Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные орбитали и химические реакции

    Скорость химической реакции А + + В О + Е будет определяться числом столкновений возбужденных молекул А и В, суммарная энергия которых должна быть выше энергии Е, необходимой для образования переходного состояния. Однако это условие является необходимым, но не достаточным. Для образования переходного состояния кроме избыточной энергии сталкивающихся молекул необходимо благоприятное расположение атомов в реакционных центрах реагирующих молекул. Следовательно, теория элементарного химического акта должна давать возможность расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из строения и свойств реагирующих молекул. Одним из первых направлений в развитии теории элементарных реакций является теория активных столкновений. Ее основы разрабатывались на базе молекулярно-кинетических представлений и идеи, выдвинутой Аррениусом об активных столкновениях, заканчивающихся химическим актом. На современном этапе это направление развивается на базе квантовой теории химической связи и строения молекул. Начало этому было положено работами Эйринга, Эванса, Поляни и др., создавших новое направление в теории элементарных химических реакций, так называемую теорию абсолютных скоростей реакций. В этой теории ставится задача расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из свойств реагирующих молекул. За последние три десятилетия получило развитие новое направление в теории элементарных химических реакций, в котором строение и свойства переходного состояния описываются на базе теории молекулярных орбиталей. [c.562]


    Катализатор вступает в химическое взаимодействие с одним или обоими реагирующими веществами, образуя при этом промежуточное соединение (АХ) и входя в состав активированного комплекса. После каждого элементарного химического акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагентов. Таким образом, катализатор направляет химическую реакцию по принципиально новому пути, который отличается от некаталитического числом и природой промежуточных соединений, составом и строением переходного комплекса. Природа сил, вызывающих взаимодействие катализатора и реагентов, та же, что и для обычных химических соединений. Это прежде всего ковалентная связь, донорно-акцеп-торное и кулоновское взаимодействие, водородная связь. Для возникновения химической связи требуется определенное соответствие молекулярных орбиталей реагирующих молекул и катализатора до энергии и симметрии, поэтому катализаторы обладают свойством ус- [c.617]

    При адиабатическом приближении, которое используется в теории активного комплекса, не рассматривается движение электронов. В ходе химической реакции учитывается лишь движение ядер-атомов, а электронное состояние системы в целом принимается неизменным. Это предположение в настоящее время уточняется с позиций квантовой механики. Считается, что в адиабатической реакции должно быть определенное соответствие, корреляция электронных состояний молекул исходных веществ и продуктов. В частности, это относится к свойствам симметрии молекулярно-электронных орбиталей. [c.293]

    Р. Вудвордом и Р. Гоффманом было сформулировано правило сохранения симметрии молекулярных орбиталей симметрия молекулярных орбиталей, образующих разрываемые химические связи в молекулах исходных веществ, должна соответствовать симметрии молекулярных орбиталей продуктов реакции. Это правило распространяется и на химические связи в активном комплексе. [c.293]

    В соответствии с современными тенденциями в пособии рассмотрены вопросы, связанные с методом молекулярных орбиталей, элементы статистической термодинамики, методы расчета химических равновесий, различные аспекты теории активного комплекса отражены достижения в области металлокомплексного, кислотно-основного и других видов катализа показано влияние структуры органических веществ и посторонних добавок на реакции в растворах отражены современные представления электрохимической кинетики. [c.3]


    В молекулах, состоящих из атомов типичных элементов, каждый атом имеет четыре валентные орбитали. В плоских я-электронных системах каждый атом вносит в общую я-си-стему вклад в виде только одной р-орбитали. Остальные его валентные орбитали принимают участие в образовании а-си-стемы связей. Следовательно, базисный набор для молекулярных я-орбиталей оказывается намного меньше полного валентного набора. Отдельное рассмотрение я-электронной системы обосновано тем, что молекулярные я-орбитали являются высшими (по энергии) занятыми и низшими вакантными молекулярными орбиталями. Кроме того, по законам симметрии, одноэлектронные интегралы между базисными функциями а- и я-типов равны нулю. Спектральные переходы с минимальными энергиями, первые потенциалы ионизации, а также сродство к электрону я-систем связаны с энергиями именно я-орбиталей. Химические реакции, в которых участвуют такие системы, обычно сопровождаются значительно большими изменениями в я-си-стеме, 1ем в а-системе. Простая теория Хюккеля позволяет получить много полезных сведений о химических свойствах я-электронных систем. [c.240]

    Представьте себе, что вы преподаватель химии и вам нужно провести семинар по одной из следующих тем 1. Теория валентных связей. 2. Метод молекулярных орбиталей. 3. Направление химического процесса. 4. Гидролиз. 5. Произведение растворимости. 6. Окислительно-восстановительные реакции. 7. Восстановительные потенциалы. 8. Теория сильных электролитов. [c.162]

    Катализатор обладает избирательностью (специфичностью) действия, т. е. он может изменять скорость одной реакции и не влиять на скорость другой. Это можно объяснить тем, что для возникновения химической связи требуется соответствие молекулярных орбиталей реагирующих веществ и катализатора по энергии и симметрии. [c.292]

    Разрыв двухэлектронных химических связей может сопровождаться разрывом пар электронов, находящихся на связывающих молекулярных орбиталях. Соответственно в обратной реакции будет образовываться новая электронная пара. Реакции, протекающие с разрывом или образованием электронных пар, называют го-молитическими. Помимо реакций разрыва связи с образованием свободных атомов или свободных радикалов и обратных реакций соединения свободных атомов или свободных радикалов с образованием валентно-насыщенных частиц к гомолитическим реакциям относят реакции с трехцентровым активированным комплексом, в которых одна из реагирующих частиц — свободный атом или свободный радикал. К таким реакциям относятся (II), (III), (V). Действительно, в реакции [c.367]

    Идея и принципы построения корреляционных диаграмм непосредственно вытекают из атомных корреляционных диаграмм Хунда и Малликена [19]. Они оказались очень удобными для оценки разрешенности той или иной согласованной реакции. При построении корреляционных диаграмм нужно принимать во внимание как энергию, так и симметрию системы. На диаграмме с одной стороны приближенно изображаются уровни энергии реагентов, а с другой-то же самое, но для продуктов. Следует так же учитывать, как происходит сближение молекул. Далее необходимо рассмотреть свойства симметрии молекулярных орбиталей с точки зрения точечной группы активированного комплекса. В отличие от метода граничных орбиталей нет необходимости рассматривать ВЗМО и НСМО. Вместо этого все внимание концентрируется на тех молекулярных орбиталях, которые соответствуют химическим связям, разрывающимся или образующимся в ходе химической реакции. Нам известно, что любая приемлемая молекулярная орбиталь должна принадлежать к одному из неприводимых представлений точечной группы избранной системы. Эта МО, по крайней мере для невырожденных точечных групп, должна быть либо [c.322]

    Одной из важнейших задач современной педагогики является разработка новых высокоэффективных методов обучения и контроля знаний учащихся. Настоящее пособие предназначено как для машинной, так и для безмашинной проверки знаний. В книге представлены наряду с традиционными для курсов общей химии темами новые темы, которые только начинают вводиться в курсы общей химии (порядок реакций, элементы химической термодинамики, метод молекулярных орбиталей, теория поля лигандов я др.). [c.254]

    Энергия резонанса. Установлено, что освобождающаяся при окислении бензола до диоксида углерода и воды энергия много меньше вычисленной для горения гипотетического циклогекса-1,3,5-триена (другими словами, бензола Кекуле ). Дефицит энергии в 150 кДж/моль может быть отнесен на счет энергии, высвобождающейся при образовании из трех изолированных двойных связей циклических делокализованных молекулярных орбиталей, описанных выше. Эта выделившаяся энергия, так называемая энергия резонанса, обусловливает отсутствие определенного типа химического поведения, характерного для ненасыщенной молекулы. Любая реакция, в результате которой происходит разрушение циклических молекулярных орбиталей, требует возврата выделившихся 150 кДж/моль и является вследствие этого энергетически невыгодной. [c.49]


    С момента своего возникновения квантовая химия была связана главным образом с изучением электронного строения молекул, т.е. электронного распределения в стационарных состояниях, а также состава входящих в волновую функцию молекулярных орбиталей, взаимного расположения уровней энергии занятых и виртуальных орбиталей и т.п. Были предприняты многочисленные попытки интерпретировать такие понятия классической теории, как валентность, химическая связь, кратность химической связи и др. Одновременно были введены и многие новые понятия, такие как гибридизация, а- и л-связи, трехцентровые связи и т.д., часть из которых прочно вошла в язык современной химической науки, тогда как другие оказались менее удачными и сейчас уже хорошо забыты. К тому же и содержание большинства понятий, возникающих внутри квантовой химии, заметно трансформировалось с течением времени. В квантовой химии было введено большое число различных корреляций между экспериментально наблюдаемыми для вещества и вычисляемыми для отдельных молекул величинами. Сама по себе химия является в существенной степени корреляционной наукой, базирующейся прежде всего на установлении соответствия между свойствами соединений и их строением и последующем предсказании требуемой информации для других соединений. По этой причине богатейший набор информации о строении, в том числе электронном строении соединений, предоставляемый квантовой химией, оказался как нельзя кстати для дальнейшего активного развития химической науки. Так, на основе квантовохимических представлений была развита качественная теория реакционной способности молекул, были сформулированы правила сохранения орбитальной симметрии, сыгравшие важную роль при исследовании и интерпретации реакций химических соединений. [c.4]

    Для протекания химической реакции необходимо соответствие МО реагентов как по энергии, так и по симметрии. Эти требования существенно не отличаются от тех, которые необходимы при построении МО из АО, а именно эффективно перекрываются только орбитали одинаковой симметрии и сравнимые по энергии. Наиболее сильное взаимодействие возникает тогда, когда энергии орбиталей близки. Следует иметь в виду, что взаимодействие между заполненными МО не вносит вклада в изменение полной энергии системы, так как энергия одной орбитали возрастает приблизительно настолько, насколько убывает энергия другой орбитали (рис. 7-5). Наиболее важны взаимодействия между заполненными орбиталями одной молекулы и вакантными орбиталями другой. Это положение можно уточнить следующим образом поскольку наиболее сильное взаимодействие возникает для энергетически подобных орбиталей, максимальный результат можно ожидать от взаимодействия высщей занятой молекулярной орбитали (ВЗМО) одной молекулы с низшей свободной молекулярной орбиталью (НСМО) другой молекулы (рис. 7-6). Фукуи включил оба этих названия в общий описательный термин - граничные орбитали. Первая статья на эту тему появилась в 1952 г. [15], а в последующие годы эта идея была применена ко множеству различных реакций (см., например, [1, 2]). [c.321]

    Какой из этих методов лучше Оба метода полезны и в известной степени дополняют друг друга. Однако в настоящее время химики-органики все больше предпочитают пользоваться методом молекулярных орбиталей. Одна из причин этого заключается в том, что метод молекулярных орбиталей легче использовать для расчета энергии системы. Тем пе менее понятие резонанса еще широко используется для объяснения многих химических реакций. [c.66]

    Необходимо отметить, что теория валентных связей и теория молекулярных орбиталей взаимно дополняют друг друга. Теория валентных связей позволяет наглядно представить себе процесс образования химической связи и строение молекул на основании учета пространственной направленности атомных орбиталей. Она позволяет также качественно объяснить перераспределение электронов, которое происходит при химических реакциях. Однако в дальнейшем мы убедимся, что для некоторых типов химических систем теория валентных связей не в состоянии полностью объяснить наблюдаемые химические и физические свойства, которые в то же время прекрасно согласуются с теорией молекулярных орбиталей. Более того, по мере изучения химии можно убедиться, что теория молекулярных орбиталей позволяет получать количественные данные о химических связях и об энергетических состояниях молекул и ионов. [c.117]

    Таким образом, радикалы—это частицы с неспаренными электронами на внешних атомных или молекулярных орбиталях. Первичное образование радикалов происходит при разрыве химических связей за счет физического (температура, УФ-излучение, у-кванты и др.) или химического (катализаторы) инициирования, а также в ходе некоторых химических реакций, например при окислении органических веществ  [c.23]

    Каждый из типов элементарных актов характеризуется общими закономерностями и имеет некоторые индивидуальные особенности. Любой элементарный химический акт сопровождается перестройкой молекулярных орбиталей реагирующих молекул. В большинстве химических реакций элементарные акты протекают без изменения электронных термов системы. Такие реакции называют адиабатическими реакциями. В адиабатических элементарных актах электронная плотность и расположение ядер в реагирующих молекулах изменяются непрерывно. [c.558]

    Черточки в формуле метана пpeд тaвJ яют собой ковалентные химические связи. Для их образования необходимо пространственное перекрывание атомных орбиталей, на каждой из которых может находиться один неспаренный электрон. В результате при таком перекрывании образуется одна молекулярная орбиталь с двумя электронами с противоположными спинами. Значит, чтобы атом углерода мог вступить в реакцию, как говорят, он должен перейти в возбужденное состояние [c.26]

    Новое направление в исследованиях многокомпонентных систем было создано работами Н. С. Курнакова и привело к развитию физико-химического анализа — учению о зависимости свойств физико-химических систем от состава. К числу больших достижений XX в. относятся теория растворов сильных электролитов П. Дебая и Э. Хюккеля (1923), теория цепных реакций (Н. А. Шилов, Н. Н. Семенов), теории катализа. В последние годы интенсивно развиваются методы исследования строения и свойств молекул. К ним относятся электронный резонанс (ЭМР), масс-спектрометрия и др. Большой вклад в развитие физической химии внесли советские ученые Я. К. Сыркин, М. Е. Дяткииа (метод молекулярных орбиталей), Н. Н. Семенов (теория цепных реакций), А. Н. Фрумкин (фундаментальные исследования в области электрохимии), Н. А. Измайлов (теория электрохимии неводных растворов). [c.8]

    Для нее = 390—180 = 210 кДж/моль. Этот барьер все еще очень высок. Так же, как прямая реакция, разложение N0 протекает с заметной скоростью лишь при очень высок1гх температурах. Рассмотренные примеры показывают, какую важную роль в механизме химического превращения играют свойства симметрии молекул, в частности симметрия молекулярных орбиталей. [c.147]

    Химики используют в своих рассуждениях мысленные образы, структурные формулы (СФ), структуры Кекуле, диаграммы ORTEP. Однако в меньшей мере используется основная математическая структура этих конструкций. Нашей целью будет разработка алгебраических и топологических характеристик такой структуры первоначально для квантовой химии (молекулы, стадии молекулярных реакций), затем в известной степени для химической кинетики и динамики (нахождение возможных путей, механизмов, определение их стационарных состояний, устойчивости, колебаний). Для квантовой химии, т. е. микрохимии , будут разработаны правила с целью получения обычным путем основных электронных характеристик молекул [система уровней молекулярных орбиталей (МО), реакционная способность, устойчивость к искажениям] и в некоторых математических классах непосредственно из структурных формул или диаграмм ORTEP. На макрохимическом уровне, т. е. при нахождении всех математически возможных путей синтеза, механизмов, при разработке правил стадия/соединение, связывающих число реагентов, продуктов, интермедиатов, катализаторов, автокатализаторов с числом элементарных реакционных стадий в химической смеси и затем с динамическими неустойчивостями, будут использоваться представления иного типа — реакционные схемы, являющиеся графами с двумя типами линий и двумя типами вершин [I]. [c.73]

    Открытие зеркальной симметрии или хиральности у кристаллов, а позднее и у молекул приблизило концепцию симметрии к реальной химической лаборатории. Однако пока не химик вообще (в классическом понимании этого термина), а только стереохимик, химик-структурщик, кристаллограф и спектроскопист имели отношение к этой концепции. Еще не прошло и 20 лет с того времени, когда обсуждение важности симметрии для химии приходилось сопровождать извинениями за возможно излишнее внимание к этой концепции. В то время еще считалось, что соображения симметрии теряют свою значимость, как только молекула - главный химический объект - вступает в химическую реакцию, т. с. испытывает обычное химическое превращение. Теория молекулярных орбиталей и открытие принципа сохранения орбитальной симметрии устранили это последнее заблуждение. Нобелевская премия по химии за 1981 г., присужденная Фукуи [5] и Хоффману [6], знаменует эти достижения. [c.12]

    Основная идея их работ состоит в том, что явления симметрии могут играть такую же важную роль в химических реакциях, как и в построении молекулярных орбиталей или в молекулярной спектроскопии. Становится даже возможным, как это делается для спектральных переходов, сформулировать некоторые основанные на симметрии правила отбора о разрешенности и занрещенности химических реакций. [c.313]

    Предсказывая возможность протекания химической реакции ио этому методу, рассматривают два момента. Во-первых, возможность перехода электрона с одной орбитали на другую. Во-вторых, исследуют нормальное колебание, определяющее возможность протекания реакции. В обоих случаях привлекаются соображения симметрии. Такой подход является радикальным и имеет что-то схожее с методами Пирсона и Вудворда - Хоффмана. Некоторые особенности этих методов включены в рассмотрение на строгой теоретико-групповой основе. Сначала в рамках полной группы симметрии всей реагирующей системы проводится анализ преобразования как молекулярных орбиталей (электронное строение), так и координат смещения (колебательный ггроцесс). Исследуются все.пути нарушения симметрии в системе и не пренебрегают ни о ним элементом симметрии, который сохраняется на пути химической реакции. В этом методе корреляционные диаграммы называются диаграммами соответствия , чтобы их не смешивать с аналогичными построениями в методе Вудворда-Хоффмана. [c.323]

    Есть две области, в которых молекулярные орбитали оказались полезными для химии. Первая — это область качественных оценок, когда достаточно лишь в обохих чертах знать форму и симметрию молекулярной орбитали, а также ее приближенную энергию, чтобы дать правильное отнесение спектра или интерпретацию механизма химической реакции. Вторая — это область количественных расчетов некоторых молекулярных свойств для предсказания или подтверждения результатов химических наблюдений. Для количественных расчетов главное обычно заключается в получении наиболее точного представления молекулярных орбиталей в виде разложения (6.2). При этом в разложении учитывается много базисных атомных орбиталей. Для качественных оценок главным является получение минимального разложения, дающего удовлетворительные результаты для той задачи, которая поставлена. В этой книге основное внимание будет уделено качественному аспекту. Из дальнейшего изложения будет видно, что качественно удовлетворительные результаты можно получить с так называемым мини- [c.88]


Библиография для Молекулярные орбитали и химические реакции: [c.123]   
Смотреть страницы где упоминается термин Молекулярные орбитали и химические реакции: [c.4]    [c.95]    [c.4]    [c.365]    [c.6]    [c.150]    [c.10]    [c.5]    [c.5]    [c.113]    [c.244]    [c.6]    [c.365]    [c.27]   
Смотреть главы в:

Метод молекулярных орбиталей -> Молекулярные орбитали и химические реакции




ПОИСК





Смотрите так же термины и статьи:

Молекулярность реакции

Молекулярные орбитали орбитали

Орбиталь молекулярная

Химические реакции молекулярность



© 2025 chem21.info Реклама на сайте