Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Один ген один фермент принцип

    Катализируемая химическая реакция является тем признаком, по которому можно отличить один фермент от другого. Естественно, что Международная комиссия по ферментам в 1961 г. этот принцип положила в основу классификации ферментов, которая с незначительными изменениями и дополнениями используется до настоящего времени. Согласно рекомендациям комиссии ферменты делят на классы, подклассы и подподклассы, характеризующие реакции, осуществляемые данными катализаторами. Все известные ферменты подразделяют на шесть классов, охватывающих изученные в настоящее время ферментативные реакции (табл. 5.1). Бьш разработан также [c.65]


    Активный, нли каталитический, центр фермента — это сравнительно небольшой участок молекулы белка. Аминокислотный состав остальной части молекулы, особенно тех ее участков, которые находятся на поверхности структуры, может довольно сильно меняться в результате мутаций без изменения каталитической активности фермента. Тем не менее присоединение к различным участкам поверхности фермента других молекул может косвенно повлиять на катализ. В концентрированных растворах, каким является цитоплазма, молекулы могут агрегировать. Присоединение какой-либо молекулы к определенному участку на поверхности фермента способно изменить его структуру и в свою очередь вызвать увеличение или уменьшение каталитической активности. Так, при избыточном накоплении продукта какого-либо метаболического пути ингибитор, действующий по принципу обратной связи, взаимодействует указанным образом с ферментами и выключает их. Взаимодействия такого рода составляют один из распространенных способов регуляции. [c.64]

    Однако были сделаны попытки применения методов стационарной кинетики для вычисления константы субстрата (константы диссоциации фермент-субстратного комплекса). Один из принципов подхода к расчету Ks по данным стационарной кинетики, принадлежащий Слейтеру [16], основан на следующих соображениях. [c.50]

    Возможны различные принципы классификации ферментов. В ее основе мог бы лежать а) тип катализируемой реакции б) химическая природа самого фермента в) химическая природа субстрата, на который он действует. Международная комиссия определила, что первый принцип является единственной пригодной основой для общей классификации ферментов. Именно катализируемая химическая реакция представляет тот главный специфический признак, который отличает один фермент от другого. Поэтому на нем логично базировать и классификацию ферментов, и их номенклатуру. При этом учитывается только наблюдаемое суммарное химическое превращение, отражающее ферментативную реакцию в целом промежуточные этапы процесса во внимание не принимаются. [c.85]

    Стабилизация активного белка, повышение его устойчивости, предохранение от денатурации на всех этапах производства сформулированы нами как один из основных принципов технологии ферментов и вообще любых белковых веществ, обладающих специфической биологической активностью белков-гормонов, антител, токсинов и др. Анализ с этой точки зрения существующих технологических схем может привести к их улучшению и во многих случаях — к коренному усовершенствованию. Несомненно, что это один из главных путей рационализации процессов производства ферментов и разнообразных процессов их применения. Нам удалось на этой основе разработать новые принципы производства пепсина, в частности использовав стабилизацию этого фермента продуктами реакции, т. е. продуктами распада белка (см. ниже). Вопрос о стабилизации ферментов будет дополнительно рассматриваться в разделе IV Будущее ферментного катализа . [c.158]


    Широкие перспективы открывает овладение механизмом и техникой стабилизации ферментных белков. Предохранение от инактивации (денатурации), стабилизацию макроструктуры на всех этапах производства следует рассматривать как один из главных принципов технологии всех биологически активных протеинов, не только ферментов. Используя стабилизацию, нужно учитывать следующие возможности а) сохранение фермента при его выделении и очистке в процессах промышленного получения  [c.325]

    Из общих соображений возможность обмена средствами приспособления в ходе макроэволюции ограничена универсальностью генетического кода и механизмов его матричного копирования и последующей трансляции, выраженной принципом один ген — один фермент (это, заметим, когда до трансляции дело уже дошло). Но уже для механизмов самосборки надмолекулярных функциональных систем клетки роль универсальности слабее. Чем сложнее ( надмолекулярнее ) система даже на химическом уровне (не говоря уж о физиологии и морфологии), тем вероятнее, что, даже если привнесенный текст будет транслирован, он приведет ее к разрушению. [c.94]

    Рассмотрим эти принципы более подробно. При наличии на поверхности носителя функциональных групп, способных вступать в химические реакции с функциональными группами фермента с образованием ковалентных связей получение иммобилизованного фермента сводится к исключительно простой процедуре, аналогичной используемой для физической адсорбции фермента на носителе. Методических различий здесь действительно нет в раствор фермента вводится носитель и фермент на нем адсорбируется, однако адсорбция при химической иммобилизации необратимая — фермент пришивается к носителю одной или несколькими ковалентными связями (рис. П,о). Тесный контакт белка с носителем может оказаться нежелательным, например, из-за неблагоприятного изменения микросреды фермента, стерических и диффузионных ограничений. Выходом из такой ситуации становится отдаление молекулы иммобилизованного фермента от поверхности носителя на некоторое расстояние. Для этой цели применяются сшивающие реагенты различной длины. Они могут быть как простыми бифункциональными (т. е. с двумя одинаковыми или различными по химической природе реакционноспособными группировками), так и весьма сложными полифункциональными реагентами, в том числе построенными из отличающихся по химической природе звеньев с различными по прочности связями между ними. Тем не менее зде сь используется один общий принцип ковалентной иммобилизации — сшивка фермента с носителем посредством сшивающего агента (рис. 11,6). [c.78]

    Регуляция ферментативной активности путем фосфорилирования и дефосфорилирования в известной мере аналогична регуляции по принципу обратной связи. Оба типа регуляции обеспечивают быстрое изменение потока метаболитов в ответ на тот или иной физиологический сигнал и в том и в другом случае экспрессия генов не затрагивается. При обоих типах регуляции действие направлено на ферменты начальных этапов многостадийной цепи метаболических реакций, чаще всего принадлежащих одному пути биосинтеза, причем не на каталитические, а на аллостерические центры. Однако ингибирование по принципу обратной связи направлено избирательно на один фермент и не зависит от гормональной или нервной регуляции. Напротив, регуляция ферментов млекопитающих путем фосфорилирования— дефосфорилирования распространяется на несколько белков, осуществляется при участии АТР или других нуклеозидтрифосфатов и находится под прямым нервным и гормональным контролем. [c.110]

    Реакции, катализируемые ферментами, подчиняются принципу микроскопической обратимости. Согласно этому принципу, механизм любой обратной реакции соответствует лишь обращенному механизму прямой реакции. Эта термодинамическая концепция очень полезна при исследовании природы переходного состояния на основании сведений об обратной реакции. Конечно, ферменты — это наиболее специфичные и мощные катализаторы в природе. Ни один из катализаторов, изготовленных человеком, не обладает той огромной катализирующей способностью, которую ферменты проявляют в мягких физиологических условиях. При этом наблюдается повышение скорости реакции в 10 °—10 раз по сравнению со сходными неферментативными реакциями. [c.208]

    И, наконец, обратим внимание еще на один аспект моделирования, имеющий важное прикладное значение, — это создание высокоактивных и высокоспецифичных катализаторов, действующих по принципам ферментативного катализа. В настоящее время, однако, в этом направлении делаются лишь первые шаги, по которым трудно судить о реальных перспективах в этой области. В качестве примера можно указать на успехи в моделировании нитрогеназы — фермента, катализирующего реакцию восстановления молекулярного азота [7, 8]. Не исключено, что с помощью систем, моделирующих нитрогеназу, можно будет решить важную прикладную задачу — фиксацию азота в мягких условиях. [c.72]

    Несмотря, однако, на эту сложность, существование некоторых регуляторных механизмов было четко доказано. Выше уже были рассмотрены два типа регуляции, в основе которых лежит принцип обратной связи. Один из них используется при синтезе ферментов и состоит в репрессии этого синтеза избытком фермента (гл. 6, разд. Е,2), а другой обеспечивает быстрый контроль активности фермента путем его ингибирования (гл. 6, разд. Е, 4). Когда имеет место постоянная скорость роста клеток, регуляция по типу обратной связи может оказаться достаточной для того, чтобы обеспечить гармоничное и пропорциональное увеличение концентрации всех составных частей. Такая ситуация наблюдается, например, на логарифмической стадии роста бактерий (гл. 6, разд. В) или в случае быстро растущих эмбрионов животных, когда все необходимые для них питательные вещества поступают из относительно неизменной материнской крови. [c.503]


    Изучение регуляции и контроля ферментов — молодая и быстро развивающаяся область биохимии, уже установившая, однако, ряд весьма сложных механизмов. Представляется возможным различить механизмы, общие для всех ферментов, такие как субстратная специфичность, оптимум pH и т. д. механизмы, общие для всех организмов, включающие ингибирование и репрессию по принципу обратной связи и механизмы, характерные для высших организмов, где существуют другие виды регуляции активности ферментов, например посредством действия гормонов. Приведя только один, уже известный нам пример, можно отметить, что вся сложная система описанных выше реакций, кульминацией которой является высвобождение глюкозы из гликогена, может приводиться в действие несколькими молекулами адреналина [148]. [c.538]

    Аффинная хроматография (хроматография по сродству). Основана аффинная хроматография на принципе избирательного взаимодействия белков (или других макромолекул) с закрепленными (иммобилизованными) на носителе специфическими веществами-лигандами, которыми могут быть субстраты или коферменты (когда выделяют какой-либо фермент), антигены (или антитела), гормоны или рецепторы и т. д. Благодаря высокой специфичности белков к иммобилизованному лиганду, связанному с носителем (которым заполняют хроматографическую колонку), присоединяется только один какой-либо белок из смеси. Снятие с колонки этого белка осуществляют элюированием буферными смесями с измененным pH или [c.29]

    Для разветвленных путей биосинтеза (а к таким относится большинство биосинтетических путей) механизмы регуляции усложняются, так как от активности первого фермента зависит биосинтез нескольких конечных продуктов. Очевидно следующее механизмы регулирования в этом случае должны быть видоизменены таким образом, чтобы перепроизводство одного конечного продукта не приводило к прекращению синтеза других связанных с ним конечных продуктов. Выработалось несколько механизмов контроля по принципу обратной связи применительно к разветвленным биосинтетическим путям. Они сводятся к тому, что в этом случае в регулировании принимают участие все конечные продукты этих путей. Если первый этап биосинтетического пути катализируется одним ферментом, на поверхности молекулы этого фермента имеются различные регуляторные центры, с каждым из которых связывается один из конечных продуктов, выполняющих функцию [c.116]

    Представляется целесообразным в качестве основы для классификации ферментов избрать или химическую характеристику реакций, катализируемых ферментами (химическая природа атакуемых связей или групп, подвергающихся переносу , или химическую природу субстрата, подвергающегося превращению. Так, можно один и тот же фермент называть или глюкозидазой, имея в виду расщепление глюкозидных связей, или карбогидразой, имея в виду, что субстрат по химической природе принадлежит к углеводам. В номенклатуре ферментов нередко удается совместить эти оба принципа, однако обычно путем усложнения наименования фермента. В настоящее время известно свыше 800 различных ферментов. [c.135]

    Карбоксипептидаза А катализирует гидролиз некоторых концевых пептидных связей в пептидах и белках и содержит один атом цинка в молекуле. Путем замены цинка на Мп + в фермент можно ввести парамагнитный зонд, при этом активность хотя и снижается, но не утрачивается полностью. Изменения эффекта парамагнитного усиления релаксации протонов воды показали, что связывание таких ингибиторов, как бромацетат, приводит к вытеснению молекулы воды из координационной сферы иона Мп +, соединенного с ферментом, что указывает на непосредственную связь между ингибитором и ионом Мп + [14]. Последующее изучение спектров ЯМР ингибиторов подтвердило гипотезу о прямом связывании с Мп + [15]. Однако для большинства ингибиторов не удалось определить расстояния из-за того, что т , с [уравнение (23.5)]. Несмотря на это, можно определить верхнюю границу возможных расстояний, полагая ЕсЛи и величины одного порядка, то можно, по крайней мере в принципе, измерить т , независимым путем,что позволяет затем рассчитать Условие 2т > 1,2га при исследованиях ферментов выполняется очень часто, так как (т. е. время жизни комплекса металл -фермент — лиганд) часто имеет порядок 10 с, что совпадаете типичными значениями для Т 2т- [c.389]

    При графическом представлении зависимости от Л" наклон прямой не связан с членами, содержащими В. Аналогично прямые ио =/(В ) имеют один и тот же наклон при различных значениях А. Таким образом, прямые, выражающие зависимость от обратной концентрации одного из субстратов варьируемый субстрат) при различных постоянных концентрациях другого субстрата фиксированный субстрат) параллельны. Характерность таких графиков для механизмов с замещением фермента показана на большом числе примеров, а существующая в настоящее время строгая теория кинетического анализа в принципе позволяет исключать в таких случаях все другие мыслимые формы механизмов. Было также показано, что, даже если допустить образование тупиковых комплексов (т. е. непродуктивных комплексов В с Е и А с ЕК) в механизме с замещением ферментов, идентификация этой формы механизма не становится менее надежной [11]. Такое характерное двойное конкурентное ингибирование субстратами может даже значительно облегчить обнаружение замещенных форм фермента [12]. [c.132]

    На основе своих результатов Дж. Бидл и Е. Тэйтум сформу лировали принцип один ген — один фермент , означавший, что каждый ген контролирует синтез какого-либо фермента. Этот принцип в готовом виде формулировал дальнейшую методологию исследования необходимо изучать не только мутанты и соответствующие гены, но и контролируемые ими белки-ферменты. Так родилось целое направление в генетике — разработка систем ген — фермент получение и изучение мутантов по одному или немногим генам, исследование мутантных белков. Все это способствовало конкретизации представлений о гене, его структуре и функции. [c.374]

    Один из важных принципов статистической механики, принцип микроскопической обратимости, гласит, что механизм обратной химической реакции должен быть строго обратным механизму прямой реакции. Из этого принципа следует, что если известен механизм прямой реакции, то известен также и механизм обратной реакции. К ро ме того, выполнимость этого принципа означает, что прямая и обратная реакции, катализируемые каким-либо ферментом, должны протекать в одном и том же активном центре фермента. Принцип микроскопической обратимости особенно полезен при обсуждении вопроса о том, насколнко вероятным является данный механизм. Предполагая, что имеет место какой-то конкретный механизм обратимой реакции, мы, согласно принципу микроскопической обратимости, однозначно определяем механизм обратной реакции. Иногда получающийся подобным образом механизм обратной реакции выглядит абсурдным, и тогда исследователь пытается найти более адекватный механизм обратимой реакции. [c.50]

    Известно, что синтез аминокислот в клетке ведется очень экономно и целенаправленно, под контролем специальных регулирующих систем. Регуляторный контроль обычна осуществляется по принципу обратной связи на уровне начального фермента или ферментов данного специфического пути образования метаболита. В случае значительного повьш1ения уровня конечного продукта (в данном случае лизина) включается механизм регуляции и один из ферментов в цепи последовательных превращений блокируется, синтез прекращается. Цель этого регулирования предотвратить избыточное образование и накопление данного метаболита, потребность в котором организма в настоящий момент полностью удовлетворяется. Но такая безупречная логика синтеза существует лишь у микроорганизмов, не имеющих нарушений и дефектов в этом. механизме. В природных условиях такие нарушения достаточно редки, но они все же встречаются. Например, найдено немало природных микроорганизмов, обладающих способностью к сверхсинтезу глутаминовой кислоты, аланина, валина. В то же время таких продуцентов по лизину, гомосерину, треонину и некоторым другим аминокислотам в природных условиях найдено не было. Для получения промышленных продуцентов пришлось пойти по пути получения мутантов, имеющих генетический дефект [c.26]

    То обстоятельство, что электрофоретическая подвижность мутантов отлична от подвижности нормального белка, неудивительно, ибо кислотное звено Глу заменено на незаряженное Вал илп щелочное Лиз. Интересна физическая природа самого заболевания. Дело вовсе не в потере способности гемоглобина обратимо связывать кислород. Специальные измерения показали, что константа связывания молекулярного кислорода гемоглобином одинакова у всех трех форм гемоглобина, но существенно изменяется растворимость белка, с понижением которой белок начинает кристаллизоваться внутри эритроцитов, чем и вызывает исканченную форму последних. Выпадение гемоглобина из раствора лишает его способности выполнять свою функцию, откуда и возникает анемия. Мутантные формы гемоглобина явились прекрасным доказательством того, что и в высшем организме имеются генетические области — цистроны, управляющие синтезом одпого определенного полипептида. Провозглашенный Бидлом п Тэтумом для микроорганизмов принцип один ген — один фермент нашел здесь прекрасное подтверждение. [c.417]

    Процесс элонгации цепи протекает при участии нуклеотидсахаров, действующих в качестве доноров, Реакции регулируются в первую очередь субстратной специфичностью отдельных гликозилтрансфераз. Здесь вновь проявляется принцип один фермент— одна связь . Специфичность реакций зависит от нуклеотидсахарного донора, акцепторного олигосахарида и от аномерной конфигурации и положения связи. Ферментативные системы, участвующие в элонгации цепи, обладают способностью очень точно воспроизводить сложные полисахариды. [c.311]

    Ответы становятся значительно более резкими и в том случае, если лиганд активирует один фермент и одновременно подавляет активность другого, катализирующего обратную реакцию. Мы уже рассмотрели один пример такого регуляторного принципа, когда говорили о стимуляции распада гликогена в мьпиечных клетках, где повьппение уровня сАМР одновременно активирует киназу фосфорилазы и ингибирует ее антагониста-фосфопротеинфос-фатазу (разд. 13.4.2). [c.281]

    Каждый из перечисленных классов делится на подклассы и подподклассы в соответствии с особенностями субстратов, превращение которых катализируется данной подгруппой ферментов. В основу международной классификации ферментов поломлен принцип, устанавливающий тип катализируемой реакции, т. е. катализируемая химическая реакция явлйется тем признаком, который отличает один фермент от другого. [c.79]

    В клетках млекопитающих, так же как и в бактериальных клетках, конечные продукты регулируют свой собственный синтез по принципу обратной связи. В некоторых случаях (в частности, в случае АТКазы) ингибирование по принципу обратной связи направлено на первый из ферментов биосинтетической цепи. Однако мы должны различать понятия регуляции по принципу обра1пой связи — общий термин, не содержащий никаких указаний на механизм, и ингибирования по принципу обратной связи механизм регуляции многих ферментов бактерий и млекопитающих путем ингибирования. Например, поступающий с пищей холестерол подавляет свой собственный синтез из ацетата в тканях млекопитающих. Этот тип регуляции, однако, не направлен непосредственно на ингибирование первого фермента пути биосинтеза холестерола. Ингибирование затрагивает один из ферментов (HMG-СоА-редуктазу) функционирующий на ранних стадиях биосинтеза механизм включает подавление хо-лестеролом или его метаболитами экспрессии генов, кодирующих образование HMG- oA-редукгазы. Холестерол, непосредственно добавленный в систему с HMG- oA-редуктазой, никакого действия на ее каталитическую активность не оказывает. [c.108]

    Вопрос о связи между действием фосфофруктокиназы и фруктозо-1,6-дифосфатазы [уравнение (11-19), стадия г рис. 11-11] остается нерешенным. Фруктозо-6-фосфат фосфорилируется и дает фруктозодифосфат, который в свою очередь гидролизуется, вновь превращаясь в фруктозо-6-фосфат. В результате получается бесполезный цикл (часто называемый бессмысленным циклом или субстратным циклом), который по существу ничем не завершается, кроме расщепления АТР до ADP и Р (АТРазная активность). Циклы этого типа часто встречаются в метаболизме, однако обычно они не приводят к гибельно быстрой потере АТР из-за четкого контроля метаболических процессов. В принципе в данный момент времени полностью активируются только один из двух ферментов, катализирующих стадию г [уравнение (11-19)]. В зависимости от метаболического состояния клетки может активно протекать процесс распада при небольшом биосинтезе или активный процесс биосинтеза при слабом распаде. Некоторые из механизмов контроля показаны на рис. 11-11. Содержание АТР и АМР играет при этом наиболее важную роль—низкая концентрация АМР включает киназу и выключает фосфатазу. У разных видов ингибирующее действие по типу обратной связи может оказывать АТР, РЕР или цитрат. Не исключено, что в будущем будут обнаружены новые механизмы регуляции фруктозо-1,6-дифосфатазой. [c.513]

    Пренильная группа изопентенилпирофосфата служит прямым предшественником в биосинтезе терпенов, каротиноидов и стероидов (рис. 12-11) [75—78]. Образование этой пятиуглеродной разветвленной структуры обсуждалось уже ранее (гл. И, разд. Г, 10 рис. 11-8) и схематически изображено на рис. 12-11. Один из этапов синтеза мевалоновой кислоты, а именно двухступенчатое восстановление З-окси-З-ме-тилглутарил-СоА, является строго регулируемой реакцией. Предполагается, что у человека скорость этой реакции в печени определяет интенсивность биосинтеза холестерина [44, 79]. Активность фермента снижается по принципу обратной связи при накоплении холестерина или его метаболитов. [c.563]

    Аналогично ЦТФ как конечный продукт биосинтетического пути оказывает ингибирующий эффект на первый фермент (аспартаткарбамоилтран-сферазу), регулируя тем самым свой собственный синтез (см. главу 13). Этот тип ингибирования получил название ингибирования по принципу обратной связи, или ретроингибирования. Существование его доказано во всех живых организмах. В настоящее время он рассматривается как один из ведущих типов регуляции активности ферментов и клеточного метаболизма в целом .  [c.155]

    Хотя электрофизиологические измерения вроде бы подтверждают принцип независимости, тем не менее очевидны несоответствия для систем транспорта натрия и калия. То, что ионные каналы возбудимой мембраны надо рассматривать не как простые отверстия, может быть доказано тем, что насыщение при высокой концентрации ионов аналогично насыщению фермента субстратом, а также взаимной конкуренцией между ионами Na+ и непроникающими ионами, которые блокируют канал. Модель Хилле свидетельствует о том же, демонстрируя возможность натриевого канала связывать одновременно только один ион Na+ с константой диссоциации Ко 368 мМ. В классической модели лиганд соединяется с молекулой переносчика и переносится с внешней поверхности мембраны на внутреннюю, где ион высвобождается. В данном случае этот механизм не наблюдается. Следовательно, натриевая транспортная система должна рассматриваться как канал с катионсвязывающим центром (и воротной системой) в отличие от переносчика канал пронизывает мембрану и является неподвижным. [c.140]

    Научные работы относятся к биохимии и молекулярной биологии. Выполнил основополагающие исследования по выделению первого регуляторного белка, управляющего активностью лактозного гена (оперена), по изучению механизма специфического взаимодействия белков и ДНК, по установлению первичной структуры ряда ДНК, а также по клонированию гена— предшественника инсулина — и синтезу этого белка в бактериальной клетке. Совместно со своим сотрудником А. Мэксемом расщепил (1973) ДНК кишечной палочки посредством фермента — дезоксирибонуклеазы и выделил определенный участок (лак —оператор), который оказался двухцепочечным фрагментом, состоящим из 25 комплементарных пар оснований. Совместно с тем же сотрудником предложил (1977) один из удачных методов расшифровки первичной структуры ДНК, базирующийся на принципе локализации оснований по величине соответствующих фрагментов ДНК. [c.141]

    В основе принципа аффинной хроматографии лежит отличительная особенность биологически активных веществ образовывать стабильные, специфические и обратимые комплексы. Если иммобилизовать один из компонентов комплекса, то получится специфический сорбент для второго его компонента, при этом, разумеется, предполагается, что соблюдаются все условия, необ.ходимые для образования этого комплекса. Связывающие участки иммобилизованных веществ должны сохранять хорошую стерическую доступность для второго участника комплекса даже после связывания с нерастворимым носителем и не должны деформироваться. Примерами первых специфических сорбентов, приготовленных путем ковалентного связывания с нерастворимым носителем, были иммобилизованные антигены (Кемпбелл и др. [5]) . Методы, созданные для присоединения антигенов и антител к нерастворимым носителям, были сразу же применены для получения иммобилизованных ферментов. В то же время ранее предложенный азидный способ привязки ферментов к целлюлозе [25] стал использоваться для приготовления иммуносорбентов. Параллельное развитие обоих направлений, основанных на использовании связывания биологически активных веществ с нерастворимыми носителями, наглядно демонстрируют названия первых обзорных статей Реакционноспособные полимеры и их использование для приготовления смол с антителами и ферментами (Манеке [23]), Водонерастворимые производные ферментов, антигенов и антител (Сильман и Качальский [39]) и Химия и использование производных целлюлозы для изучения биологических систем (Великий и Витол [47]). Оба направления продолжали развиваться параллельно и после открытия других более эффективных носителей и разработки методов связывания, позволяющих сохранять свойства иммобилизуемых веществ в растворе. [c.11]

    Регуляция синтезов в цитоплазме может протекать не только через активирование или ограничение функций РНК, но и на уровне ферментов, участвующих в образовании конституционных веществ. Такого рода регуляция по принципу фид-бэк-эффекта (feed-ba k-effe t) обычно приводит к накоплению физиологически ингибиторных продуктов (в том числе фенолов), которые подавляют функции не только отдельных ферментов или ферментных систем, осуществляющих синтезы этих продуктов, но и других ферментов и даже ингибируют деятельность отдельных клеточных органелл. Накопившиеся тормозящие продукты (природные ингибиторы) могут подавлять как нормальный ростовой процесс, так и его активированные формы. Последовательные этапы ростового процесса контролируются специфическими парами эндогенных регуляторов, один из которых является активатором, а другой — тормозителем. [c.216]

    Конформация полипептида в растворе частично определяется прямым взаимодействием пептидных групп друг с другом. То обстоятельство, что синтетические по-липептидй имеют высокорегулярную, кристаллическую структуру, тогда как многие другие- полимеры аморфны, т. е. обладают структурой беспорядочного клубка, в принципе свидетельствует о наличии некой естественной конформации для полипептидов. Результаты тщательной оценки длины связей и валентных углов, основанной на размерах, установленных для планарных пептидных связей в кристаллах небольших пептидов, существенно ограничили число возможных моделей конформации полипептидов. Дальнейшие ограничения в выборе возможной конформации были связаны с тем, что, согласно исходным предположениям, каждая карбонильная и каждая амидная группа пептида участвует в образовании водородной связи и что конформация полипептида должна соответствовать минимальной энергии вращения вокруг одинарной связи. Этим требованиям для пептидов, в которых имеются внутримолекулярные связи, отвечала правая спираль, содержащая 3,6 аминокислотных остатка на один виток (так называемая а-спираль) [1].. Существование спиральных структур предсказанных размеров в синтетических полипептидах было подтверждено с помощью самых различных физических методов, в том числе и методом рентгеноструктурного анализа. Такая а-спираль, в которой каждая пептидная группа соединена водородной связью с третьей от нее пептидной группой, считается наиболее вероятной моделью отдельных участков остова молекулы глобулярных белков, к которым относятся и ферменты. Нужно подчеркнуть, однако, что конформация глобулярного белка в целом отличается от простой регулярной а-спиральной структуры из-за наличия, в белке дисульфидных связей и остатков пролина, которые нарушают спиральное строение и изменяют ориентацию цепи, а также из-за взаимодействия боковых цепей, ответственного за третичную структуру. Действительно, рентгеноструктурный анализ с высоким разре- [c.25]


Смотреть страницы где упоминается термин Один ген один фермент принцип: [c.297]    [c.257]    [c.374]    [c.122]    [c.182]    [c.224]    [c.102]    [c.511]    [c.14]    [c.193]    [c.286]    [c.275]   
Генетика с основами селекции (1989) -- [ c.374 ]




ПОИСК







© 2025 chem21.info Реклама на сайте