Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции переноса энергии и заряда

    Хотя многочисленные рассмотренные в этом разделе примеры не позволяют однозначно объяснить механизм защитного эффекта бензола, но можно по крайней мере утверждать, что реакции переноса энергии и заряда играют решающую роль, когда электронная доля бензола меньше примерно 0,05. При низких концентра-334 [c.334]

    Реакции переноса энергии и заряда [c.115]


    Возможен также перенос заряда ионизированной молекулой к другой молекуле с более низким потенциалом-ионизации. Таким образом, для смесей может быть характерна определенная избира-. тельность реакций. Кроме многих предложенных механизмов реакции, есть процессы, при которых возбужденные молекулы беч распада теряют свою избыточную энергию. Хорошо известна флуоресценция — превращение молекулярной энергии в видимое излучение Известен также процесс гашения — постепенное рассеивание энергии путем ее передачи ближайшим молекулам при столкновениях, происходящих в результате теплового движения или каким-либо другим путем. На этих процессах переноса энергии основан механизм защиты от излучения, благодаря которой влияние излучения на чувствительные материалы может быть уменьшено. Другой метод, усиливающий такую защиту, основан на изучении реакций радикалов, часть которых может проходить через многие стадии цепного механизма, например, реакции (2) и (4), Если имеются компоненты, склонные вступать в реакцию со свободными радикалами, то интенсивность излучения может быть уменьшена. К таким акцепторам радикалов относятся иод, ненасыщенные соединения, окиси азота, амины и кислород. [c.159]

    Так, например, реакция переноса электрона от иона ОН к иону железа (И ) в водном растворе, ведущая к образованию радикала ОН" и двухзарядного иона Ре2+, казалось бы, должна быть энергетически выгодной. Однако частичная дегидратация ионов железа и гидроксила, обусловленная понижением зарядов этих частиц, требует затраты работы. Энергия переноса электрона (если нет каких-либо осложняющих реакцию процессов) равна разности между сродством к электрону и разностью теплот гидратации начальных и конечных продуктов. Величина этой разности такова, что процесс в целом характеризуется положительным значением энтальпии +183,9 кДж. Прирост энтропии составляет 246,6 Дж/моль-г, что дает для изменения энергии Гиббса при 300 К положительную величину  [c.258]

    Основы физической и коллоидной химии позволяют заложить фундамент развития качественных и количественных представлений об окружающем мире. Эти знания необходимы для дальнейшего изучения таких специальных дисциплин, как агрохимия, почвоведение, агрономия, физиология растений и животных и др. Современное состояние науки характеризуется рассмотрением основных физико-химических процессов на атомно-молекулярном уровне. Здесь главенствующую роль играют термодинамические и кинетические аспекты сложных физико-химических взаимодействий, определяющих в конечном счете направление химических превращений. Выявление закономерностей протекания химических реакций в свою очередь подводит к возможности управления этими реакциями при решении как научных, так и технологических задач. Роль каталитических (ферментативных) и фотохимических процессов в развитии и жизни растений и организмов чрезвычайно велика. Большинство технологических процессов также осуществляется с применением катализа. Поэтому изучение основ катализа и фотохимии необходимо для последующего правильного подхода к процессам, происходящим в природе, и четкого определения движущих сил этих процессов и влияния на них внешних факторов. Перенос энергии часто осуществляется с возникновением, передачей и изменением значений заряда частиц. Для понимания этой стороны сложных превращений необходимо знание электрохимических процессов. Зарождение жизни на Земле и ее развитие невозможно без участия растворов, представляющих собой ту необходимую среду, где облегчается переход от простого к сложному и создаются благоприятные условия для осуществления реакций, особенно успешно протекающих на разделе двух фаз. [c.379]


    Перенапряжение является мерой энергии активации гетерогенной химической реакции (реакции переноса заряда), и оно необходимо дпя преодоления активационного барьера реакции. Величина перенапряжения электродной реакции зависит от материала электрода. [c.416]

    Значения тока обмена, коэффициентов переноса и энергии активации реакции переноса заряда на щелочных металлах в органических растворителях [c.14]

    При каталитическом синтезе кислородсодержащих производных углеводородов представляется возможным регулировать процессы окисления. Марголис 3, 27] рассмотрела реакции каталитического окисления, в том числе и углеводородов она установила, что одной из особенностей этих реакций является то, что они могут быть связаны с взаимодействием поверхностных радикалов с кислородом. При адсорбции молекул на катализаторе может иметь место реакция переноса заряда, и, говоря языком электронной теории катализа, образующаяся в результате этого структура адсорбата зависит от относительной величины энергии электронных уровней катализатора и субстрата. Этот основной вопрос был рассмотрен в гл. 5, где отмечалось, что в некоторых случаях молекулы могут хемосорбироваться слабо и таким образом, что получающиеся при этом поверхностные соединения не имеют результирующего заряда. Для такого случая Волькенштейн [28] постулировал существование незаряженных поверхностных свободных радикалов, которые связаны ковалентной связью с поверхностью катализатора. В других случаях, когда имеет место прочная хемосорбция, можно считать, что адсорбированные частицы имеют эффективный заряд, и поэтому их можно рассматривать как ион-радикалы. Любарский [29] предложил механизм многих каталитических реакций с участием углеводородов при этом он также исходил из представления о существовании таких поверхностных радикалов. Оп считал, что они выполняют ту же роль, что и центры передачи цепи в гомогенных газофазных реакциях окисления. Однако можно полагать, что такое представление является лишь другой формой выражения более ортодоксальной электронной теории катализа. Чтобы показать, насколько близки к истине эти два подхода, рассмотрим кратко основные особенности некоторых каталитических реакций окисления углеводородов. [c.325]

    Элементарные процессы переноса энергии и заряда, реакции свободных радикалов в конденсированной фазе должны быть изучены в связи с этим очень тщательно. [c.23]

    Низкие концентрации добавок могут сильно влиять на радиолиз циклогексана. При этом возможны как перенос энергии возбуждения (или передача заряда) от молекул растворителя к добавке, так и реакции радикалов, положительных ионов, электронов или возбужденных молекул с растворенным веществом. [c.167]

    Обычно полагают, что за электропроводность (акт переноса заряда) ответственны свободные электроны. Отсутствие свободных электронов на новерхностн катализатора, если он сам или хотя бы один из компонентов реакции является диэлектриком, казалось бы, свидетельствует против электромагнитной природы всего многообразия кинетики химических превращений, однако, например, в диэлектрических волноводах и в ряде моделей сверхпроводимости, иллюстрирующих способность высокой эффективности переноса энергии электромагнитного, поля, свободные электроны также ие участвуют. [c.71]

    Как уже отмечалось в разд. 4.6.2 и 4.7.1, рекомбинация СбН и СГ (или 1 ) [реакции (4.32) и (4.35)] не приводит к заметному образованию водорода. Это предположение согласуется с тем, что в присутствии, например, четыреххлористого углерода и иода выходы водорода уменьшаются (разд. 4.7.1), а также с тем фактом, что при наличии этих веществ может быть подавлен в значительной степени химический эффект процесса передачи заряда (разд. 4.6.2). Если это так, то уменьшение выхода С(Н2) при добавлении циклогексена к растворам иода в циклогексане (рис. 4.8) не может быть обусловлено переносом заряда. Перенос энергии возбуждения может играть, важную роль в наблюдаемых эффектах. Последние исследования [32] на примере растворов циклогексена в циклогексане подтвердили это. [c.203]

    Если иметь в виду точность предсказания свободных энергий активации вообще, то, по мнению Маркуса, согласие между расчетными и экспериментальными значениями свободной энергии в табл. 3 является обнадеживающим, так как при расчетах не вводили никакие произвольные параметры. В связи с этим можно отметить, что при обсуждении гипотезы о туннельном переносе электрона заряды ионов и радиусы ионов были варьируемыми параметрами. Из табл. 3 видно, что расчетные значения Аиспр, которые Маркус называет исправленными, заметно отличаются от кристаллографических радиусов. Теория Маркуса, так же как и гипотеза о туннельном переносе электрона, предсказывает сильную зависимость свободной энергии [уравнение (4.80)], а значит и скорости реакции от статической диэлектрической проницаемости среды. Однако было показано, что по крайней мере для реакции обмена электрона в системе Np(V)—Np(VI) в смещанных растворителях скорость реакции практически не зависит от статической диэлектрической проницаемости. [c.111]


    Далее в результате реакций переноса заряда или захвата тепловых электронов с широким спектром энергий могут образовываться отрицательно заряженные молекулярные ионы исследуемых соединений  [c.27]

    Вблизи равновесного потенциала стандартная свободная энергия активации реакции переноса некоторых простых катионов металла мало отличается от стандартной свободной энергии активации поверхностной диффузии. При достаточно отрицательных потенциалах стандартная свободная энергия активации увеличивается, в то время как для поверхностной диффузии эта величина остается неизменной. Отсюда более вероятно, что поверхностная диффузия остается стадией, определяющей скорость процесса при низких плотностях тока, тогда как стадия переноса заряда будет определять скорость при большей катодной поляризации (см. также раздел IV). Это было подтверждено экспериментально Мелом и Бокрисом [15]. Таким образом, исследование кинетики осаждения вблизи обратимого потенциала (в условиях, когда применение методов переменного тока для исследования границы фаз [16] обычно очень ограничено) дает небольшую информацию относительно стадии, определяющей скорость осаждения металла нри более отрицательных потенциалах. [c.267]

    Общие механизмы переноса энергии в фотохимических процессах. Перенос энергии с участием синглетного и триплетного состояний красителей наблюдается во многих биологических и фотохимических реакциях. При обсуждении таких процессов, среди которых решающим является перенос энергии в кристаллах или агрегатах, необходимо также учитывать возможность миграции триплетного или синглетного экситона [687, 688] или перемещение переносчиков электронного заряда [6]. [c.460]

    Одной из наиболее валшых проблем в области нeopгaничe кoii химии является установление причин прочности связей, в комплексных попах. Так, и Со обычно очень медленно обменивают связанные с ними группы атомов (лиганды). С другой стороны, АР и Ре обменивают лиганды, такие, как Н2О и СГ, очень быстро. Как мы уже видели, такое поведение тесно связано с вопросом о скоростях окислительно-восстановительных реакций и с переносом заряда. Однако эта связь не одинакова во всех случаях, так как такие комплексы, как Ре (СХ)2 и Ре ( N) ", в которых лиганды очень инертны, легко вступают в реакции с передачей заряда. Таубе [163] дал решение этих вопросов на основании орбитальной модели валентно11 оболочки ионов. Недавно была сделана попытка более количественного решения этих проблем на основании рассмотрения влияния электрических полей лиганд на относительную энергию орбит центрального иона, которые в отсутствие этих электрических полей эквиваленты. (Эта теория получила название теории кристаллического ноля [164] в применении к неорганической химии эта теория была подробно исследована в монографии [165].) [c.524]

    Реакции переноса электрона. Реакции переноса электрона, являясь простейщим типом химического процесса, весьма распространены в фотохимии. Перенос электрона, происходящий при взаимодействии возбужденных молекул с донорами или акцепторами электрона, связан с тем, что при возбуждении молекул уменьщаетсч их потенциал ионизации и возрастает сродство к электрону. Такое взаимодействие возбужденных молекул с донорами и акцепторами электрона приводит к различным химическим и физическим процессам. В малополярных растворителях часто наблюдается образование возбужденных комплексов переноса заряда — эксиплексов. В полярных растворителях, где сольватация понижает энергию эксиплексов, реакция их образования становится необратимой и образуются иоп-радикальпые пары и свободные ион-радикалы. Образование эксиплексов и ион-радикалов может быть представлено следующей схемой  [c.176]

    Развитие идей фотоэлектрохимии на поверхности раздела раствор — полупроводник связано с измельченными полупроводниковыми частицами. Порошки ТЮ2 в смеси с платиной, нанесенные на поверхность, оказались особенно эффективными. Каждая частица может рассматриваться как фотоэлектрохи-мический элемент с замкнутой цепью, соединяющей полупроводниковый и противоэлектроды. Обрисованные выше в общих чертах основные принципы остаются применимыми, несмотря на то, что внешняя электрическая цепь отсутствует. Хотя расстояние между анодом и катодом существенно меньше, чем в обычных электрохимических элементах, продукты реакций переноса заряда остаются разделенными, что невозможно в гомогенных процессах, когда оба противоположных продукта образуются в одной и той же клетке раствора. Описан ряд гетерогенных фотосинтетических и фотокаталитических процессов, использующих определенные полупроводники, для получения СНзОН из СО2, РН из КСООН и ЫНз из N2. В отдельных случаях в качестве фотокатализатора могут действовать чистые порошки полупроводника без примеси металла. Выходы продуктов обычно получаются относительно низкими из-за кинетических ограничений и необходимости применять полупроводниковые материалы с большой шириной запрещенной зоны, которые неэффективно используют солнечный спектр. Возможно, следует придерживаться стратегии природного фотосинтеза, делая энергетические потери полезными путем использования двух фотонов низкой энергии для переноса одного электрона. [c.281]

    Химический механизм сопряжения переноса электронов с образованием АТФ неизвестен. Наибольшее признание в последние годы получила гипотеза П. Митчелла об электрохимическом (хемиосмотиче-ском) сопряжении окислительных реакций в дыхательной цепи с синтезом АТФ, катализируемым АТФ-синтетазным комплексом. Согласно этой гипотезе вне- и внутримитохондриальные пространства (левая и правая часть рисунка соответственно) разделены мембраной М, непроницаемой для ионов водорода — Н+. Дыхательная цепь организована в мембране таким образом, что окисление субстрата (SH2) кислородом приводит к разделению зарядов (группа реакций — I). Энергия окисления запасается в виде электрохимического потенциала Н+ [c.471]

    I 19, с. 178] при определении константы скорости переноса электрона в случае молекулярных автокомплексов на основе 1,4-наф-тохинона. Важным в выявлении механизма электровосстановления является также вопрос об энергии и энтропии активации реакции переноса заряда, который связан со строением молекул и состоянием их в приэлектродном слое или на поверхности электрода. Речь идет, в первую очередь, о наличии в молекулах восстанавливающихся веществ функциональных групп с элект-ронофильными свойствами либо системы сопряженных связей, благодаря чему облегчается процесс динамической поляризации молекул и, следовательно, появляется возможность передачи электрона от электрода на такие молекулы. [c.30]

    Бертон и Липски [18] рассматривают четыре типа физического защитного действия перенос заряда, перенос энергии ( губчатый тип защиты), гашение и образование отрицательных ионов. Первые два механизма уже обсуждались в гл. 5 они весьма эффективны, если ионизационный потенциал или энергия возбужденного уровня протектора несколько ниже, чем у активных частиц в системе. Гашение включает также и переход возбужденной молекулы к основному состоянию или более стабильному (триплетному) возбужденному состоянию. В последнем случае молекула в возбужденном триплетном состоянии может реагировать, давая продукты, отличающиеся от тех, которые образовались бы без протектора. Процесс захвата электронов, ведущий к появлению отрицательных ионов, конкурирует с обычными реакциями нейтрализации, хотя при нейтрализации положительных ионов отрицательными освобождается меньше энергии, чем при взаимодействии молекул протектора с электронами. Физическая защита может быть внутри- или межмолекулярной. В первом случае защитная группа может содержаться в самой молекуле облучаемого соединения (например, алкилбензола) или защита осуществляется молекулами протектора. [c.330]

    Сведения о значении ионных частиц были получены при радиолизе циклогексана в присутствии ЫВд или СаНаОО. Вильямс [1261 измерил выход НО как функцию концентрации N03. Оказалось, что наблюдаемые выходы не согласуются с механизмом прямого действия излучения на ЫВз и не обусловлены реакциями атомов водорода с МОд. Возможен только перенос заряда к МВд, если в реакции участвуют возбужденные ионы циклогексана. Значения С(НО) свидетельствуют об очень эффективном участии аммиака в образовании продукта. Маловероятно, чтобы столь эффективный перенос энергии, который по величине на порядок больше наблюдаемого в смесях насыщенных углеводородов (разд. 4.6), был обусловлен превращениями возбужденных ионов. Более правдоподобное объяснение включает перенос протона от циклогексана к ЫВд по реакции (4.24) и последующие реакции (4.25) и (4.26) [57]  [c.183]

    Механизм предполагает образование электронно-возбужденных состояний, суш ествующих в растворе некоторое время, достаточное для установления равновесия перед актом химического превращения или взаимодействия. Основной предпосылкой для такого рассмотрения послужили экспериментальные факты, указывающие на зависимость величин квантовых выходов реакций фотовосстановления комплексов Со(1П) от концентрации водородных ионов [8, 16]. Поскольку в водных растворах происходят очень быстрые реакции переноса протонов, то при окислении аммиака, находящегося в координационной сфере, вследствие фотопереноса электрона от атома азота к кобальту возможно образование частиц Со — NHg, которые, стехиометрически отличаясь от молекулы исходного комплекса, могут и быть промежуточным метастабильным состоянием в фотохимии амминокомплексов. Однако такое состояние не получается прямым спектроскопическим путем. Энергетический уровень (или уровни) промежуточного состояния комплексного иона лежит ниже уровня, соответствующего энергии полосы ПЗМ. Это позволило отнести образующиеся химически активные частицы к низкоэнергетическим возбужденным состояниям переноса заряда, которые не могут быть получены прямо из основного состояния. [c.102]

    Химическая ионизация анализируемых соединений происходит в результате ион-молекулярных реакций с ионами, образующимися из газа-реактанта при давлениях около 10 Па, взаимодействующего с электронами с энергией 50—70 эВ. При этом концентрация газа-реактанта в источнике ионов должна по крайней мере в 10 раз превышать концентрации анализируемых веществ. Энергия, передаваемая нейтральным молекулам при взаимодействии с ионами в таких условиях, обычно значительно меньше, чем при электронном ударе, что проявляется в возрастании интенсивностей пиков молекулярных ионов и уменьшении глубины распада вещества. В качестве газов-реактантов чаше всего применяются сравнительно простые соединения СН4, U30- 4H10, N0, N2O, реже NH3, Н2О, D4, (СИз)481, ( H3)2NH, Не, Аг, N2, СО2 и другие (см. обзоры [12, 15]. В последнее время появились сообщения об использовании для этих целей более сложных органических веществ (бензол, циклогексан) [16, 17]. В зависимости от типа газа-реактанта (его потенциала ионизации, наличия атомов водорода, неподеленных электронных пар или вакантных орбиталей) характер образующихся из него ионов, их взаимодействия с веществом и, следовательно, вид спектра химической ионизации сильно меняются. В источнике ионов может осуществляться протонирование органических соединений, образование более сложных катионов либо реакция переноса заряда между ионами газа-реактанта и нейтральными органическими молекулами. [c.82]

    ПЗ)-и (ПЗ)-состояния. Состояния с переносом заряда должны учитываться в том случае, если л-электронная система содержит одновременно сильные электронодоиорные и электроноакцепторные группы. Интенсивная полоса поглощения таких систем располагается в более длинноволновой области, чем у соответствующих соединений, содержащих только донорную или акцепторную группу. Различие между энергиями (ПЗ)-и (ПЗ)-состоя-ний такое же, как и в случае п,л -состояний. В противоположность гипсохромному эффекту ,л -состояний при переходе от неполярных к полярным растворителям ПЗ-переходы при увеличении полярности растворителя сдвигаются в длинноволновую область. Этот эффект дает возможность воздействовать на направление фотохимической реакции путем изменения характера растворителя и достижения таким образом значительного отличия в реакционной способности ПЗ- и п,л -состояний. Например, реакция переноса водорода карбонильных соединений, идущая за счет реакционных электрофильных п,л -состояний, может быть подавлена, [c.383]


Смотреть страницы где упоминается термин Реакции переноса энергии и заряда: [c.204]    [c.278]    [c.69]    [c.24]    [c.59]    [c.322]    [c.295]    [c.459]    [c.269]    [c.271]    [c.63]    [c.184]    [c.208]    [c.213]    [c.214]    [c.229]    [c.242]    [c.220]    [c.251]    [c.133]   
Смотреть главы в:

Углеводороды Аспекты радиолиза -> Реакции переноса энергии и заряда

Углеводороды аспекты радиолиза -> Реакции переноса энергии и заряда




ПОИСК





Смотрите так же термины и статьи:

Перенос заряда

Реакции энергия реакций



© 2025 chem21.info Реклама на сайте