Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алканы важнейшие

    Разветвленные алкильные группы называют подобно разветвленным алканам. Важным отличием является то, что связанный с главной цепью углеродный атом всегда получает номер 1. Например  [c.54]

    Ранее нами уже неоднократно отмечалось, что в конформационном анализе алканов важной величиной является скошенное бутановое взаимодействие. Однако энергетическая оценка этого взаимодействия, т. е. определение энергии конформационной изомеризации типа G->T, представляет собой непростую задачу. В ранних работах Питцера эта величина была оценена значением, равным 800 кал моль [21]. Затем для алканов энергия скошенного взаимодействия в ряде работ оценивалась уже величинами, равными 600 кад/л оль 101 и 700 кад/.иоль [14]. Недавно было [c.29]


    Часто предпринимались попытки получать важные промежуточные и товарные алифатические продукты реакцией двойного обмена различных реагентов с хлористыми алканами или цикланами (образующимися при прямом хлорировании нефтяных фракций). Однако подобные реакции протекают неудовлетворительно и, по-видимому, даже в будущем нельзя ожидать значительных успехов в этом направлении. [c.231]

    Нафтеновые углеводороды являются наиболее высококачественной составной частью моторных топлив и смазочных масел. Моноциклические нафтеновые углеводороды придают автобензинам, реактивным и дизельным топливам высокие эксплуатационные свойства, являются более качественным сырьем в процессах каталитического риформинга. В составе смазочных масел нафтены обеспечивают малое изменение вязкости от температуры (т.е. высокий индекс ма — сел). При одинаковом числе углеродных атомов нафтены по сравнению с алканами характеризуются большей плотностью и, что особенно важно, меньшей температурой застывания. [c.65]

    В основе промышленных способов получения ароматических углеводородов и высокооктановых бензинов лежат реакции С5- и Се-дегидроциклизации алканов. Широко дискутируемым в настоящее время является вопрос о путях превращения алканов в бензол и его гомологи. В настоящее время он перерос академические рамки и важен как для химиков-технологов, так и для специалистов в области приготовления катализаторов. Важное значение приобрел в последние несколько лет вопрос об участии водорода в реакциях дегидроциклизации (или активирования им катализаторов дегидроциклизации).  [c.7]

    В работе >20], посвященной каталитическим превращениям углеводородов в присутствии Р1-черни, авторы также пришли к заключению о двух механизмах изомеризации— циклическом с промежуточным образованием циклопентанов и механизме сдвига связей. Важная роль при активации катализатора в обсуждаемой работе отводится кислороду, который в незначительных количествах присутствует в зоне реакции. В работах [121, 122] исследованы превращения алканов в присутствии напыленных Р1—КЬ- и Р1—8п-пленок, а также на нанесенных и ненанесенных 1г- и 1г—Аи-катализаторах. Пути протекания реакций Сз-дегидроциклизации — скелетной изомеризации обсуждены с позиций циклического механизма и механизма сдвига связей. [c.225]

    Выше уже отмечалось, что при образовании пятичленных циклов из алифатических углеводородов важная роль принадлежит газу-носителю, в атмосфере которого протекает реакция. В присутствии водорода на Pt-катализаторах-реакция изомеризации алканов состава Сб—Се успешно конкурирует с ароматизацией, причем основным путем изомеризации является Сз-дегидроциклизация с последующим гидрогенолизом пятичленного цикла. [c.226]


    Окисление парафиновых углеводородов при низких температурах (от 100 ДО 150° С) Начинается с труднообъяснимой пока реакции между алкильными радикалами и кислородом. Поэтому изучение этого первичного процесса н последовательных превращений получающихся промежуточных продуктов весьма важно для понимания процессов окисления алканов в целом. [c.270]

    Напишите общую формулу и приведите пример хотя бы одного вещества из а) промышленно важных алканов, б) промышленно важных ароматических соединений. [c.223]

    Очень важные сведения об алифатических фрагментах в молекулах нефтяных ВМС получили Ал. А. Петров и сотрудники [381 ],, подвергавшие нативные асфальтены термолизу при 350°С в течение двух — четырех часов и анализировавшие образовавшиеся углеводороды с помощью газовой хроматографии и масс-спектрометрии. Они нашли, что при термодеструкции асфальтенов образуются парафиновые углеводороды нормального и изопреноидного строения, содержащие до 35 атомов С в молекуле. Распределение отщепляющихся парафинов было довольно близким к составу алканов из дистиллятных фракций нефтей метанового типа. Среди алифатических продуктов термолиза значительно преобладали н.алканы, максимум в распределении которых приходился на [c.198]

    Показатель преломления. Одним из важных физических свойств парафина является его показатель преломления. В табл. 12 (стр. 50) были приведены данные о зависимости показателя преломления -алканов от числа атомов углерода в молеку ле. [c.55]

    В монографии рассмотрены современные данные о составе, строении и путях образования различных нефтяных углеводородов алканов, цикланов и аренов. Особое внимание уделено реликтовым углеводородам — соединениям, сохранившим основные черты строения исходных биоорганических молекул. Приведены современные представления о химической типизации нефтей, основанной на молекулярно-массовом распределении важнейших реликтовых углеводородов. Изложены также некоторые вопросы генезиса и химической эволюции нефтяных углеводородов. [c.2]

    Основой для проведения химической типизации нефтей, как уже указывалось, является ГЖХ всей нефти, определяемая на капиллярных колонках эффективностью в 25—30 тыс. т.т. в режиме линейного программирования температуры. Экспериментальные подробности изложены в работе [8]. Проведение анализа целиком всей нефти позволяет избежать количественных неточностей, связанных обычно с выделением тех или иных фракций, и дает возможность определить неискаженные значения относительных концентраций важнейших реликтовых углеводородов нормальных (состава (С,2—Сзя) и изопреноидных алканов (состава 0,4—Сзл). Дополнительной характеристикой является определение группового состава основной фракции нефтей (так называемое тело нефти), т. е. фракции, выкипающей в пределах 200—430° С (н.Сц—н.Са )- [c.11]

    Существует несколько способов рассмотрения количественного содержания индивидуальных углеводородов в нефтях. Наиболее простой из них — это определение абсолютной концентрации данного соединения в нефти. Однако при этом теряются весьма важные закономерности, связанные с концентрационным распределением изомеров. Кроме того, незначительные по своей абсолютной величине цифры (например, 0,02, 0,005% и т. д.), характеризующие концентрации отдельных углеводородов, плохо воспринимаются и плохо запоминаются. Более интересной является оценка относительного распределения изомеров или гомологов. Этот способ, предложенный в работе [8], весьма удобен для различных теоретических обобщений и дает наглядное представление о связи между строением алканов и их концентрацией в различных нефтях. [c.42]

    Важным доказательством образования изопреноидных углеводородов из фитола могло бы явиться стереохимическое сходство фитола и образующихся из него изопреноидных алканов состава С —С.20, т. е. алканов, имеющих хиральные центры при С-6 и С-10. Известно, что образующийся путем биосинтеза фитол обладает строго определенной конфигурацией хиральных центров 7Л и Ий (они соответствуют центрам С-10 и С-6 в изопреноидных алканах). [c.65]

    На мембранных катализаторах изучалась дегидроциклизация н-алканов гексана, гептана и октана [104], декана [105] на сплавах палладия с 5,5% (масс.) никеля. Наиболее активными в этой реакции сплавы палладия с 10% (масс.) родия [87] и палладия с 5% (масс.) рутения [106]. Способность палладиевых сплавов катализировать дегидроциклизацию алканов важна в двух аспектах. Во-первых, таким образом алканы, содержащиеся в нефтях, превращаются в ценные ароматические углеводороды. Во-вторых, из каждого моля иревращен-ного алкана получаются 4 моль водорода, который на другой поверхности того же мембранного катализатора можно ввести в гидродеалкилирование или в другую реакцию с присоединением водорода. [c.121]

    Галопроизводные алканов — важнейшие промежуточные продукты в органическом синтезе. В молекулах галогеналканов электронная [c.329]


    Содержащиеся в нефти насыщенные циклические углеводороды цикланы, или нефтены, общей формулы СпНгп, состоят из циклопентана С5Н10, циклогексана СбН12 и их гомологов. Цикланы являются наряду с алканами важнейшими компонентами низкокипящих фракций бакинской и некоторых других нефтей [128]. [c.206]

    Асфальтены, в отличие от смол, не растворимы в алканах, имеют высокую степень ароматичности, которая в совокупности с высокой молекулярной массой гетероциклических соединений приводит к значительному межмолекуляриому взаимодействию, способствующему образованию надмолекулярных структур. Наличие надмолекулярной структуры асфальтенов является одной из важнейших особенностей этих компонентов и, в целом, определяет сложности их аналитического исследования. Если смолы можно легко разделить на узкие фракции то для разделения асфальтенов нужны специальные растворители, обладающие различной полярностью, а также специальные приемы, включающие гидрирование, термодеструкцию, озонолиз, а также набор современных методов (ИК- и УФ-спектроскопия, ЯМР-, ЭПР- и масс-спектрометрия, люминисцентный и рентгеноструктурный анализы) [19, 22, 23]. Например, экспериментами по гидрированию смол с М 600-800 и асфальтенов с М 1700 в мягких условиях [23] было показано, что из них могут быть получены углеводороды, по составу и свойствам приближающиеся к соответствующим углеводородам, вьвделенным из высокомолекулярной части нефти. Основное их отличие в более высокой цикличности, повышенном содержании серы и меньшем содержании атомов углерода с алифатическими связями. Это свидетельствует о наличии прямой генетической связи между высокомолекулярными углеводородами, гетероатомными соединениями, смолами, асфальтенами. [c.19]

    В отношении способности кристаллизоваться и температур плавления особое место среди различных углеводородов занимают углеводороды ряда алканов нормальной структуры СпНгп+г- Начиная с первого представителя этого ряда — метана, все углеводороды данной структуры образуют при застывании кристалличе-> скую твердую фазу. Эти углеводороды являются важной состав-р ной частью практически всех промышленных нефтей, а в парафинистых нефтях составляют основную массу их твердых кристаллических компонентов. При характеристике твердых углеводородов других рядов и структурных групп их температуры плавления целесообразно сравнивать с температурами плавления к-алканов равного молекулярного веса или с равным содержанием атомов углерода в молекуле. [c.41]

    Результаты работ Синфелта и сотр. [17—20] по исследованию влияния парциальных давлений этана и водорода на скорость гидрогенолиза достаточно хорошо согласуются с механизмом, предложенным Тейлором [2, 13]. При этом порядок реакции по углеводороду близок к единице и отрицателен по водороду. Полученные данные хорошо согласуются также с представлениями об интенсивном дегидрировании на поверхности, предшествующем медленной стадии разрыва С—С-св>1зей. Синфелтом [20] на примере гидрогенолиза алканов рассмотрена связь активности и селективности металлических катализаторов с положением металла в периодической системе элементов, а также некоторые вопросы определения дисперсности металлов, особенности их каталитического действия, катализ на биметаллических системах и сплавах. Отмечено, что тип активных центров на поверхности металла определяется его дисперсностью. Доля координационно ненасыщенных атомов, расположенных на ребрах и вершинах кристаллов, резко увеличивается с уменьшением размеров кристаллитов и почти равна единице в случае кластеров, включающих несколько атомов. Этим обусловлено влияние дисперсности металла на удельную активность металлических катализаторов, что проявляется для большой группы структурно-чувствительных реакций. При катализе на сплавах важное значение приобретает возможное различие составов на поверхности и в объемах сплавов. Введение в систему даже малого количества более летучего компонента часто приводит к значительному обогащению им поверхности сплава. [c.91]

    В настоящее время в нефтепереработке существует целый ряд технологических каталитических процессов, в ходе которых в той или иной степени осуществляются различные превращения углеводородов. В качестве примера можно привести каталитический риформинг один из важнейших современных нефтехимических процессов, с помощью которого осуществляется глубокое изменение углеводородного состава бензинов. Каталитический риформинг позволяет получать в широких масштабах ароматические углеводороды — бензол, толуол, ксилолы. Они образуются в этом процессе путем нескольких реакций дегидрирования шестичленных нафтенов, Сз-дегидроциклизации алканов в алкилциклопентаны с последующей дегидроизомеризацией и, наконец, Се-де-гидроциклизации алканов. Этот и другие подобные производственные процессы возникли в результате чисто технологических разработок. Однако сейчас пути технологических и фундаментальных исследований постепенно сближаются. Эта тенденция дает определенный положительный эффект. Так, исследование механизма и кинетических закономерностей каталитических реакций углеводородов, а также использование опыта, накопленного при эксплуатации нескольких поколений моно- и биметаллических катализаторов риформинга, позволило создать ряд высокоэффективных и экономичных разновидностей процесса риформинга. [c.257]

    Обычно ароматические углеводороды получаются дегидрированием циклогексанов циклопентаны подвергаются изомеризации в циклогексапы и затем дегидрированию в ароматику изоалканы с большим количеством боковых цепей получаются в результате гидрокрекинга и изомеризации из нормальных алканов и изоалканов с одной или двумя боковыми цепями. Ароматические углеводороды также получаются в результате дегидроциклизации алканов. Эта реакция преобладает в жестких условиях процесса она очень важна при риформировании алканового сырья. [c.54]

    Стандартный метод [345], используемый в США, применим к маслам нефтяного происхождения для использования в кабелях, трансформаторах, автоматических масляных выключателях и т. д. Масла с высокой степенью чистоты показывают то же самое значение при стандартных условиях от 30 до 35 кв. Для алканов [346] было показано, что диэлектрическая сила линейно увеличивается с плотностью жидкости. Для и-гептана было найдено соотношение между диэлектрической силой и изменением плотности с телтера-турой. Существует много причин, по которой диэлектрическая сила изолятора ослабевает самые важные, по-видимому, связаны с присутствием определенных примесей [347], полученных в результате коррозии, окисления, термического или электрического крекинга или газообразного разряда попадание воды является общеизвестной причиной аварий. [c.206]

    Алкены найдеиы в сырой нефти и их можно получить из нее при перегонке. Кроме того, они получаются при крекинге нефти (разд. В.7) и их выделяют в качестве побочного продукта на нефтеперерабатывающих заводах. С промышленной точки зрения наиболее важные алкены - этилен и пропен (пропилен). Ароматические соединения, такие, как бензол и стирол, также получаются при каталитическом крекинге, а также реформинге — подобном крекингу процессе, в результате которого из неразветвленных алканов нефти получаются ароматические соединения. [c.219]

    Влияние размеров молекул на температуры плавления и кипения хорошо иллюстрируется на примере алканов с линейными молекулами общей формулы С Н2 +2, соответствующие данные для которых приведены на рис. 14-15 (для и от 1 до 20). Возрастание температур плавления и кипения при увеличении молекулярных размеров и массы частично объясняется тем, что для возбуждения движения тяжелых молекул необходима большая энергия. Однако другим важным фактором является то, что, например, молекула эйкозана С20Н42 имеет большую поверхность, чем молекула метана, и, следовательно, повышенное вандерваальсово притяжение. Влияние массы молекул сказывается на температурах плавления и кипения приблизительно одинаково. Однако площадь молекулярной поверхности [c.617]

    Важнейшее отличие кремния от углерода заключается в том, что Si имеет большее число внутренних электронов. Следствием этого является неспособность двух атомов кремния сблизиться достаточно сильно, чтобы между ними могла возникнуть двойная или тройная связь. Кремний образует силаны, аналогичные алканам, которые будут обсуждаться в разд. 21-3. Силаны имеют общую формулу Si H2 + 2- Наиболее длинную цепь из всех полученных до сих пор силанов имеет гексасилан (рис. 21-7). Подобно азотоводородам, силаны обладают опасно высокой реакционной способностью. Простейшие силаны устойчивы в вакууме, но все они самопроизвольно возгорают на воздухе и все со взрывом реагируют с галогенами. Силаны обладают сильными восстановительными свойствами. [c.278]

    Возможно также образование углеводородов с тройными связями, как, например, в этине, или ацетилене (НС=СН), но эти соединения не столь важны и широко распространены, как углеводороды с двойными связями. По аналогии с алканами углеводороды с двойными связями называются а ткенами, а углеводороды с тройными связями-алкинами (номенклатура Международного союза теоретической и прикладной химии -ИЮПАК). Тривиальные названия этана, этена и этина-этан, этилен и ацетилен соответственно. [c.288]

    В этой главе мы прошли долгий путь рассуждений, начав с рассмотрения сравнительной химии элементов В, С, N и Si. Углерод несомненно играет особую роль, обусловленную наличием у его атомов одинакового числа валентных электронов и орбиталей, отсутствием отталкивающих неподеленных электронных пар и способностью образовывать двойные и тройные связи. Простые алканы, или соединения углерода и водорода, с простыми связями иллюстрируют многообразие соединений, которые может образовывать углерод благодаря своей способности создавать длинные устойчивые цепи. Алкилгалогениды - это своеобразный мостик от алканов с их сравнительно низкой реакционной способностью к изобилию производных углеродов спиртам, простым эфирам, альдегидам, кетоиам, сложным эфирам, кислотам, аминам, аминокислотам и соединениям других типов, которые не обсуждались в данной главе. Способность углерода образовывать двойные и тройные связи была проиллюстрирована на примере алкенов и алкинов, она играет чрезвычайно важную роль при образовании сопряженных и ароматических молекул. [c.337]

    Показательно, что структу]рно идентичные изопреноидные углеводороды представляют собой одну дз важнейших групп нефтяных алканов [607]. Так же, как и среди изонреноидных кислот, в наибольших количествах из изопренанов нефти обычно содержат углеводороды jg (пристан) и jo (фитан) [9]. Концентрации пристановой и фитановой кислот, по данным [623], меняются в разных объектах параллельно концентрациям пристана и фитана. [c.97]

    Число работ, посвященных исследованию этого вопроса, весьма значительно. Критический обзор наиболее важных из работ, посвященных алканам, дан в статье Скиннера и Пильчера Для данной книги интерес представляет главным образом возможность рассчитывать по энергиям связей теплоты образования новых соединений, хотя бы на основе обобщений эмпирического характера. Применение же этих методов для суждения о структурных и энергетических параметрах молекул здесь рассматриваться не будет. Достаточно сослаться на работы Фаянса , Полинга Сыркина и др. [c.257]

    Иной характер распределения имеют компаунды на основе дистиллятов, соотношение алканов и аренов в которых превышает единицу. Принципиально важным для выявления механизма компаундирования является то, что последние НДС имеют на порядок меньшее содержание высокомолекулярных парафинов, то есть не обладают кристаллизационной структурой при комнатных температурах. Межмолекулярное взаимодействие между ассоцйатами низкомолекулярных алканов невелико [25], поэтому их структура менее устойчива к воздействию внешних факторов [2, 25-27]. [c.9]

    Под термином "масла принято подразумевать высокомолекулярные углеводороды с молекулярной массой 300 - 500 смешанного (гибридного) строения. В их состав входят парафиновые, циклопарафиновые и ароматические структуры в разнообразных комбинациях. Методом хроматографического разделения из масляных фракций выделяют парафино-нафтеновые и ароматические углеводороды, в том числе легкие (моноциклнческие), средние (бициклические) и полициклические (три и > циклические). Наиболее важное значение имеют смолы и асфальтены, которые часто называют коксообразующими компонентами, поскольку они создают сложные технологические проблемы при переработке ТНО. Смолы - плоскоконденсированные системы, содержащие 5-6 колец ароматического, нафтенового и гетероциклического строения, соединенных посредством алифатических структур. Установлено, что асфальтены в отличие от смол образуют пространственные в большей степени конденсированные кристаллоподобные структуры. Наиболее существенные отличия смол и асфальтенов проявляются по таким основным признакам, как растворимость в низкомолекулярных алканах, соотношение С Н, молекулярная масса, концентрация парамагнитных центров и степень ароматичности  [c.56]

    Предельные алифатические углеводороды. По систематической номенклатуре— алканы, старое тривиальное название — парафины. Состав соответствует общей формуле С, Н2,1+ . Родоначальником ряда алканов является метан СН<. Названия и важнейшие сво11-ства других представителей ряда алканов приведены в табл. 1П.4 Приложения. Об изомерии алканов см. 5. Алканы предстл -ляют собой бесцветные вещества — нри содержании до четырех атомов углерода при обычных условиях — газы, от пяти до пятнадцати атомов углерода—жидкости, а свы не шестнадцати атомов углерода — твердые тела. Изомеры с нормальной цепью киият нри более высокой температуре, чем с разветвленной цепью. [c.144]

    Углеводороды являются важнейшей составной частью любой нефти. И хотя содержание их в различных нефтях далеко не одинаково от 30—40 до 100% (в газовых конденсатах), все же в среднем до 70 мас.% всех нефтей составляют углеводороды. История развития такой научной дисциплины, как химия нефти,— это фактически история развития химии углеводородов. Начало исследований по химии нефти было положено известным немецким химиком К. Шор-леммером, обнаружившим в нефтях Пенсильвании (США) и-бутан, к-пентан и к-гексан. Успех работы во многом был связан с тем, что ранее Шорлеммер выполнял работы по синтезу нормальных алканов в лаборатории своего учителя А. Вюрца. Спустя 20—25 лет русский химик В. В. Марковников, исследуя отечественные (бакинские) нефти, пришел к выводу о том, что основными углеводородами в этих нефтях являются уже не алифатические, а циклические — насыщенные углеводороды ряда циклоиентана и циклогексана, названные им нафтенами. И здесь Марковникову помогли его более ранние работы по синтезу и исследованию свойств циклоалканов, выполненные в лаборатории А. М. Бутлерова. Таким образом, еще в конце прошлого столетия были заложены методологические осно вы химии нефти, т. е. синтез модельных углеводородов с последующим нахождением их в нефтях. Тогда же были сформулированы и первые представления о химической классификации нефтей, предполагающей деление нефтей на два основных класса парафиновый и нафтеновый. [c.7]

    Успехи органической геохимии и геохимии нефти создали предпосылки для разработки новых схем классификации (химической типизации) нефтей, основанных на применении результатов анализа нефтей на молекулярном уровне. При этом наиболее удовлетворительные результаты могли быть получены при оптимальном сочетании индивидуальных и структурно-групповых методов анализа. Одной из таких классификаций является химическая типизация нефтей, разработанная в лаборатории геохимии нефти (ИГиРГИ) и основанная на сочетании данных ГЖХ по распределению важнейших реликтовых алканов и масс-спектрометрических данных по количественному распределению насыщенных молекул в соответствии с числом циклов в молекуле [8]. Предлагаемая далее схема типизации является дальнейшей разработкой схемы типизации нефтей, предложенной нами в монографии Химия алканов [9]. [c.11]

    Весьма важным является тот факт, что распределение нефтей различных химических типов имеет строгие температурные границы, что явно свидетельствует о важном значении температурных условий в геохимическом превращении нефтей (см. далее главу 6). Нефти типов А , и Б располагаются обычно в области средних температур (40—70° С), в то время как для подавляющей массы нефтей типа А характерны пластовые температуры выше 00° С. Имеются, конечно, и отклонения от этих общих закономерностей изменения тппов нефтей с изменением глубины, однако количество таких исключений невелико и ограничивается отдельными районами. Так, найдены единичные нефти с низким содержанием алканов на глубинах свыше 1500 м и, наоборот, нефти с высоким содержанием алканов, залегающие сравнительно неглубоко. Например, нефть месторождения Курсай в Прикаснии, находящаяся на глубине 4410 м, имеет химический тип Б в Сивинском месторождении (Вол-го-Урал) на глубине 2806 м найдена нефть типа Б . На Тиховском месторождении на глубинах 800 м — нефть типа А , а на месторождении Дуванный-море (Южный Каспий) на глубине 3900 м — нефть типа А . Как уже отмечалось, влияние геологического возраста вмещающих пород на углеводородный состав нефти проявляется менее отчетливо, что, впрочем, уже неоднократно отмечалось в литературе [5, 16, 171. [c.26]

    Характерно, что в каждом исследованном регионе или на отдельных участках некоторых регионов нефти различного химического типа имеют достаточно близкие соотношения концентраций моно-, би-, три-, тетра- и пентацикланов. Более того, было обнаружено, что нефти близко расположенных месторождений с одинаковым соотношением пристан/фитан имеют и идентичные нафтеновые паспорта. Отсюда следует, что относительное распределение цикланов с различным числом циклов в молекуле (для генетически связанных нефтей) не зависит от суммарного содержания нафтенов. Установленная особенность имеет важное значение для выявления прпчпн и закономерностей образования нефтей различных химических типов. Нафтеновые углеводороды по сравнению с алканами характеризуются большим постоянством состава и сохраняют генетические признаки, обусловленные особенностями исходного органического вещества и условиями его преобразования в нефтяные углеводороды. [c.30]

    Приведены пики важнейших алканов и некоторых циклоалканов. Цифры показывают положение метильных заместителей. 2,5-М9 2,5-ди-метилнонан, 2,6,10-М12 2,6,10-триметилдодекан и т. д. [c.51]

    Какие же структуры разветвленных алканов можно отнести к углеводородам изопреноидного типа строения Строго говоря, терминология здесь несколько произвольна, так как изопреноидные алканы нефтей не обязательно состоят из, отдельных изопреновых единиц. В этих углеводородах, как в типичных реликтах, проявляется их гомологичность и, конечно, неравновесность . Критерием для отнесения алканов к изопреноидным углеводородам служит правильное чередование метильных групп. Гомологичность является, как и всюду, следствием процессов деструкции более высокомолекулярных источников. Однако в отличие от реликтовых не-разветвленных алканов в изонреноидах всегда можно обнаружить провалы в концентрациях тех или иных гомологов. Эти провалы (отсутствие или малые относительные концентрации) некоторых гомологов являются следствием невозможности разрыва цепи (образования гомолога) в том месте, где находятся замещающие ме-тильные радикалы. Эта особенность чрезвычайно важна для определения источников образования тех или иных изопреноидных алканов. Именно отсутствие некоторых гомологов дает иногда наиболее ценную информацию. [c.60]

    По содержанию и относительному распределению изопреноидных алканов нефти категорий А и Б несколько различны. В нефтях типа А обычно преобладают пристан или фитан (соотношение этих углеводородов — важный генетический показатель, зависяш ий от ряда причин, которые будут рассмотрены ниже) присутствуют также в заметных концентрациях и другие изопреноиды состава Сд—С25. На рис. 21 приведены типичные кривые распределения изопреноидов в нефтях типа А (в одной из них преобладает пристан, в другой — фитан). Хорошо заметны также провалы в концентрациях псевдорегулярных структур С1, и С17. Это так называемый классический тин распределения изопреноидных алканов в нефтях. Данные об относйтёльных концентрациях изопреноидных алканов в нефтях категории А приведены также в табл. 19. [c.62]

    По сравнению с алканами относительное распределение цикланов более однородное, хотя и здесь имеются явно выраженные отличия, например в концентрациях гел1-замещенных углеводородов. Весьма важным представляется нам вопрос о соотношениях шести- [c.78]


Смотреть страницы где упоминается термин Алканы важнейшие: [c.412]    [c.41]    [c.222]    [c.254]    [c.313]    [c.135]    [c.8]    [c.10]    [c.66]   
Органическая химия (1979) -- [ c.203 , c.204 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы



© 2025 chem21.info Реклама на сайте