроксила и карбонильной группы. Реакционные центры молекулы кислоты. Понятие о кпслотно-оиюипом равновесии, рТСа. Производные кислот и их реакции с нуклеофильными реагентами. Взаимное влияние карбоксильных групп в двуосновных кислотах — щавелевой, малоновой. Аттрактанты, репелленты. [c.250]

    Атомы водорода в а-положении испытывают акцепторное влияние карбонильной группы, что сообщает им некоторую подвижность. В ряде реакций она можёг проявляться лишь при условии экранирования карбоксильной группы, т. е. замещения кислотного протона на алкильный радикал, В этой связи представляют интерес превращения метиленовой группы (СН2) в дикарбонильных соединениях (см. далее). [c.98]

    В этой реакции пероксид разлагается, давая радикал, который отрывает водород от РН образующийся при этом радикал К- димеризуется. Для реакции используют диалкил- и диацилпероксиды, а также реактив Фентона (см. реакцию 14-5). Реакция не носит общего характера, но в некоторых случаях выходы вполне приемлемые. Среди положений, по которым может идти реакция сочетания, следует в первую очередь назвать третичный атом углерода [230], а также а-положение к фенильной группе (особенно, если присутствует еще а-алкильная или а-хлорогрупны) [23П, к простой эфирной [232], карбонильной [233], циано- [234], диалкиламино- [235] илп сложноэфирной карбоксильной группам, в последнем случае кислотной или спиртовой составляющих стороны кислоты, либо со стороны спирта [236]. [c.93]

    Важнейшие методы ксшдежсации основаны на второй схеме. Однано мегпльная или метилеиовая группы способны участвовать в конденсации только в том случае, если они активированы соседними карбонильными, карбоксильными, нитрильными или нитрогруппами или некоторыми, замещенными ароматическими остатками. Эти, реакции известны под различными названиями, в зависимости от вида функциональных групп и применяемых конденсирующих средств. [c.801]

    Легкость гидрирования отдельных функциональных групп уменьшается в следующей последовательности двойные связи, нитрогруппа, карбонильные Т руппы, нитрильные группы, ароматические и гетероциклические системы, гидроксильные группы и, наконец, наиболее устойчивые карбоксильные группы. Избирательное гидрирование является довольно трудной задачей.. Тем не менее путем подбора соотвегствую-щих катализатороб и изменения условий реакции во многих случаях удается прогидрировать только одну из присутствующих в молекуле функциональных групп. [c.522]

    Реакция Фриделя — Крафтса между ангидридом жирной двухосновной кислоты и ароматическим углеводородом приводит к обраэова(нию ароилжирной кислоты, в которой ароильная группа находится у крайнего атома алифатической цеии. Число метиленовых групп между карбонильной и карбоксильной группами не может быть менее двух, поскольку низшим членом ряда циклических ангидридов является янтарный ангидрид. [c.195]

    Пример (5) иллюстрирует еще одну сторону вопроса — влияние уровня окисления реагентов на характер продукта реакции. Поскольку в одном из реагентов имеется карбонильная группа, соответствующая по уровню окисления карбоксильной группе, в продукте реакции сохраняется атом кислорода, связанный с тем же глеродным атомом. [c.37]


Смотреть страницы где упоминается термин Реакции карбонильной и карбоксильной групп: [c.194]    [c.77]    [c.61]    [c.170]    [c.258]    [c.339]    [c.255]    [c.301]    [c.562]    [c.226]    [c.274]    [c.570]    [c.734]    [c.315]    [c.26]    [c.111]    [c.409]    [c.489]   
Смотреть главы в:

Современные проблемы физической органической химии -> Реакции карбонильной и карбоксильной групп




ПОИСК





Смотрите так же термины и статьи:

Карбоксильная группа

Карбоксильный ион

Карбонильная группа

Карбонильные группы реакции

группа реакции



© 2025 chem21.info Реклама на сайте