Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия общая определение

    Пассивность никеля при полном погружении в морскую воду может поддерживаться в быстром потоке. Средняя скорость коррозии никеля в условиях погружения может достигать 130 мкм/год [4]. В неподвижной воде никель подвержен биологическому обрастанию и под образовавшимся слоем, так же как и в щелях, может происходить необратимая потеря пассивности. При 16-летней экспозиции в Тихом океане средняя скорость коррозии никеля, определенная по потерям массы, была равна 30,7 мкм/год (см. табл. 28) [40]. Однако уже после первого года экспозиции наблюдалась перфорация пластин толщиной 6,35 мм в результате локального питтинга. На больших глубинах средние скорости коррозии никеля составляли от <2,5 до 46 мкм/год [43]. В щелевых условиях наблюдалась перфорация образцов всего за 197 дней. При этом общая поверхностная коррозия была очень мала, а все коррозионные потери приходились на питтинг. Наблюдалась [c.81]


    Представлены средние скорости коррозии (общая глубина коррозии, рассчитанная по потерям массы, деленная на 16 лет). В скобках приведены скоро-сти коррозии, определенные графически (по наклону касательной к кривой коррозионных потерь в точке, соответствующей 1б-летней экспозиции). [c.103]

    Следует сказать, что данные по оценке коррозии путем определения прироста сопротивления достаточно хорошо согласуются с наблюдениями за удалением из экспериментального участка продуктов коррозии, концентрация которых при проведении опытов определялась через каждые 10 мин (см. рис. 1). Кривые, характеризующие нарастание электросопротивления и уменьшение концентрации железа в коррозионной среде, одновременно становятся почти горизонтальными, что указывает на хорошую сходимость результатов оценки общей коррозии этими методами. [c.141]

    Используемый в настоящей книге термин ингибиторы коррозии относится к химическим соединениям, добавляемым к жидкой фазе для замедления коррозии. В то время как механизм ингибирования коррозии в определенных системах при помощи конкретных химических соединений будет обсуждаться в соответствующих главах, некоторые общие термины целесообразно рассмотреть в этом разделе. [c.22]

    ВИД узких вытянутых капель в случае сульфата калия или широкой дугообразной площади в случае хлорида натрия. Начальные точки на плоскости представляют собой иногда дефекты прокатки, но, по всей вероятности, они часто являются также следствием абразивной обработки. Можно, проведя на металле царапины перед самым погружением, вызвать начало коррозии на определенном желаемом уровне. Следует заметить, однако, что в общем случае коррозия начинается только на определенных точках царапин и распространяется вниз, как это указано на фиг. 34, С. [c.236]

    Определения уменьшения толщины на отдельных участках. В случае локализованной коррозии общая коррозия представляет значительно меньший интерес, чем глубина коррозионных язв. Были разработаны простые приборы, позволяющие, измерять расстояния между дном язвы и поверхностью металла. Одним из таких приборов является микрометр, снабженный тонкой иглой, присоединенный к цепи электрического тока. Когда конец иглы касается дна язвы, происходит отклонение стрелки амперметра [52]. [c.726]

    Наиболее просто важный для многих практических случаев коррозии вопрос о характере катодного процесса устанавливается графически i путем на основании анализа известной поляризационной кривой для катодного процесса р данных условиях коррозии и определения величины общего потенциала корродирующей системы (У . [c.182]


    Между полярными свойствами и защитной эффективностью различных маслорастворимых ПАВ имеется определенная зависимость. Для одного и того же класса химических соединений полярность ПАВ тем больше, чем ниже их молекулярная масса. Одновременно с этим при удлинении углеводородного радикала улучшается растворимость маслорастворимых ПАВ в нефтепродуктах и, согласно правилу П. А. Ребиндера, уменьшается их поверхностная активность на границе раздела нефтепродукт — вода. Таким образом, ингибиторы коррозии нефтепродуктов нужно выбирать из соединений, обладающих наибольшей полярностью в малополярных углеводородных средах и проявляющих наивысшую поверхностную активность в углеводородной среде на границе с водой. В общей шкале ПАВ, предложенной П. А. Ребиндером, указанные ингибиторы коррозии занимают место между водо- и маслорастворимыми ПАВ. [c.304]

    Кинетику коррозии металлов с водородной или кислородной деполяризацией можно исследовать непрерывно при помощи объемных показателей, применяя для этого объемные методы. На рис. 335 приведен общий вид установки для определения скорости коррозии металлов с водородной деполяризацией по объему выделяющегося водорода. Заполнение бюреток в начале опыта и при их периодической перезарядке в процессе испытания осуществляется засасыванием коррозионного раствора с помощью водоструйного насоса. [c.448]

    Существует несколько вариантов данного способа, но в основу их положен общий принцип, заключающийся в том, что медную пластинку определенных размеров погружают в испытуемый продукт, нагретый до определенной температуры. По прошествии определенного времени пластинку вынимают и по изменению ее окраски судят о коррозионных свойствах продукта. Иногда вынутую пластинку обрабатывают соответствующими реактивами, чтобы убедиться в том, что коррозия вызнана сернистыми соединениями. [c.385]

    Коррозионная усталость проявляется в разнообразных водных средах, в отличие от коррозионного растрескивания, вызываемого определенными, специфичными для каждого металла ионами. Под действием коррозионной усталости происходит разрушение стали в пресной и морской воде, в конденсатах продуктов сгорания, в других распространенных химических средах при этом чем выше скорость общей коррозии, тем быстрее металл разрушается вследствие коррозионной усталости. [c.157]

    Скорость коррозии может быть выражена в различных единицах. Если опасны общие потери металла, ее оценивают по массовому показателю, т. е, по потере металла, отнесенной к единице поверхности и к единице времени, например, в г/(см -ч) или в г/(м гoд). Если опасность представляет сквозная коррозия, ее скорость оценивают по глубинному показателю, т. е. по уменьшению толщины металла вследствие коррозии, выраженному в линейных единицах и отнесенному к единице времени, например в мм/год. При коррозии, связанной с разрушением кристаллической решетки металла, учитывают механический показатель, т. е. относительное изменение прочности металла за определенный период, например уменьшение временного сопротивления на разрыв, в кг/(см -год). [c.14]

    В качестве коррозионных сред использовали растворы хлоридов натрия и сульфатов натрия, соляной и серной кислоты, моноэтаноламина и углекислого газа, сероводорода и др. По истечении определенного времени испытаний t = t, напряжения становятся равными пределу текучести металла ат (огт 240 МПа). Неучет влияния напряжений на скорость коррозии заметно завышает это время (t o > t,). С увеличением начального напряжения Оо время до наступления текучести металла уменьшается. При нагружении образцов постоянным смещением напряжения в процессе испытания снижаются. Это указывает на целесообразность оценки стойкости к коррозионному растрескиванию металла путем испытаний образцов постоянным усилием, особенно в средах, вызывающих заметную общую коррозию. [c.108]

    Гутман Э.М., Шаталов А.Т., Зайнуллин P. ., Зарипов P.A. Определение толщины стенок газопромысловых труб с учетом изменения скорости общей коррозии и напряженного состояния металла//Коррозия и защита трубопроводов, скважин, газопромыслового и газоперерабатывающего оборудования.-1979.- № 2.- с.15-19. [c.400]

    Зайнуллин P. . Определение долговечности труб с трещиноподобными дефектами в средах, вызывающих общую коррозию //Сварочное производство.-1986.-№ 3.-с.20-22. [c.408]

    При расчетах скорости коррозии используется построение катодной и анодной поляризационных кривых для образца изучаемого металла. Общую скорость коррозии выражают плотностью тока, определенной делением силы тока на полную по- [c.336]


    Массовые методы определения потери металла затруднены процессом удаления продуктов коррозии, поэтому чаще определяют общий привес образца и затем пересчетом определяют количество металла, ушедшего на образование соединений. [c.518]

    В общем случае скорость коррозии зависит не только от катодной и анодной поляризаций, но и от омического сопротивления коррозионной среды. Поэтому для каждого данного коррозионного процесса характерно вполне определенное соотношение между величинами С ,. Сд и С . [c.253]

    Влияние ингибиторов коррозии на органолептические свойства и санитарный режим водоемов. Возможность попадания химических реагентов в нефтегазодобывающих районах в подземные и поверхностные водоисточники обусловливает необходимость исследований влияния их на органолептические свойства воды и общий санитарный режим водоема. Влияние на органолептические свойства воды ингибиторов коррозии изучено по следующим показателям запаху, привкусу, ценообразованию, окраске. Количественную оценку интенсивности запаха, сообщаемого воде ингибиторами коррозии, произвели по пятибалльной системе бригадой одораторов, состоящей из 5-6 человек. Опыты проводили в помещении, где отсутствовали посторонние запахи при температуре воды около 20°С. В колбах с притертыми пробками путем разбавления дехлорированной водой различных количеств исходного испытуемого раствора приготовляли ряд проб, содержащих различные концентрации изучаемых веществ. Определение запаха в пробах начинали со слабых концентраций и осуществляли втягиванием носом воздуха из колбы при быстром открывании ее. Одораторы отмечали наличие или отсутствие запаха в каждой пробе, характер его и производили количественную оценку интенсивности запаха по пятибалльной системе. Для каждого вещества были поставлены по три серии опытов с 3—4 [c.52]

    В атмосферных условиях и в условиях повышения влажности ненагру-женные детали из мартенситных нержавеющих сталей не подвергаются заметной коррозии. Однако исследования коррозионной стойкости при повышенных температурах (образцы нагревали до 250 или 350°С, окунали в 3 %-ный раствор МаС1 и переносили во влажную камеру, где при 50°С выдерживали 22 ч. Затем цикл повторялся. База испытаний составляла 30 суточных циклов) с периодическим смачиванием 3 %-ным раствором МаС1 показали, что эти стали подвержены точечной коррозии. Общим иеж-ду исследованием выносливости сталей при повышенных температурах и периодическом их смачивании коррозионной средой, определением коррозионной стойкости без приложения к образцам внешних нагрузок при повышенных температурах и периодическом смачивании является то, что в обоих случаях металл поверхностных слоев образцов подвержен усталости вследствие резко циклического изменения температуры с большим градиентом. Определение коррозионной стойкости сталей при периодическом смачивании коррозионной средой может дать качественную картину влияния химического состава и структуры стали на ее коррозионно-механическую стойкость при повышенных температурах. [c.109]

    Ускоренные атмосферные испытания. Лабораторные методы исследования атмосферной коррозии были разработаны раньше многих других лабораторных методов коррозионных испытаний и продолжают непрерывно совершенствоваться. Это можно объяснить, с одной стороны, тем, что в практике атмосферной коррозии подвергается около 80% металлических конструкций и доля коррозионных потерь при атмосферной коррозии превышает половину общих потерь [52], а с другой, тем, что механизм атмосферной коррозии является сложным и изучен далеко не полностью. Несмотря на кажущуюся простоту, воспроизведение в лаборатории условий атмосферной коррозии встречает определенные трудности, которые в значительной мере связаны с тем, что атмосферной стойкости вообще не существует, ибо одни и те же металлы в разных местах корродируют по-разному, так, например, коррозионная стойкость железа может изменяться в зависимости от атмосферы примерно в сто раз [3]. Большое значение имеет влажность воздуха, количество осадков, характер и количество загрязнений, температура и другие факторы. В зависимости от соотношения этих факторов естественную атмосферу делят на сельскую, городскую, индустриальную, сельскую морскую, городскую морскую, морскую, тропическую и тропическую морскую. Подробная характеристика этих типов атмосфер приводится в работе [5]. В соответствии с механизмом процесса атмосферная коррозия классифицируется [52, 53] на мокрую (относительная влажность воздуха около 100%), влажную (относительная влажность ниже 10%) и сухую (полное отсутствие влаги на поверхности металла). В двух первых случаях коррозия шротекает в соответствии с законами электрохимической, а в третьем—в соответствии с законами химической кинетики. Часто их трудно разграничить. В этой связи одним из первых условий воспроизведения в лаборатории атмосферной коррозии является создание на поверхности металла тонкой пленки влаги, имеющей постоянную или переменную толщину. Последнее, по-видимому, более точно отвечает практике. Такие условия в лаборатории достигаются с помощью влажных камер, приборов переменного погружения или солевых камер. Наиболее простая влажная камера — обычный эксикатор, на дно которого налита вода (рис. 13). [c.64]

    Влияние медного п о д с л о я. В какой мере медь может замещать никель в декоративных покрытиях — пока еще окончательно не выяснено. Известно, что даже относительно толстое хромовое покрытие, нанесенное непосредственно на медь без промежуточного слоя никеля, имеет сравнительно небольшую стойкость против атмосферной коррозии. Также определенно установлено [2], что комбинированные. медноникелевые покрытия на стали или цинковых сплавах обладают худшими защитными свойствами, чем никелевые покрытия такой же толщины. Но влияние многослойности зависит от общей толщины покрытия и от характера атмосферы. [c.887]

    Если коррозия распространяется на всю поверхность металла, то говорят об общей (сплошной) коррозии. Общая коррозия может быть равномерной или неравномерной. Если коррозионное разрушение преимущественно локализуется на некоторых определенных участках, а остальная часть поверхности остается почти не затронутой коррозией, то такой вид разрушения навы-вают местной коррозией. [c.16]

    Наибольший интерес для практических случаев коррозии представляет определение общих потенциалов бинарных систем, замкнутых как во внешней, так и во внутренней цепи на очень малое сопрогивлеиие, т. е. так называемых короткозамкнутых и, следовательно, сильно заполяризованных систем. [c.194]

    Задачу определения скорости коррозии решают проще с помощью кинетической теории коррозии. В этом случае катодную и анодную поляризационные кривые снимают непосредственно на образце, коррозию которого изучают. Общую скорость коррозии выражают силой тока, отнесенной к единице всей поверхности металла, без разделения ее на катодные и анодные участки. При стационарном потенциале скорость коррозии (вырал<аемая силой тока анодного растворения металла), отнесенная ко всей его поверхности (т. е. включая и катодные зоны), должна быть равна скорости катодного процесса, например скорости выделения водорода. Последняя в случае снятия катодной поляризационной кривой будет равна силе тока, деленной на всю поверхность образца, включая анодные участки. Таким образом,если потенциал стационарен, то плотности тока для анодного и катодного ироцессов при указанном способе снятия поляризационных кривых должны быть оди-ипкопымп. При этом предполагают, тo омическими потерями можно пренебречь. [c.499]

    Фактические катодная и анодная плотности тока могут быть различными, если поверхность корродирующего металла разделена на участки, на которых возможно протекание либо только катодной, либо только анодной реакции. Это, однако, не имеет значения при определении общей скорости коррозии, и, следовательно, можно рассматривать поверхность корродирующего металла как эквипотенциальную . Характер совмещенных поляризационных кривых, получаемых по этому методу, показан на рис. 24.6 (сплошные линии). Точка пересечения анодной и катодной поляризационных кривых дает на оси абсцисс скорость коррозии, а на оси ординат — стационарный потенциал. Так как вблизи стационарного потенциала поляризационные 1 данные перестают укладываться в полулогарифмическую зависимость, то скорость коррозии находят обычно по точке пересечения экстраполированных прямоли-не/шых участков поляризационных кривых (пунктирные линии на рис. 24.6). Сопоставление величин скорости коррозии, рассчитанных на основании поляризационных измерений, с полученными непосредсвеино из убыли массы (или в кислых средах по объему выделившегося водорода) для свинца, никеля и железа показало, что оба ряда данных совпадают в пределах ошибок опыта. Это позволило широко использовать метод поляризационных измерений при количественном изучении коррозионных процессов. [c.500]

    А. Н. Фрумкиным и В. Г. Левичем было теоретически доказано, что поверхность корродирующего металла остается приблизительно эквипотенциальной и при наличии неоднородностей, если только размеры включений малы, а электропроводность электролита достаточно велика, что подтверждено измерениями Г. В. Акимова и А. И. Голубева (рис. 129). Как видно из рис. 129, наблюдаются заметные изменения потенциала при переходе от одной сбставляющей сплава (анод—цинк, катод — Ре2п,) к другой, но абсолютная величина их невелика. В тех случаях, когда нас интересует только общая величина коррозии, а не распределение ее по поверхности (например, при определении величины само- [c.185]

    Второй критерий заключается в том, что теплообменник должен удовлетворять условиям, общим для всего оборудования. Сюда входят прежде всего механические напряжения, связанные не только с нормальной работой, но и с погрузкой, сборкой, запуском, остановкой, а также рядом определенных операций, обусловленных нарушением производственного процесса и возможными аварийными ситуациями. Суитествуют внешние механические напряжения, обусловленные наличием трубок в теплообменнике и возникающие как в стационарном состоянии, так и в переходных режимах при изменении температуры теплоносителей. В теплообменнике, конечно, не должна возникать коррозия от воздействия теплоносителей и окружающей среды. Этого можно добиться в основном выбором материала, а также конструкции. Отложения иа поверхиости теплообмена должны быть по возможности минимальными, но средства копструктора в этом случае обычно ограничены применением возможно более высоких скоростей допустимых по перепаду давлений и ограничениями по эрозии и вибрации, а также гарантированием того, что загрязненная отложениями поверхность будет доступна для очистки. [c.9]

    Об отсутствии компонентов или примесей в смазке, могущих вызвать коррозию, судят по описанным выше способам определения корродирующего действия смазок. О физической и химической стабильностях защитных смазок также судят по общим для копсистевЕТНых смазок методам определения этих свойств, описанным в 4. Специальный способ оценки химической стабильности защитных смазок описан там же. [c.723]

    Такой характер кривых общей коррозии, степени коррозии, кислотности и содержания нерекисей сохраняется, по крайней мере качественно, для самых различных масел и металлов, хотя для широкого диапазона масел концентрация перекисей и абсолютная скорость коррозии не находятся в определенных универсальных взаимоотношениях. Это и неудивительно, так как очевидно, что активность перекисей в различных маслах неодинакова. [c.323]

    Предложена математическая модель механохимической повреждаемости сварных соединений с учетом контактных эффектов совместной деформации материалов с разными прочностными свойствами. Получены функциональнь(е зависимости долговечности сварных соединений от относительргых размеров и свойств материала прослоек, уровня начальной напряженности и коррозионной активности рабочей среды. Установлено, что с уменьшением относительной толщины мягкой прослойки долговечность сварных соединений возрастает, как при реализации общей, так и локализованной коррозии. Определены критические параметры механохимической неоднородности, обеспечивающие работоспособность сварных конструктивных элементов. При работе сварных соединений в условиях МХПМ для обеспечения равной коррозионно-механической прочности, кроме геометрических, необходимо обеспечить определенные соотношения механохимических характеристик участков с разным физико-химическим состоянием. [c.279]

    Происходят по механизму вязкого или хрупкого разрушения. Заметим, что в кислых средах, вызывающих общую коррозию, часто отмечается заметное снижение относительного сужения, хотя равномерное удлинение может быть таким же, как и при испытаниях на воздухе. Важно подчеркнуть, что только лишь в условиях общей коррозии может реализоваться вязкое разрушение бездефектного металла оборудования при нормальных режимах эксплуатации. Это можно объяснить тем, что несмотря на постоянство действующей на объект нагрузки, из-за уменьшения рабочего сечения при коррозии напряжения и деформации возрастают, и в определенный момент времени возможно наступление текучести металла, а затем потеря устойчивости пластических деформаций (шейкообразова-ние) по аналогичному механизму при растяжении образца монотонно возрастающей нагрузкой (рис. 2.7). В условиях локализованной (язвенной, точечной) коррозии коррозионные поражения инициируются в областях с выраженной механохимической неоднородностью свойств. При этом окончательное разрушение происходит в результате сдвига или отрыва (рис. 2.6). Часто имеет место сквозное коррозионное поражение в виде язв без участков долома. Коррозионное растрескивание возможно даже при отсутствии макроскопических дефектов или концентраторов напряжений, например, в средах, содержащих влажный сероводород. Разрушение при коррозионном растрескивании, как правило, хрупкое. В сварных соединениях в большинстве случаев коррозионное растрескивание инициируется в местах перехода от металла шва к основному металлу (рис. 2.6,г). Особенностью разрушений при кор-розионно-механическом воздействии является наличие на из гомах продуктов коррозии, большого количества коррозионных поражений, ветвление трещин и др. [c.71]

    Преобразователи для контроля анизотропии механических и электрофизических свойств металлов. Одной из важнейших характеристик современных металлов и сплавов, во многом определяющей их механические и физические свойства, является степень совершенства кристаллографической текстуры, под которой понимается преимущественная пространственная ориентация зерен в полюфисталле. Текстура, обусловливая анизотропию свойств, обеспечивает избирательно в различных направлениях повышение пластичности, прочности, модуля упругости, магнитных свойств, стойкости металлических покрытий против коррозии и т. д. Создание в материалах совершенной кристаллографической текстуры является в ряде случаев одним из путей повышения их эксплуатационных характеристик. Для этого исследователям и специалистам-пракгикам необходимы методы и средства для получения сведений о типе и степени совершенства кристаллографической текстуры. Другой не менее важный аспект необходимости измерения анизотропии физических свойств металлов, обусловивший рождение на свет разнообразных конструкций датчржов, вызван необходимостью определения механических остаточных напряжений в деталях машин и механизмов, элементах строительных конструкций и т. д., выполненных из различных марок конструкционных сталей. Для этих целей используется явление магнитоупругого эффекта, под которым в общем случае принято понимать изменение магнитных свойств материала под воздействием механических напряжений. Измерив изменение величины или характера анизотропии магнитных свойств, можно, используя градуировочные кривые зависимости магнитных свойств исследуемого материала от величины механических напряжений, судить об их наличии в металле, а иногда и оценить их величину [50]. [c.134]

    Между двумя электродами из одного металла, погруженными в растворы, одинаковых солей различной концентрации, возникает э. д. с., зависящая только от разницы в концентрации солей (и температуры). Такого типа гальванические элементы называются концентрационными. Они используются при определениях растворимости солей, констант диссоциации кислот и оснований, констант нестойкости комплексных ионов и т. п. pH растворов определяется при помощи концентрационных элементов. Во второй части гл. 3 Вы познакомитесь с концентрационными элементами, научитесь вычислять pH и некоторые важные константы (ПР, Кнест), а также узнаете о направлении реакций коррозии и последовательности осаждения металлов при электролизе. (О вычислении pH и ПР см. в Программированном пособии по общей химии , стр. 252—303.) [c.91]

    Это общее выражение (Н. Д. Томашов) содержит много переменных величин, сложно зависящих от плотности тока (р , Ра) (см. гл. 9). Учитывая, что R вообще в электролитной среде невелико, из этого уравнения видно, что скорость коррозии в основном определяется поляризацией электродов. При определенных условиях (см. рис. 133) можно получить на аноде минимальный ток или плотность тока, если потенциал анода будет близок к т. е. к потенциалу полной пассивации (Н. Д. Томашов). Катодная поляризация, связанная с разрядкой ионов водорода, опасна тем, что водород в атомарном состоянии сорбируется металлом и ох-рупчивает его. [c.518]

    Определение влияния на силу тока коррозионного элемента соотношения площадей анодной и катодной зон представляет простой и удобный в экспериментальном отношеггии способ проверки электрохимического механизма коррозии металлов в растворах электролитов. Характер такого влияния может быть количественно выражен, исходя из основных положений кинетики электрохимических процессов, протекающих на аноде и катоде коррозионного элемента при его работе. Наобходимо, однако, сделать определенные допущения относительно конкретных условий работы коррозионного элемента. Если, в частности, полностью исключить диффузионные ограничения, то для металлов с небольшим током обмена по собственным ионам общее условие стационарности определяется формулой (9.6), в которое входит величина анодной зоны поверхности и катодной зоны 5 . Для последу ющего целесообразно принять за единицу сумму поверхности анодной и катодной зон, положив, что = Вд, 5 = 6 , и что 0 + 0 , = 1. При этом Вд и В соответственно будут иметь смысл безразмерной величины доли поверхности анода и катода. Примем во внимание, что [c.255]

    Может показаться, что на эквивалентную величину должна уменьшиться и скорость растворения металла. Однако в общем случае это неверно. Хотя при самопроизвольной электрохимической коррозии катодный и анодный процессы тесно связаны между собой и идут один за счет другого, но они все же в значительной мере самостоятельны. Скорость каждого из них является вполне определенной функцией потенциала и при принудительной поляризации извне обе эти функциональные зависимости должны проявляться. Уменьшение коррозии металла в п раз требует наложения на него катодного тока, в п раз превышающего ток самопроизвольного растворения. Поэтому в условиях активного растворения, когда катодный процесс лимитируется актом разряда (например, при водородной деполяризации), наложенный катодный ток, соизмеримый с током самопроиз- [c.477]


Смотреть страницы где упоминается термин Коррозия общая определение : [c.38]    [c.759]    [c.759]    [c.519]    [c.71]    [c.276]    [c.347]    [c.132]    [c.425]   
Коррозия и защита от коррозии (2002) -- [ c.12 ]

Коррозия и защита от коррозии Изд2 (2006) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия, определение



© 2025 chem21.info Реклама на сайте