Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентные колебания С О в сложных эфирах

    На рис. 12.3 в качестве примера приведены спектры метилметакрилата и полиметилметакрилата. Метилметакрилат —сложный эфир. Из корреляционных таблиц находим,, что наиболее интенсивные полосы поглощения сложных эфиров находятся в области 5,8 мкм (1725 см- )—валентные колебания карбонильной группы С=0. В области 7,5—9,5 мкм наблюдается серия из четырех полос поглощения, которые вместе с полосой при 13,35 мкм (790 см"1) являются характеристическими для метакрилатной [c.193]


    Сложные эфиры (насыщенные) С=0 (ненасыщенные) С=0 СС1-СО-ОК а-Кетоэфиры Альдегиды (насыщенные) (ненасыщенные) Валентные колебания Сдвиг полосы в сторону меньших волновых чисел Сдвиг полосы в сторону больших волновых чисел 1740-1730(с.) 1680-1640(с.) 1770-1745(с.) 1755-1740(с.) fei [c.194]

    Нагревание дизельного топлива (ДТ) при 120 С в течение 5 часов в присутствии металлической меди приводит к образованию смеси кислородсодержаш,их соединений. НК-спектр оксидата ДТ является спектром сложной смеси кислородсодержащих ароматических структур, о чем свидетельствуют полосы поглощения С=0-групп (1720 см ) и групп ОН (3400-3500 см 1030-1250 см ), а также полоса при 3380 см обусловленная валентными колебаниями фрагмента 0-Н ассоциированной гидропероксидной группы. Широкая полоса при 800-1450 см указывает также на значительное содержание в оксидате кислородсодержащих структур. В этой области проявляются валентные колебания С=0-группы сложных эфиров ароматических кислот (1300-1250 см 1150-1100 см ), фенолов [c.5]

    Инфракрасные спектры. В инфракрасных спектрах ацильных производных имеется сильная полоса в области 1700 см , которую обычно отождествляют с С=0 валентными колебаниями (рис. 20.2). Точное значение частоты зависит от класса, к которому относится соединение (табл. 20.4), а внутри данного класса — от точной структуры соединения. Так, например, для сложных эфиров [c.657]

    Сложные эфиры легко отличить от кислот по отсутствию полосы О—Н-группы. Они отличаются от кетонов наличием двух сильных полос С—О валентных колебаний в области 1050—1300 слг - точное положение этих полос также зависит от структуры эфира. [c.658]

    На рис. 78 приведен спектр сложного эфира с сильным электроноакцепторным заместителем (v , Q 1787 "сле , вместо обычной для сложных эфиров частоты поглощения 1740 сж ), на рис. 79 — спектр непредельного альдегида (смещение карбонильной полосы поглощения в низкочастотную область). На спектре непредельного альдегида виден также меньший пик при 1650 соответствующий валентным колебаниям [c.617]

    Сразу ясно, что это соединение — сложный эфир, потому что его ИК-спектр (ср. пример 2) показывает сильное поглощение около 1750 [v( O)] и 1250—1000 см [v( — О)] кроме того, в области 900—700 см наблюдаются дополнительные полосы, которые могут принадлежать валентным колебаниям связи С — С1. Поглощение в области валентных колебаний гидроксильной группы ( 3650— 3100 см ) не наблюдается, поэтому третий кислородный атом может быть либо эфирным, либо кетонным. В последнем случае кетонная частота поглощения v( O) должна попасть в довольно широкую полосу при 1750 см , но это значение является очень низким для хлор ангидрида (1800 см ) и очень высоким для кетона. Однако УФ-спектр дает значения в поддержку кетонного отнесения, так как в нем есть полоса при 290 ммк (е — 50, несколько завышено по интенсивности, объяснение этому см. ниже). [c.237]


    Применение ИК- (рис. 6.39) и ЯМР-спектроскопии (рис. 6.40) для установления структуры сложных эфиров мало эффективно. В ИК-спектрах имеются интенсивные полосы валентных колебаний С = О и С — О. Эта последняя особенность позволяет отличить спектр сложного эфира от спектра альдегида или кетона. [c.336]

    Карбонильную группу содержат кетоны, альдегиды, карбоновые кислоты, сложные эфиры, амиды, ангидриды кислот и другие соединения. Она характеризуется интенсивной полосой поглощения валентного колебания связи С=0 с частотой, лежащей в довольно широком интервале 1850-1550 см . Точное значение частоты колебания определяется атомами, присоединенными к группе С=0. Электронодонорные заместители уменьшают степень двоесвязности карбонильной связи, что приводит к уменьшению частоты (I), электроноакцепторные, напротив, увеличивают ее (П) [c.447]

    Сложные эфиры характеризуются двумя интенсивными полосами одна обусловлена валентными колебаниями С=0, другая — валентными колебаниями = С —О—. Валентное колебание С=0 алифатических сложных эфиров лежит в интервале 1750-1725 см, за исключением формиатов, которые поглощают при 1725-1720 см. Электроотрицательные заместители, присоединенные к кислотному атому кислорода увеличивают частоту колебания а,р-ненасыщенные или арильные сложные эфиры С=С—С(0)—О— поглощают при 1730-1705 см. Полосы эфиров с электроотрицательным а-заместителем лежат при 1770-1745 см. Виниловые и фенильные эфиры —С(0)—О— С =СС  [c.451]

    Сложные эфиры имеют в ИК-спектре интенсивную полосу поглощения, соответствующую валентным колебаниям С=0 группы (1770 см , полоса Б), и полосу поглощения, отвечающую валентным колебаниям С-О эфирной связи (1190 см , полоса Е). [c.536]

    КР валентное колебание карбонильной группы сложных эфиров и их растворов в феноле, спиртах, [c.402]

    Достаточно сильное и смещенное поглощение в области 1680— 1650 см указывает на возникновение водородной связи С=0.. . НО. При этом группа С=0 может относиться к сложным эфирам, кислотам, кетонам (1420 смг ). В спектрах осадков имеются полосы 3550— 3520 и 3450 указывающие на валентные колебания групп ОН, связанных межмолекулярной водородной связью. В осадках обнаружено присутствие групп SOj, относящихся к ковалентным сульфонатам (1420—1330, 1200—1145 смг ) и сульфоновым кислотам (1260—1150, 1080, 630 смГ ). Поглощение при ИЗО см следует, очевидно, отнести к эфирам сульфиновых кислот. Сульфоны и сульфоокиси в составе осадков отсутствуют. Это значит, что в образовании молекул осадка принимают участие уже разрушенные по связи С—S молекулы сераорганических соединений. Поглощение при 930— 950 см может относиться к тиокислотам и их производным. [c.103]

    Значения низкочастотного сдвига инфракрасной полосы валентного колебания OD-группы Avqd относительно vqd 2689 мr приведены в таблице. Здесь же даны величины низкочастотных смещений, вызванных образованием водородной связи 0D- -О, полос скелетного колебания эфиров и валентного колебания карбонильных групп сложных эфиров и кетонов. Во втором столбце таблицы даются значения первых ионизационных потенциалов I [46], в последнем — частота V k скелетного колебания эфиров и карбонильного колебания сложных эфиров и кетонов. [c.177]

    Исследование ИК-спектров оксидата, полученного каталитическим окислением дизельного топлива ДЛ-0.2 при 90°С в присутствии стеарата меди в течение 5 ч, показало наличие сложной смеси кислородсодержащих ароматических структур, о чем свидетельствуют полосы поглощения С=0-групп (1720 см" ) и групп ОН (3400-3500 см", 1030-1250 см" ), а также полоса при 3380 см", обусловленная валентными колебаниями фрагмента О-Н ассоциированной гидропероксидной группы. Широкая полоса при 800-1450 см" также указывает на значительное содержание в оксидате кислородсодержащих структур. В этой области и проявляются валентные колебания С=0-группы сложных эфиров ароматических кислот (1300-1250, 1150-1100 см" ), фенолов (1220-1200 см" ), ароматических и арилароматических эфиров (1270—1230 см" ), а также плоскостные деформационные колебания ОН-групп первичных, вторичных, третичных спиртов и фенолов [107]. [c.158]

    Пример 3. Соединение нейтрального характера реагирует со щелочами при нагревании с образованием соли и летучего органического вещества. Качественные реакции на азот, серу и галогены отрицательные. В коротковолновой части (у > 2500 см ) ИК-спектра (рис. 1.13) имеются только полосы валентных колебаний водорода насыщенных радикалов (между 2800 и 3000 см ). Очень слабая широкая полоса при частоте 3500 см — вероятнее всего примесь воды (или спиртов), второй слабый максимум при 3450 см" — обертон очень сильной полосы при 1730 см" -. Следовательно, вещество не содержит никаких группировок ОН (а также ЫН и 5Н, но они исключаются уже данными качественных реакций), не содержит водорода при тройных связях С=С, двойных связях С=С и С=0 или ароматических кольцах. Отсутствие этих фрагментов подтверждается также исследованием области частот 1500—2500 см , в которой имеется лишь полоса 1730 см . Эта очень сильная полоса точно соответствует частоте валентных колебаний карбонила в нескольких классах органических веществ (см. таблицу характеристических частот в конце книги), но с учетом указанных химических свойств ее следует приписать сложноэфирной группировке (лактоны, имеющие те же частоты валентных колебаний С=0, не образуют летучих веществ при реакции со щелочами ангидриды карбоновых кислот имеюг в этой области две полосы и также не образуют летучих веществ при действии щелочей). Не исключена, однако, возможность одновременного присутствия кетонной группы (второго карбонила) и (или) группировки С—О—С простых эфиров. Таким образом, исследуемое вещество скорее всего является сложным эфиром какой-то кислоты предельного или [c.25]


    Для ИК-спек1ров карбоновых кислот характерна сильная полоса области 1700 см (валентные колебания С О) н 2500 3(Ю0 с.м (валентные колебания О—Н). В сложных эфира.ч аос. ецияя )гсу г ству ет, но имеются две сильные полосы при 1050 ПОО см (валентные колебания С—О). [c.57]

    ОБЛАСТЬ ПОГЛОЩЕНИЯ. Все полосы связи С = О лежат в области от 1900 до / 1550 смл . Если считать точкой отсчета 1715 см (вы скоро поймете, почему так принято), полосы ноглощения альдегида будут находиться при несколько более высокой частоте (- 1725 м" ), сложных эфиров — при еще более высокой частоте ( 1735 см" ), а валентным колебаниям карбоно-вых кислот соответствуют значительно болео высокие частоты ( 1760см" ). 1По другую сторону от 1715 м находятся полосы поглощения амидов (- 1685 см-1). [c.83]

    Область двойной связи 1430-1950 см (5,1-7 мкм). Самыми распространенными и характеристичными группами с двойной связью являются карбонильные. Вероятно, они наиболее изученный класс групп, поглощающих в ИК-области. В то время как некоторые структуры можно отличить просто по положению полосы валентного колебания С=0, другие в силу совпадения частот однозначно можно отнести, только прибегая к помощи других областей спектра. Как уже отмечалось, органические кислоты и обычно альдегиды легко идентифицируются по полосе поглощения карбонильной группы и по поглощению групп ОН или СН. Сложные эфиры кроме полосы валентных колебаний С=0 имеют сильное поглощение С—О—Я около 1200 СМ . В кетонах также проявляются полосы средней интенсивности около 1000-1370 см . Сильное поглощение в интервале 1540-1650 см (6,1—6,5 мкм) может указьшать на ионизированную карбонильную группу (например, в металлосодержащих солях органических кислот), на плоскостные деформационные колебания НН в аминах, валентные колебания N=0 в нитратах или валентные колебания С=0 в амидах. Для определения природы поглощения здесь опять необходимо рассмотреть другие спектральные области. Поглощение, обусловленное валентными колебаниями С=С в алифатических соединениях, находится в области 1630—1690 см (5,9 —6,1 мкм), если только к одному или обоим атомам углерода не присоединен атом фтора. В этом случае поглощение смещается в область более высоких частот и число атомов фтора коррелирует с положением полосы. Более тяжелые галогены понижают эту частоту, так как в валентном колебании С = С участвует также некоторая доля деформационного колебания СН. Ценная структурная информация может бьггь получена из положения этой полосы и полосы внеплоскостных деформационных колебаний в области 800-1000 см (10-12,5 мкм) [217]. В ароматических соединениях с малой степенью замещения наблюдаются три (а при лучшем разрешении четыре) резкие полосы в области 1450 — 1650 см (6—7 мкм). Этим полосам сопутствует более слабое поглощение около 1000 — 1200 см (8,3 — 10 мкм) и характеристические внеплоскостные деформационные колебания С—И около 670-900 см (11-15 мкм). Высокозамещенные ароматические соединения имеют [c.188]

    Область отпечатков пальцев ниже 1500 см (6,7 мкм). В этой области кроме характерного поглощения отдельных типов молекул наблюдается ряд полезных групповых частот. Среди колебаний группы С—Н можно назвать ножничное колебание метиленовой группы в алканах вблизи 1467 см (6,82 мкм). Асимметричное деформационное колебание группы СНз около 1460 см (6,85 мкм) и симметричное около 1380 см (7Д5 мкм) полезны для отнесения. Хорошо известно, например, что геминальные диметильные группы дают в этом положении дублет. Другие характеристические колебания С—Н относятся к внеплоскостным деформационным колебаниям атома водорода в ненасыщенных и ароматических соединениях. Кроме того, в этой области проявляются валентные колебания С—F около 1200 см (8,3 мкм), валентные колебания С—О—С в прстых и сложных эфирах около 1200 см , валентные колебания С—О и деформационные колебания ОН в спиртах в интервале 1000—1260 см (7,9-10 мкм), валентные колебания Р=0 около 1200 см (8,5 мкм), валентные колебания SiO в области 1000-1100 см (9-10 мкм) и валентные колебания I около 700 - 800 см (12,5-14 мкм). [c.189]

    Детально изучено влияние растворителей на валентные колебания в следующих органических соединениях v =o в пири-до нах-4 [151], тропонах и трополонах [152], бензофеноне и Ы,Ы-диметилформам,иде [154], ацетофеноне [155], алифатических альдегидах [157], N-метилацетамиде [369], сложных эфирах и диалкилкарбонатах [370] vn=o в нитрозильном производном протопорфирина [371] vp=o в триарилфосфиноксиде 1153] и триэтилфосфиноксиде [372] vs=o в диметилсульфоксиде [154, 373] V -H в хлоралканах [160], хлороформе [374] и н-октане [375] v= -h в алкинах-1 [133, 138] v - i в галоген-алканах [150, 161] v =n в нитрилах [156] vsi-h в силанах 159] vn-h в пирроле [158], N-метилацетамиде [369] и N-ме-тиланилинах [376] vo-h в трет-бутилгидропероксиде [377]. Исчерпывающий перечень опубликованных ранее данных о влиянии растворителей на ИК-спектры составлен Халламом (см. стр. 420 в работе [134]). [c.451]

    ИК Отнесения, приведенные на спектре, удобно суммировать следующим образом фенил eHs— 3050 сл. см , v( H) 1600 и 1500 ср. см , колебания кольца 750 и 700 ср.- с. см , Y( H) монозамещенное кольцо. Сложноэфирная группа — СО — О — 3470 оч. сл. см , 2v( 0) 1770 с. см , v( O) 1210 оч. с. и 1020 сл.-ср. см , v( — О). Полоса метильных групп СНз— при данной толщине слоя не очень заметна, за исключением полосы при 1370 см , б(СНз). Эти данные хорошо согласуются со структурой и, в частности, дают прямое указание о характере кислородсодержащей функции, чего недостает в спектре ЯМР. Высокая частота валентных колебаний С = О и низкая для С — О особенно ясно свидетельствуют о наличии енольного или фенольного сложного эфира (разд. 4.13). [c.233]

    Полосы поглощения валентных колебаний карбонильной группы в сложных эфирах, лактонах, ацилгалогенидах и ангидридах карбоновых кислот находятся при больших волновых числах, чем полосы поглощения простых альдегидов и кетонов. Это обусловлено резонансным и особенно индукционным эффектом, повышаюш им порядок связи в кар ниль-ной группе (детальнее такие эффекты обсуждаются в книге [2]). [c.66]

    Положение полосы валентных колебаний связи С-О в лактонах заметно зависит от величины цикла (табл. 3.8). Кроме того, в спектрах как сложных эфиров, так и лактонов имеются две интенсивные полосы поглощения при 1330--1050 см 1, связанные с асимметричными и симметри ыми валентными колебаниями связи С-О. [c.66]

    Валентные колебания связи С-О Сложные эфиры и лаггоны 1330-1050 [c.68]

    Все синтезированные соединения представляют собой кристаллы с различными значениями (таблица 2). Соли азотсодержащих веществ хорошо растворимы в воде. Строение полученных соединений подтверждено данными элементного анализа, ИК- и ПМР-спектрами [98]. Например. получено доказательство того, что фуранохромоновое ядро в процессе реакции не претерпело изменений в ИК-спектрах синтезированных веществ имеются полосы поглощения в области 3200-3100 см характер-но11 для С-Н фуранового кольца 3020, 3000 см - валентные колебания бензольного кольца 2950 см - ОСН группы 1750 см - валентные колебания С=0 -фуппы сложных эфиров (для соединений IV и V) а в области 1650 см - (С=0 у-пиронового кольца). Гидролиз полученных соединений приводит к исходному оксибензофурану и соответствующей структуре заместителя. [c.315]

    Ветсель, Роберсон и Крелль [1] анализировали смеси анилина и Ы-этиланилина с содержанием до 99% каждого из этих соединений, используя обертонную и комбинационную полосы поглощения, обусловленные колебаниями связи N — Н, при 1,49 и 1,97 мкм соответственно. Величина стандартного отклонения для полученных результатов не превышала 1%. Они рекомендовали применять этот метод и для анализа других смесей первичных и вторичных ароматических аминов. Ломан и Нортеман [2] расширили область применения этого метода, включив в нее алифатические амины, и анализировали первичные амины, используя характерную для них комбинированную полосу поглощения при 2,023 мкм. Вторичные амины определяли по их первой обертонной полосе поглощения при 1,538 мкм, обусловленной валентными колебаниями связи N—Н. Получаемое в этом анализе значение поглощения корректировали с учетом поглощения первичных аминов при той же длине волны. Амиды, нитрилы, спирты и сложные эфиры с концентрациями до 10% в смеси аминов не мешали анализу аминов. Для третичных аминов заметного поглощения в этих областях спектра не наблюдалось. [c.264]

    Для ИК-спектров о])ганических соединений характерно то, что колебания атомов или групп атомов весьма специфичны Это дает возможность сделать вывод о присутствии тех или иных групп в молекуле по появлению в спектре определенных максимумов поглощения, называемых часю полосами, так как они имеют довольно узкие диапазоны для каждого соединения. Такие полосы или частоты называются характеристическими. Например, поглощение оксогруппы в альдегидах и кетонах лежит в области 1700—1740 см . Свои характеристические частоты имеют связи С—Н в алканах (2850—2960 см ), алкенах (ЗОЮ—3100 см ) и алкинах (-3300 см ) Валентные колебания Г1зуппы С=0 проявляются не только в оксосоединениях, но и в карбоновых кислотах и их производных (сложных эфирах, амидах, ангидридах, галогенаигидридах и др.), и это поглощение приходится также на достаточно узкую часть спектра (1600—1820 см ). Из ИК-спектров мо но получить сведения о на- [c.484]

    Можно считать, что широкая полоса поглощения валентных колебаний ОН-групп обусловлена существованием гидроксилов различно возмущенных водородной связью [58, 59). Некоторые характеристики этой сложной полосы в спектрах производных целлюлозы использовались рядом авторов для изучения меж- и внутримолекулярных связей, процесса этерификации пли олгыления эфиров [60, 611 и т. п. Было установлено, что низкочастотная область полосы voн характеризует гидроксилы, включенные в более сильные водородные связи, а высокочастотная — в более слабые. В работах [62, 631 для характеристики полосы . цц были выбраны слодующие величины  [c.57]

    Присутствие кислот в продуктах окисления подтверждается ИК-поглощением в области 3370—1720—1246—920 см , относящимся соответственно к валентным колебаниям ОН, С==0, С—О и деформационным неплоским колебаниям ОН. Интенсивное поглощение при 1735 и 1178 см указывает на присутствие алифатических сложных эфиров. Полосы поглощения 720 и 785 см относятся к деформационным колебаниям метиленовых групп в длинных (СН2)п>4 и коротких (СН2)п=1 цепях. Присутствие коротких цепей указывает на расщепление молекулы метана при окислении и образование низкомолекулярных продуктов окиеления. Действительно, в газовой фазе после окисления были обнаружены небольшие количества окиси и. двуокиси углерода, формальдегида, а в жидкой — вода. [c.15]

    Смещение поглощения групп С=0 в область более низких частот видeteль твyeт о сопряжении этих групп с ароматическими структурами и о возможности возникповепия внутримолекулярной водородной связи. Наиболее благоприятные условия для возникновения внутримолекулярной водородной связи создаются в структурах, в которых гидроксильная группа по отношению к карбоксильной находится в положении а и возможно р, но никак не у. Широкая интенсивная полоса в области 800—1450 см свидетельствует о значительном количестве различных кислородсодержащих структур. В этой области интенсивно проявляются валентные колебания групп С=0 сложных эфиров ароматических кислот (1300—1250, 1150— 1100 еле ), фенолов (1220—1200 сле" ), ароматических и ариларома-тических эфиров (1270—1230 сле ), а также валентные колебания С—О и плоскостные деформационные колебания ОН первичных (1075 1000, 1350—1260 см ), вторичных (1120—1030, 1350— 1260 см ), третичных (1170—1100, 1410—1310 сле ) спиртов и фенолов (1230-1140, 1410-1310 сле-1) [20, 21, 30, 31, 35]. [c.26]

    При определении количественного и качественного состава кислородсодержащих соединений широко применяется инфракрасная спектроскопия благодаря наличию характеристических полос кислородных функциональных групп 3400—3600 см — валентные колебания атомов водорода гидроксильных групп кислот и фенолов, 1650—1740 см —валентные колебания карбонильной группы кислот, кетонов, сложных эфиров (лактонов), ангидридов кислот, амидов. Показано [49], что с помощью специфических химических реакций возможно провести идентификацию полос поглощения карбонильных групп различных классов соединений. Так, обработка карбоновых кислот бикарбонатом натрия приводит к образованию карбоксилатанионов, для которых характерно поглощение в области 1580—1610 см . Дальнейшая обработка образца гидроксидом натрия при нагревании вызывает омыление сложных эфиров, лактонов, ангидридов и образование карбоксилатанионов. В результате в области 1650— 1740 СМ наблюдается только поглощение кетонов. Пользуясь групповыми интегральными коэффициентами поглощения (для карбоновых кислот 1,24-10 л/(моль-см), сложных эфиров 1,15 10 кетонов 0,72-10 л/(моль-см) [50], можно определить концентрацию соединений каждого типа. Применение методов ИК-спектроскопии в исследованиях состава нефтей 51] позволило обнаружить и количественно оценить наличие карбоновых кислот, фенолов, амидов, 2-хинолонов. Отмечено, что точность анализа значительно снижается вследствие межмолекулярной ассоциации компонентов, что приводит к уменьшению интенсивности поглощения групп и занижению результатов. Повышение точности достигается разбавлением растворов и использованием в качестве растворителей тетрагидрофурана или дихлорметана. Однако более значительные ошибки возникают из-за неверной оценки молекулярных масс определяемых соединений и наличия в молекуле более одного гетероатома. Исправление этого положения возможно препаративным выделением одного класса соединений и установления коэффициента поглощения данной функциональной группы. [c.50]

    Некоторые частоты соседних метиленовых групп , которые могут дать ценную информацию о карбонильных группах, также включены в табл. 3.2 и 3.3, а для случая сопряженных кетонов даны также частоты валентных колебаний двойной этиленовой связи. Область деформационных колебаний метильных и метиленовых групп ряда кетотритерпеноидов приведена на рис. 16, частота важного пика, вызванного соседней группой, подчеркнута. Соединение а не имеет по соседству с карбонильной, группой ни одной метиленовой группы, тогда как в соединениях б ж в — типичных шестичленных циклических кетонах (частоты карбонильных групп в СС14 соответственно 1708 и 1700 см ) — метиленовые группы при С-2 и С-11 поглощают при заметно различающихся частотах. В ИК-спектре соединения г имеется полоса поглощения нри 1433 см , обусловленная присутствием мет-оксикарбонильной группы, которая может мешать измерениям в этой области, однако из спектра соединения д следует, что эта полоса не препятствует обнаружению пятичленного циклического кетона по характерному поглощению соседней метиленовой группы при 1413 Это очень важное заключение, поскольку полосы поглощения карбонильных групп соединения д 1740 и 1730 см для кетона и сложного эфира соответственно едва разрешены, а в ряде подобных соединений или в случае присутствия добавочной ацетатной группы (С=0 — 1735 см ) они вообще не могут быть разрешены. Ацетаты пе влияют на область поглощения соседних метиленовых групп. Снектр соединения е содержит полосу при 1354 мr , весьма характерную для ацетильной группы (СНдСО—), частота карбонильной группы которой (1712 см ) неотличима от частоты многих шестичленных циклических кетонов. [c.191]

    Госсауэр [8ж] приводит детальное обсуждение инфракрасных спектров пиррола и его простых производных наибольший интерес вызывает поглош,ение связи N—Н. Частота валентных колебаний NH в неассоциированной молекуле пиррола составляет 3496 СМ (в I4), и интенсивность полосы выше, чем для насыщенных вторичных аминов. Существует четкая корреляция между кислотностью связи N—Н и частотой соответствующих валентных колебаний, причем показано, что эффекты заместителей в а- и -положениях приблизительно аддитивны. При наличии ос-карбонильной или а-алкоксикарбонильной группы образуется внутримолекулярная водородная связь [15, 16] с группой NH [структуры (8а) и (86)], причем частота колебаний NH может уменьшаться на 45 см Ч Существуют также доказательства межмолекулярной водородной связи между NH и карбонильной группой. При наличии внутримолекулярной водородной связи частоты карбонильных групп также несколько уменьшаются (на 20— 30 см- ). Положение частот валентных колебаний карбонильных групп указывает на сопряжение их с пиррольным ядром [см. структуры (7а) и (76)], причем частоты карбонильных групп в а-положении (например, 1732—1710 см в сложных эфирах) примерно на 20 см- меньше, чем в -положении (например, 1711 —1701 СМ в сложных эфирах). [c.336]


Смотреть страницы где упоминается термин Валентные колебания С О в сложных эфирах: [c.118]    [c.410]    [c.58]    [c.202]    [c.52]    [c.54]    [c.264]    [c.61]    [c.373]    [c.451]    [c.373]    [c.397]    [c.196]    [c.515]    [c.262]   
Смотреть главы в:

Инфракрасные спектры сложных молекул  -> Валентные колебания С О в сложных эфирах




ПОИСК





Смотрите так же термины и статьи:

Колебания валентные



© 2025 chem21.info Реклама на сайте