Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природа ферментов

    Общее строение нуклеиновых кислот строго доказано. При гидролизе нуклеиновые кислоты распадаются на соответствующие нуклеотиды. Место связи рибозы с фосфорной кислотой установлено с помощью избирательного гидролиза. При этом в зависимости от природы фермента получают нуклеозид-5 -монофосфат, или нуклеозид-3, 5 -ди-фосфат, или нуклеозид-З -монофосфат, откуда следует, что остатки рибозы связаны в нуклеиновых кислотах фосфорной кислотой в положении 3,5. Природа оснований установлена путем их идентификации в продуктах гидролиза нуклеотидов. Наконец, нуклеиновые кислоты титруются как одноосновные кислоты. Это указывает на то, что две гидроксильные группы фосфорной кислоты связаны с двумя остатками рибозы. [c.361]


    Термолабильность ферментов. Скорость химических реакций зависит от температуры, поэтому катализируемые ферментами реакции также чувствительны к изменениям температуры. Установлено, что скорость большинства биохимических реакций повышается в 2 раза при повышении температуры на 10°С и, наоборот, снижается в 2 раза при понижении температуры на 10°С. Этот показатель получил название температурного коэффициента. Однако вследствие белковой природы фермента тепловая денатурация при повышении температуры будет снижать эффективную концентрацию фермента с соответствующим снижением скорости реакции. Так, при температуре, не превышающей 45—50°С, скорость реакции увеличивается согласно теории химической кинетики. При температуре выше 50° С на скорость реакции большое влияние начинает оказывать тепловая денатурация белка-фермента, приводящая к полному прекращению ферментативного процесса (рис. 4.16). [c.140]

    ХИМИЧЕСКАЯ ПРИРОДА ФЕРМЕНТОВ [c.118]

    Влияние внешних условий. По своей природе ферменты значительно более чувствительны к изменению внешних условий, чем неорганические катализаторы. В частности, ферменты работают в значительно более узком диапазоне температур. Температурный оптимум большинства растительных ферментов 313—333 К, животных ферментов 313—323 К. Если температура превысит эти пределы, активность фермента очень быстро падает, а при 343—353 К происходит пх необратимое разрушение, обусловленное денатурацией белка. Лишь очень немногие ферменты способны в определенных условиях выдержать нагревание до 373 К без потери активности. [c.169]

    Асимметрический синтез. Поскольку синтез в лаборатории всегда дает рацемическую смесь, возникает вопрос, откуда в живой природе возникли чистые энантиомерные формы Чтобы ответить на этот вопрос, надо вспомнить, что все катализаторы живой природы — ферменты или, что то же самое, энзимы, с помощью которых осуществляется буквально каждая биохимическая реакция, — сложные асимметрические молекулы. Поэтому промежуточно возникающие реакционные комплексы реагирующей молекулы с катализатором (ферментом) имеют характер диастереомеров. Именно этим объясняется тот факт, что действие ферментов избирательное и они синтезируют строго только один из двух возможных энантиомеров. [c.392]


    В-третьих, по своей природе ферменты значительно более чувствительны к изменению внешних условий, чем химические катализаторы. В частности, ферменты работают в значительно более узком диапазоне температур и проявляют свою активность в строго определенном интервале значений pH среды. [c.86]

    Уже в 1926—1929 гг. лауреатами Нобелевской премии Дж. Самнером и Дж, Нортропом были выделены первые ферменты в кристаллической форме — уреаза, пепсин и трипсин, которые, как было установлено, представляли собой чистые белки. В 1930-х годах были выделены внутриклеточные ферменты — желтый фермент Варбурга и алкогольдегидрогеназа, полученная в кристаллическом виде. Число выделенных в кристаллической форме ферментов с тех пор постоянно возрастало. При этом приходили все новые доказательства системной природы ферментов, состоящих из белковой части (апофермента) и небелковой части (кофермента), которые обеспечивают целостность структуры молекулы фермента и единство его каталитического действия. [c.180]

    Ферменты при гидролизе, как и белки, распадаются на аминокислоты, что, бесспорно, служит веским доказательством белковой природы ферментов .  [c.118]

    Описаны многочисленные конструкции потенциометрических и амперометрических холинэстеразных биосенсоров [84 . В частности, интерес представляст потенциометрическая система на основе двух платиновых электродов. Измеряемой величиной является потенциал одного из элекфодов, который служит анодом В ячейку вносят раствор бутирил-тиохолиниодида (0,002 моль/л) с pH 7,4. При введении в раствор аликвоты пробы, содержащей холинэстеразу, потенциал анода понижается, причем скорость его изменения АЕ/А1 зависит от природы фермента и концентрации фосфорорганических веществ (систокс, паратион, зарин и др.) в растворе. Пределы обнаружения составляют для зарина - 0,0002, систокса - 0,01 и паратиона - 0,18 мкг/мл. Погрешность определений - [c.293]

    Химическая природа ферментов [c.355]

    Химическая кинетика. В задачи кинетики входят определение скорости реакции в гомогенной и гетерогенной среде, исследование зависимости скорости от концентрации реагирующих веществ, температуры, давления, а также влияния излучения и катализаторов. Особенно важную роль в жизнедеятельности организмов играют биологические катализаторы белковой природы (ферменты), присутствующие во всех без исключения живых клетках и обеспечивающие протекание почти всех биохимических реакций в любом организме. Конечной целью кинетических исследований является установление механизма изучаемой реакции. [c.6]

    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]

    Характер ферментативной реакции зависит от природы фермента, типа его каталитического действия. Среди ферментов, применяемых в амперометрических биосенсорах, особое место занимают оксидоредуктазы, катализирующие реакции окисления и восстановления. Наряду с ними применяются гидролазы, катализирующие гидролиз, трансферазы, вызывающие перенос ацильных, гликозидных остатков и др. Многие ферменты сейчас доступны, их чистые препараты включены в каталоги фирм-производителей. [c.500]

    Характер проявляемой пиридоксальфосфатом каталитической функции определяется природой фермента, в сочетании с которым он действует. Так, из схемы (8.17) следует, что пиридоксальфосфат служит коферментом в таких процессах, как декарбоксилирование, трансаминирование, рацемизация и синтез аминокислот. [c.204]

    Существенная зависимость ферментативной активности от pH среды определяется полиэлектролитной природой фермента. Ферментативная активность, характеризуемая, в частности, константой /сг, зависит от pH колоколообразно — /сг имеет максимум при некотором значении pH и убывает при уменьшении или увеличении pH. Предложен ряд теоретических моделей, объясняющих в общих чертах такую зависимость. Подлинная теория требует, однако, более подробных сведений о ферментах, чем нам пока известные. [c.182]


    Ферменты оказывают высокоспецифическое действие, что также доказывает их белковую природу, поскольку белки в иммунологическом отношении отличаются крайне высокой специфичностью. Наконец, прямым доказательством белковой природы ферментов является лабораторный синтез первого фермента—рибонуклеазы, осуществленный в 1969 г. в лаборатории Б. Меррифилда в Нью-Йорке .  [c.119]

    О белковой природе ферментов свидетельствует факт инактивирования (потеря активности) ферментов брожения при кипячении, установленный еще Л. Пастером. При кипячении наступает необратимая денатурация белка-фермента. Фермент при этом теряет присущее ему свойство катализировать химическую реакцию. Точно так же белки при кипячении денатурируются и теряют свои биологические свойства (антигенные, гормональные, каталитические). Под влиянием различных физических и химических факторов (воздействие УФ- и рентгеновского излучения, ультразвука, осаждение минеральными кислотами, щелочами, алкалоидными реактивами, солями тяжелых металлов и др.) происходит денатурация ферментов, так же как и белков. [c.118]

    Идея применения ферментов в качестве лекарственных средств (фармакологии ферментов) всегда казалась заманчивой. Однако их нестабильность, короткий период полураспада, нежелательные антигенные свойства, связанные с белковой природой ферментов и опасностью развития аллергических реакций, трудности доставки к пораженным органам и тканям (мишеням) существенно ограничивали возможности использования ферментных препаратов. В разработке методов иммобилизации ферментов (см. ранее) наметились конкретные пути преодоления указанных трудностей применение водорастворимых, биосовместимых носителей, например полимолочной кислоты (легко разлагается в организме), использование методов химической модификации и микрокапсулирования, приготовление MOHO- и поликлональных антител и ферментсодержащих липосом и т.д. [c.168]

    Интересные данные, указывающие на белковую природу ферментов, были получены в лаборатории И.П. Павлова. При определении переваривающей способности желудочного сока была обнаружена прямая зависимость между этой способностью и количеством белка в соке. В связи с этим было сделано заключение, что пепсин желудочного сока является белком. [c.118]

    Вескими доказательствами белковой природы фермента являются его получение в чистом виде и вьщеление в форме кристаллов белка. К настоящему времени получено более 1000 кристаллических ферментов. Структура многих из них изучена детально при помощи современных методов химии белков и молекулярной физики [методами рентгеноструктурного анализа, ядерного магнитного резонанса (ЯМР), электронного парамагнитного резонанса (ЭПР) и др.]. [c.118]

    До установления химической природы ферментов гипотезы о механизме их действия опирались на исследования кинетики и модельные опыты химического гомогенного катализа. Повышение скорости химических реак- [c.129]

    Фермент является тетрамером и в тканях млекопитающих представлен тремя изоформами, среди которых наиболее распространены L-пируваткиназа, или печеночный изозим, и М пируваткиназа, иначе мышечный изозим. Общепризнанным является представление о L-пи-руваткиназе печени как об одном из ключевых ферментов гликолиза. Проблема регуляторной роли jWi-пируваткиназы в контролировании гликолиза в скелетной мышце остается нерешенной. Отчасти это связано с тем, что к пируваткиназе мышечной ткани применимы не все критерии, согласно которым, по современным представлениям, фермент может выдвигаться на роль ключевого. В частности, является спорным вопрос об аллостерической природе фермента, а также о проявлении им кооперативных свойств при взаимодействии с субстратами. Возможная причина противоречий связана, по-видимому, с выраженной конформационной подвижностью [-изозима пируваткиназы, вследствие чего фермент утрачивает кооперативные свойства при изменении pH или ионного состава среды. [c.333]

    Следует отметить некоторые ограничения применения уравнения Михаэлиса—Ментен, обусловленные множественными формами ферментов и аллостерической природой фермента. В этом случае график зависимости начальной скорости реакции от концентрации субстрата (кинетическая [c.138]

    Если белки в чем-то и проявляют общность в химическом поведении, позволяющем отнести их к одному классу веществ, то это только по отношению к протеолитическим ферментам. Подробно о становлении и развитии энзимологии, а также о механизме ферментативного расщепления белков говорится в следующем томе настоящего издания. Сейчас важно отметить, что в рассматриваемый период в этой области произошли глубочайшие изменения. Обратим внимание лишь на два события, которые оказали решающее влияние на изучение химического строения белковых молекул. Первым из них явилось установление Дж. Самнером (1926 г.) и Дж. Нортропом (1930 г.) белковой природы ферментов, что привело к совмещению задач химического и пространственного строения последних с задачами остальных белков. Второе событие заключалось в строгом доказательстве Э. Вальдшмидт-Лейтцем (1930-е годы) исключительно аминокислотного состава белкового гидролизата, полученного при дробном ферментативном гидролизе, т.е. комбинированном действии представительного набора ставших известными к тому времени протеолитических ферментов. Э. Вальдшмидт-Лейтц показал, что белки являются линейными полипептидами, звенья которых состоят из двадцати стандартных аминокислот с -конфигурацией центрального углеродного [c.66]

    Химическая природа ферментов. На основе многочисленных исследований химическая природа ферментов в настоящее время установлена. Определив химический состав ряда ферментов, исследователи синтезировали некоторые из них. Но полученные вещества не имели каталитических свойств. Поскольку в препарате фермента был обнаружен белок, который при добавлении метилового спирта отделялся и выпадал в свернутом виде, то можно было считать, что фермент состоит из двух компонентов. Вторым компонентом оказалась часть, имеющая белковую [c.519]

    Однако идеи о биологической природе фермента брожения, высказанные тремя исследователями, не получили признания. Более того, они были подвергнуты суровой критике со стороны приверженцев теории физико-химической природы брожения, обвинивших своих научных противников в легкомыслии в выводах и отсутствии каких-либо доказательств, подтверждающих эту странную гипотезу . Господствовавшей оставалась теория физико-химической природы процессов брожения. [c.9]

    В настоящее время еще полностью не изучены ферментные системы, катализирующие промежуточные стадии синтеза этих гормонов, и природа фермента, участвующего в превращении йодидов в свободный йод (21 I,), необходимый для йодирования 115 остатков тирозина в молекуле тиреоглобулина. Последовательность реакций, связанных с синтезом гормонов щитовидной железы, бьша расшифрована при помощи радиоактивного йода [ 1]. Бьшо показано, что введенный меченый йод прежде всего обнаруживается в молекуле монойодтирозина, затем—дийодтирозина и только потом—тироксина. Эти данные позволяли предположить, что моно- [c.265]

    Ферментативный катализ. Биологические катализаторы имеют белковую природу. Ферменты (от лат. fermentum — закваска) — это либо высокомолекулярные белки (в их состав в различных сочетаниях входит 20 основных аминокислот), либо сочетание белков с комплексными соединениями металлов или с другими веществами небелковой природы. [c.159]

    Изучение химического состава ферментов показало, что все они без исключений содержат белок. Белковая природа ферментов объяснила многие детали их синтеза в клетках, причины, по которым они легко фиксируются на мембранах, и вместе с тем поставила важную проблему в теореии катализа — вопрос о механизме действия биологических катализаторов, которые, обладая очень сложной геометрической структурой, не являются вполне жесткими , подобно кристаллическим оксидам или металлам, а могут изменяться уже в процессе каталитической реакции. [c.355]

    Биосинтез аспарагина протекает несколько отлично и зависит от природы ферментов и донора аммиака. Так, у микроорганизмов и в животных тканях открыта специфическая аммиакзависимая асиарагинсинтетаза, которая катализирует синтез аспарагина в две стадии  [c.447]

    Ферментативный, или микрогетерогенный, катализ играет ведущую роль в химических превращениях в живой природе. Ферменты (называемые также энзимами)—катализаторы белковой природы, образующиеся в живых организмах. Ферменты осуществляют сложный комплекс химических превращений, обеспечивающих жизнедеятельность (дыхание, пищеварение, синтез белков и т. п.) живых организмов. По некоторым свойствам, в первую очередь высокой химической специфичности и колоссальной активности, ферменты значительно превосходят промышленные кaтaJmзaтopы. [c.5]

    При использовании дрожжей и солода необходимо учитывать I характмные избирательные свойства их ферментов, вытекающие I из их белковой природы и заключающиеся в высокой каталити-I ческой активности, проявляющейся лишь при комнатной и I близких к ней температурах. По этой же причине среда и I температура играют важную роль в различных химических I превращениях веществ, протекающих с их участием. При этом, I с одной стороны, поскольку ферменты катализируют химические I реакции, скорость последних возрастает с повышением тем-I пературы с другой — вследствие белковой природы ферментов, I повышение температуры приводит к разрушению белка и, как I результат этого, к уменьшению скорости реакций. Температура, 1 при которой происходит наиболее интенсивное действие I ферментов, называется оптимальной. Оптимальные температуры I мльшинства биологических ферментов составляют 30 — 60 С. I Оптимальная температура действия ферментов не является строго I фиксированной величиной и зависит от кислотности среды, I длительности воздействия температур, концентрации воды и [c.43]

    НДФС служат в живых клетках для построения гли-козидной связи причем в зависимости от природы фермента, катализирующего гликозилирование, эта р-ция может сопровождаться как сохранением, так и обращением конфигурации аномерного атома С. [c.139]

    Общим для всех этих видов брожения является то, что все они протекают как ферментативные процессы с участием биокатализаторов оксигеназ (окислительных ферментов), гидрогеназ (восстановительных ферментов), декарбоксилаз (ферментов декарбоксилирования) и т. д. Специфичность протекания реакций разложения одних и тех же гексоз до тех или иных продуктов определяется природой ферментов, которые имеют различную пространственную структуру белка, разные реакционные центры (металлические или неметаллические, комплексные или простые и т. д.), пространственное экранирование реакционных центров и каналы в структуре белка для движения реагентов. [c.644]

    Согласно современным представлениям, биосинтез инсулина осуществляется в 3-клетках панкреатических островков из своего предшественника проинсулина, впервые выделенного Д. Стайнером в 1966 г. В настоящее время не только выяснена первичная структура проинсулина, но и осуществлен его химический сгштез (см. рис. 1.14). Проинсулин представлен одной полипептидной цепью, содержащей 84 аминокислотных остатка он лишен биологической, т.е. гормональной, активности. Местом синтеза проинсулина считается фракция микросом 3-клеток панкреатических островков превращение неактивного проинсулина в активный инсулин (наиболее существенная часть синтеза) происходит при перемещен проинсулина от рибосом к секреторным гранулам путем частичного протеолиза (отщепление с С-конца полипептидной цепи пептида, содержащего 33 аминокислотных остатка и получившего наименование соединяющего пептида, или С-пепти-да). Длина и первичная структура С-пептида подвержена большим изменениям у разных видов животных, чем последовательность цепей А и В инсулина. Установлено, что исходным предшественником инсулина является препроинсулин, содержащий, помимо проинсулина, его так называемую лидерную, или сигнальную, последовательность на N-конце, состоящую из 23 остатков аминокислот при образовании молекулы проинсулина этот сигнальный пептид отщепляется специальной пептидазой. Далее молекула проинсулина также подвергается частичному протеолизу, и под действием трипсиноподобной протеиназы отщепляются по две основные аминокислоты с N- и С-конца пептида С—соответственно дипептиды Apr—Apr и Лиз— —Apr (см. рис. 1.14). Однако природа ферментов и тонкие механизмы этого важного биологического процесса—образование активной молекулы инсулина окончательно не выяснены. [c.268]

    В 50-х гг XIX столетия Л. Пастер показал, что сбраживание дрожжами сахара в спирт катализируется веществами белковой природы — ферментами. Ошибка Пастера заключалась в том, что он считал ферменты неотделимыми от живых клеток (в данном случае — дрожжевых), однако это ошибочное представление разделялось многими учеными, его современниками. Поэтому открытие Э. Бухнера, который первым показал, что в водных экстрактах дрожжевых клеток находится набор ферментов, катализирующих превращение сахара в спирт, является, по сути дела, началом формирования науки — энзимологии. В 20-х гг XX в. Р. Вильштеттер впервые получил ряд ферментов в высо-коочищенном состоянии. Однако химическую природу ферментов он не идентифицировал из-за ошибочного исходного представления о том, что ферменты — особый класс низкомолекулярных веществ, сорбированных на белках. В 1926 г Дж. Самнер впервые получил растительную уреазу в виде белковых кристаллов. Четыре года спустя Дж. Нортроп и М. Кунитц представили данные о получении кристаллов трипсина и пепсина, доказав их исключительно белковую природу. Успехи прикладной энзимологии во второй половине XX столетия позволили получить более 2000 ферментов в более или менее очищенном состоянии. [c.59]

    Попытки выделить ферменты в индивидуальном состоянии предпринимали многие исследователи, среди которых следует упомянуть А. Я. Данилевского, Р. Вильштеттера и др. Белковая природа ферментов была однозначно доказана в 1926 г. американским биохимиком Дж. Самнером, выделившим в кристаллическом виде фермент уреазу из семян канавалии. В 1930 г. Дж. Нортроп получил кристаллический пепсин, а затем трипсин и химотрипсин. С этого периода ствло общепринятым утверждение, что все ферменты являются белками. [c.177]

    Трансгликозилазы специфичны к донорам с гликозидными связями определенной конфигурации, поэтому при переносе гликозильного остатка в новых гликозидах конфигурация гликозидной связи чаще всего остается такой же, как и в доноре, т. е. перенос осуществляется с сохранением конфигурации. При трансгликозилироваиии гл в зависимости от природы фермента и акцептора происходит или случайное распределение гликозильных остатков по различным гидроксильным группам, или достаточно избирательное гликозилирование одного из гидроксилов. В результате может осуществляться как более или менее направленный синтез олигосахаридов, так и образование смеси изомеров, но с определенной конфигурацией гликозидных связей. [c.471]

    Целлюлолитические ферменты относятся к классу карбогид-раз (О-гликозид-гидролаз, КФ 3.2.1), катализирующих гидролиз О-гликозидной связи, и являются одними из самых распространенных в природе ферментов они встречаются в животных организмах, высших и низших растениях, микроорганизмах [4, 5]. [c.59]

    Химические реакции в живых системах протекают с высокой скоростью, благодаря наличию катализаторов белковой природы — ферментов или энзимов. Ферменты были открыты в процессе изучения механизмов брожения, этим и объясняется происхождение их названия (от лат. fermentum — закваска, enzyme — в дрожжах). Представление о том, что в живых системах химические реакции протекают при помощи каких-то факторов, возникло более 200 лет назад. В начале XIX в. господствовало мнение о наличии жизненных сил , управляющих процессами жизнедеятельности. Более четкие и однозначные химические представления сформировались в связи с развитием теории химического катализа, вьвдвинутой шведским химиком Й. Я. Берцелиусом, который первым отметил высокую производительность биологических катализаторов на примере диастазы. [c.59]


Смотреть страницы где упоминается термин Природа ферментов: [c.86]    [c.82]    [c.661]    [c.118]    [c.130]    [c.160]    [c.168]    [c.496]    [c.337]    [c.85]   
Смотреть главы в:

Основы биохимии в 3-х томах Т 1 -> Природа ферментов




ПОИСК







© 2025 chem21.info Реклама на сайте