Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная нитросоединений

    Класс II. Жидкости, состоящие из молекул, содержащих активные атомы водорода и атомы-доноры электронов (кислород, азот и фтор), т. е. спирты, кислоты, фенолы, первичные и вторичные амины, оксимы, нитросоединения с водородными атомами, нитрилы с атомами водорода в а-положении, аммиак, гидразин, фтористый водород, цианистый водород и т. д..  [c.203]


    Класс III. Жидкости, состоящие из молекул, содержащих атомы-доноры электронов без активных атомов водорода, т. е. эфиры, кетоны, альдегиды, сложные эфиры, третичные амины (включая пиридины), нитросоединения, нитрилы, в которых нет атомов водорода в а-положении и т. д. [c.203]

    Классическим примером молекул с донорно-акцепторной связью являются нитросоединения. Атом азота, имеющий в свободном состоянии три неспаренных электрона и одну неподеленную пару электронов, в нитросоединениях связан одной ковалентной связью с атомом углерода, двумя — с атомом кислорода и донорно-акцепторной связью еще с одним атомом кислорода, который имеет одну незаполненную 2р-орбиту и может выступать в качестве акцептора [c.13]

    Можно также предположить, что при алкилировании иона нитрита —О алкильный остаток частично присоединяется к неподеленной электронной паре азота, а частично — к такой же паре кислородного атома в первом случае образуется нитросоединение, во втором — эфир азотистой кислоты. [c.174]

    Ранее уже говорилось о том, что атом азота может образовать, самое большее, четыре связи, получая при этом положительный заряд. Аналогично атому углерода это соответствует хр -валентному состоянию, для которого возможны различные случаи гибридизации и образования двойных связей. Например, следует рассмотреть следующие формулы нитросоединений, образованные с помощью пары электронов — одновалентный радикал) [c.94]

    Объясните с точки зрения электронной теории, почему атомы водорода при а-углеродных атомах в нитросоединениях более подвижны, чем в альдегидах и кетонах. В каких реакциях проявляется это свойство нитросоединений  [c.92]

    Объясните (с учетом электронных эффектов), почему дипольные моменты у Аг—На имеют меньшие значения, чем у R—Hal, а у ароматических нитросоединений они больше, чем у алифатических нитросоединений. [c.150]

    Нет а-водородного атома и у ароматических нитросоединений. У них положительный заряд атома азота нитрогруппы оказывает влияние на ароматический радикал в целом частично оттягивая на себя подвижные я-электроны, нитрогруппа уменьшает электронную плотность в ароматическом ядре, особенно в орто- и пара-положениях. Поэтому нитрогруппа, связанная с ароматическим ядром, ведет себя как лета-ориентант и затрудняет дальнейшие реакции замещения. [c.222]

    Аналогичные результаты были получены в реакциях фотопереноса электрона для пигментов (хлорофиллы, феофитин и др.) в присутствии акцепторов (хиноны, метилвиологен, нитросоединения) и доноров (аскорбиновая кислота, фенилгидразин, гидрохинон, Fe +) электрона. Образование ион-радикалов красителей при фотохимических окислительно-восстановительных реакциях протекает через ряд промежуточных стадий, включающих образование возбужденного комплекса донорно-акцепторного типа и ион-ра-дикальных пар. Донорно-акцепторный комплекс с триплетным состоянием красителя был обнаружен в реакции фотоокисления хлорофилла я-бензохиноном в толуоле. Вероятность дезактивации эксиплекса в направлении образования ион-радикальной пары зависит от степени переноса заряда внутри возбужденного комплекса. В свою очередь степень переноса заряда определяется сродством к электрону и потенциалом ионизации как триплетной молекулы красителя, так и невозбужденной молекулы донора или акцептора электрона. [c.178]


    Электрохимическое восстановление ароматических нитросоединений давно привлекает возможностью получения различных продуктов восстановления в зависимости от условий электролиза. Восстановление нитробензола до анилина в промышленности осуществляется под действием железной стружки в серной кислоте. Этот процесс протекает в три стадии с участием на каждой из них двух электронов и двух протонов  [c.450]

    Аналогичные результаты были получены в реакциях фотопереноса электрона для пигментов (хлорофиллов, феофитина и др.) в присутствии акцепторов (хинонов, метилвиологена, нитросоединений) и доноров (аскорбиновой кислоты, фенилгидразина, гидрохинона, Ре2+) электрона. Образование ион-радикалов [c.305]

    Комплексы с переносом заряда ароматических нитросоединений с ароматическими углеводородами, аминами, фенолами и другими донорами электронов хорошо изучены в кристаллическом состоянии и в растворах. Они легко образуются путем равновесных реакций, идущих с большой скоростью. Поэтому нет сомнений в том, что они должны получаться и в ходе реакции нуклеофильного ароматического замещения. Однако обычно считают, что легко протекающее образование комплексов с переносом заряда в большинстве случаев не может существенно влиять на суммарную скорость реакции, и этой стадией можно пренебречь. Работами [c.147]

    Рассмотренный выше случай енолизации может служить примером более общего явления таутомерии. Строго говоря, этот термин относится к любым обратимым взаимопревращениям изомеров, которые могут происходить в разных условиях. Практически же им пользуются обычно применительно к случаям изомеров, легко подвергающихся взаимным превращениям и различающихся только распределением электронной плотности и положением относительно подвижного атома или группы. Таким атомом в подавляющем большинстве таутомерных систем яв-, ляется атом водорода в этом случае говорят о прототропии. Хорошо известными примерами прототропии могут служить ацетоуксусный эфир и алифатические нитросоединения  [c.259]

    Последний, соединяясь с двуокисью азота, имеющей в своей молекуле неспаренный электрон, дает нитросоединение  [c.579]

    В табл. 18 дана относительная способность присоединения протона некоторыми аминами по отношению к серной и хлорной кислотам (см. стр. 328). Эта таблица доказывает, что все амины (№ 14—17 включительно), которые нитруются е хорошим выходом в отсутствие хлористоводородного катализатора [11], являются наиболее плохими акцепторами электронов. Напротив, диметиламин и пиперидин (сильно основные амины) в отсутствие катализатора дают крайне низкий выход нитросоединений (соответственно, б и 22%) [10]. [c.327]

    Группа II. Прочие жидкости, состоящие из молекул, содержащих как активные атомы водорода, так и атомы — доноры электронов (кислород, азот и фтор), например спирты, кислоты, фенолы, первичный и вторичные амины, оксимы, нитросоединения, содержащие а-водородные атомы, аммиак, гидразин, фтористый водород, цианистый водород и т. д. [c.118]

    Группа III. Жидкости, состоящие из молекул, содержащих атомы-доноры электронов, но не содержащих активных атомов водорода, напри-, мер простые эфиры, кетоны, альдегиды, сложные эфиры, третичные амины (включая соединения типа пиридина), нитросоединения и нитрилы, не содержащие а-водородных атомов, п т. д. [c.118]

    Азотсодержащие соединения. Из этого класса органических соединений особое место занимают ароматические нитропроизводные. Они относятся к наиболее изученным в вольтамперометрии. В кислых и слабокислых водных средах в отсутствие поверхностно-активных веществ (ПАВ) ароматические нитросоединения восстанавливаются с образованием на полярограммах двух волн, соответствующих переносу четырех и двух электронов, до фенил-гидроксиламина и затем до анилина  [c.468]

    Наименее специфичным из широко распространенных так называемых высокоспецифичных детекторов является, пожалуй, электронно-захватный детектор, поскольку он чувствителен к соединениям многих типов, например галогенидам, некоторым серу-содержащим соединениям, соединениям с сопряженными карбонильными группами, металлоорганическим соединениям, нитросоединениям и нитритам. Этот детектор очень чувствителен к хлор- и серусодержащим пестицидам и неоценим в количественных определениях следовых количеств этих соединений. Попытки применения электронно-захватного детектора для увеличения чувствительности анализа привели к тому, что этот детектор стал общеприменимым почти во всех областях. В детекторе этого типа ионизируемый газ-носитель (обычно азот) проходит через ячейку с радиоактивным источником (таким, как тритий, стронций, радий или изотоп N1). В этой же ячейке имеются два электрода, к которым приложена определенная разность потенциалов. Электрический ток между электродами остается постоянным до тех пор, пока в ячейку не поступит соединение, захватывающее электроны когда такое соединение попадает в ячейку, ток уменьшается пропорционально его концентрации в газовом потоке. Электрический ток, проходящий через ячейку, усиливается и подается на самописец. (Некоторые аномальные сигналы уменьшаются при [c.431]


    Нитрогруппы сильно активируют функциональные группы гидридного характера (-ОН, -8Н, -Ш-, -СИз и т. п.), в результате чего за счет потери электронной плотности на связях Э-Н (где Э — элемент) атомы водорода приобретают подвижность. Тринитрофенол становится кислотой, сильнее фосфорной. Его 0,4, тогда как у фенола Ю" . Атомы водорода в -СНг- и СНз-группах нитросоединений становятся легко доступными для альдегидов и кетонов в реакциях конденсации  [c.543]

    Одним из имеющих большое значение видов межмолекулярного взаимодействия являются электронодонорно-акцепторные (ЭДА) взаимодействия, приводящие к образованию ЭДА-ком-плексов. Комплексы с переносом заряда (КПЗ) образуются в хемосорбционных процессах, а также при взаимодействии ПАВ-доноров, роль которых могут играть молекулы с неподе-ленными парами, т. е. с а- или л-связями, и веществ-акцепторов электронов с дефицитом электронов в каком-нибудь звене молекулы, например за счет сильных отрицательных (—Es) и (—Ed) эффектов, создающих дефицит электронов по кратной связи. В качестве таких акцепторов известны малеиновый ангидрид, сульфоны, ароматические нитросоединения, цианистые соединения и др. К комплексным соединениям относятся также сэндвичеобразные структуры. [c.204]

    На схеме 3.244 показаны другие реакции гипохлорита в условиях межфазного катализа. В первой схеме, предложенной Кори и сотр. [1240], представлен привлекательный препаративный метод для превращения кетонов в нитросоединения. Табуши и Кори [1358] наблюдали комбинацию каталитических процессов двух типов — межфазного и электронного переноса, — действующих в одном направлении, при гипохлоритном окислении бензилового спирта и бензилового эфира до бензальдегида и циклогексана в циклогексилхлорид. [c.401]

    Реакции переноса электрона межд органическими соединениями Перенос электрона между органическими соединениями приводт- к образованию ион-радикалов, Иногда это инициирус протекание цегиюго процесса. Например, взаимодействие литиевых солей вторичных нитросоединений с п-н1пробензилхлоридом протекает как окислительно-восстановительный процесс по анион-радикальному механизму [30,31]. [c.47]

    Здесь сплошные линии изображают электрохимические реакции, пунктирные — химические процессы, сопровождающие электровосстановление. Исходное нитросоединение /, присоединяя два электрона и два протона, образует промежуточное соединение диксо-ний II, которое распадается с образованием нитрозосоединения ///. В кислой среде нитрозосоединение не накапливается, так как потенциал, необходимый для его дальнейшего восстановления, более положителен, чем потенциал восстановления исходного нитросоединения. Первой ступенью восстановления нитрозосоединения является образование арилгидроксиламина IV, который при более отрицательном потенциале может быть восстановлен до амина V. [c.217]

    Как уже отмечалось выше, уходящие группы X по легкости замещения их на нуклеофильные реагенты можно расположить в следующий ряд Hal > ОН > NH2. Казалось бы, этот ряд можно было бы продолжить влево и дополнить группами, имеющими еще больший отрицательный индуктивный эффект, например NOj и N. В самом деле, имея на атоме, непосредственно связанном с остальной частью молекулы, шачительный положительный заряд, эти группы могли бы в еще большей степени увеличить дефицит электронной плотности на атакуемом атоме углерода и тем самым облегчить протекание реакции нуклеофильного замещения по механизму 5 2. Однако в действительности ни для нитрилов карбоновых кислот, ни для первичных и вторичных алифатических нитросоединений неизвестны случаи вытеснения анионов N или NO2, хотя вытеснение этих групп в виде анионов в условиях проведения реакций нуклеофильного замещения энергетически выгодно. [c.119]

    Написанные выше формулы, отвечающие правилу октета, обычно используются для изображения нитросоединений, однако и они не вполне точно выражают истинное строение иитрогруппы. В самом деле, положительный заряд на атоме азота соседствует с отрицательно заряженным кислородом, имеющим подвижные электроны. Несомненно, что положительный заряд будет притягивать к себе электроны кислорода, но это означает расширение октета поэтому я-электроны двойной связи N==0 оттесняются на второй атом кислорода. Иными словами, в нитрогруппе проявляется мезоме-рия, и ее строение лучше всего передается формулами  [c.219]

    При этом написании предполагается, что атомы кислорода, стоящие у азота нитросоединения, как бы неравноценны один из них связан с атомом азота двумя парами общих электронов, другой же—только двумя электронами, причем оба электрона доставляются лишь одним атомом—атомом азота эти электроны дополняют до октета число электронов кислорода. При этом атом кислорода приобретает отрицательный заряд, атом азота— положительный заряд, так как пара электронов уже не принадлежит исключительно ему. Такие связи называются полуполяр-ными семиполярными) связями. Вещества с семиполярными связями имеют большой дипольный момент они обыкновенно кипят при более высокой температуре, чем изомерные им вещества без семиполярных связей. [c.357]

    Атомом X может быть фтор, кислород или азот из них наибольшее значение в газовой хроматографии имеет кислород для высших аналогов фтора, кислорода и азота водородные связи по порядку величины близки к обычным силам притяжения (Штааб, 1959). В соединениях, содержаш их ОН-группы, атом водорода приобретает положительный заряд вследствие притяжения электронов к электроотрицательному кислороду гидроксильной группы (например, в карбоновых кислотах, спиртах, фенолах, воде) и может притягиваться к атомам, у которых имеются неподеленные пары электронов, в особенности к атомам Е, О, N в различных соединениях фтора, простых и сложных эфирах, кетонах, альдегидах, кислотах, спиртах, фенолах, аминах и т. д. В образовании водородной связи также участвуют группы Л Н или СН, если азот (нанример, в пирроле, имидазоле и т. д.) или углерод (в ацетилене, хлороформе, в органических нитросоединениях или цианистых соединениях с а-атомами водорода) могут приобретать отрицательный заряд вследствие структурных особенностей соединения. [c.177]

    Восстановление нитросоединений при действии соединений элементов, находящихся в состоянии низшей степени окисления (Sn b, FeS04, Na2S и др.), также связано с переходом электронов к органической молекуле. В зависимости от pH среды, в которой происходит восстановление, образуются различные промежуточные продукты, однако конечным всегда получается амин. Так, доказано, что в кислой среде нитросоединение восстанавливается до нит-розосоединения, однако вследствие его высокой реакционной способности последнее уловить во время восстановления не удается  [c.201]

    Равновесие обычно полностью сдвинуто в сторону енамина. ИМИНОКСИЛЬНЫЕ РАДИКАЛЫ (пнтроксилы, нптро-ксиды), нейтральные частицы с неспаренным электроном па иминоксильной группе N—0. Образуются при окислении иминов, гидро-ксиламинов, из нитронов, нитрозо- и нитросоединений. Многие выделены в своб. виде (см., напр., соед. I). [c.217]

    Вторую подгруппу апротонных растворителей составляют жидкости, кислотно-основное взаимодействие которых с растворенным соединением происходит не вследствие дележа протона с основанием, а в результате притягивания электронной пары от основания электроноакцепторными атомами или группами в молекулах растворителя. Здесь мы встречаем уксусный ангидрид (СНзСО)гО и хлористый ацетил СНзСОС , кислотная природа которых обосновывалась выше. В эту подгруппу входят разнообразные нитросоединения, среди которых главный — питрометан — один из самых распространенных в исследовательской и технологической практике растворителей. [c.40]

    Перенос первого электрона на молекулу антробснзола в апротонном растворителе приводит к аиион-радикалу. У аиион-радикалов алифатических нитросоединений заряд фактически локализован на иитрогруппе, в то время как у аинои-радикалов нитроциклопропаиов [83], нитроолефинов [83,84] и нитробензолов [85—87], по данным ЭПР, имеет место заметная делокализация заряда. Степень делокализацин заряда в ароматическом кольце может быть различной, особенно при выведении интрогруппы нз плоскости кольца под влиянием соответствующих заместителей. [c.300]

    Се(1У) как наиболее сильный из окислителей окисляет ароматические аминосоединения и производные сульфамидов до соответствующих нитросоединений. Указанные реакции лежат в основе кулонометрического определения ряда фармацевтических препаратов. Эти препараты можно определять и с помощью гипогалогенит-ионов. Многоэлектронность реакций (до шести электронов) повышает надежность определений. [c.539]

    Первичные и вторичные алкилгидропероксиды в щелочных условиях реакции обычно отщепляют воду и превращаются в карбонильные соединения. В индуцируемом основанием аутоокислении флуорена перенос электрона от промежуточно образующегося флуоренил-аниона обычно является стадией, лимитирующей скорость всего процесса, однако в случае трифенилметана медленной стадией является образование карбаниона, а перенос электрона от менее устойчивого аниона происходит очень быстро [69]. Медленную стадию переноса электрона в случае флуоренил-анионов можно устранить, используя синглетный ( Ag) молекулярный кислород, с которым они реагируют очень быстро [70]. Ароматические нитросоединения могут конкурировать с кислородом в качестве акцепторов электронов образующиеся радикалы далее димеризуются [например, уравнение (31)] [71]. Димерные радикальные продукты образуются также при фотохимическом возбуждении карбанионов  [c.562]

    Обработка солей алифатических нитросоединений (34) алкилгалогенидами приводит к алкилированию либо по атому углерода либо по атому кислорода. В общем случае алкилирование по кислороду, которое по реакции 5л 2 через промежуточное образование нитроновых эфиров (35) приводит к карбонильным соединениям и оксимам, лишь в очень малой степени или вообще не сопровождается алкилированием по углероду [схема (107)]. Однако Корн-блюм и сотр. показали [83], что при реакциях 2-нитропропана с -нитробензилгалогенидами протекает как О- так и С-алкилиро-вание, соотношение между которыми зависит от природы замещаемого галогена. Удалось раздельно определить константы скорости О- и С-алкилирования для различных галогенидов, и оказалось, что если константа скорости 0-алкилирования при переходе от С1 к Вг и I возрастает в 900 раз, что согласуется с механизмом Sn2, то в случае С-алкилирования эти константы изменяются только в 6 раз. Такое небольшое изменение скорости противоречит механизму 5л 2 и заставляет думать, что здесь имеет место ради кально-ценной механизм, рассмотренный вначале этого раздела Другими доказательствами такого механизма являются обнару жение с помощью ЭПР-спектроскопии промежуточно образующих ся радикалов, подавление С-алкилирования введением ингибито ров радикальных процессов, ускорение С-алкилирования при фотолизе. Дополнительные примеры замещения по механизму, включающему перенос электрона, приведены на схемах (108). (109) [c.668]

    Недостатком такой точки зрения является то, что флавины и цитохромы — доноры одного электрона, а нитросоединения образуются за счет транспорта двух электронов. По-видимому, при восстановлении нитросоединений происходит образование анионн радикалов. В частности, Мейсон [231] наблюдал характернвш спектр нитробензольного анионного радикала при анаэробной инкубации нитробензола в среде, содержащей соответствующие электронодонорные кофакторы и микросомы или флавинсодержа-щую модельную систему. При действии кислорода свободные радикалы нельзя было определить вследствие их быстрого окисления. [c.203]

    Ароматические нитросоединения под воздействием электронного удара могут элиминировать N0 , образуя ионы [М - 46]+ 5.48, или перегруппировываться в нитриты 5.53, которые затем тер5шт N0- за счет простого расщепления связи 0-N, что приводит к ионам М - 301+ 5.52. Ароматические альдегиды, кетоны, карбоновые кислоты и их эфиры путем расщепления а,в-связи элиминируют заместитель X образующемуся бензоил-катиону 5.54 обычно соответствуют очень интенсивные пики. Последующая потеря СО приводит к феноний-ионам (5.48). [c.219]


Смотреть страницы где упоминается термин Электронная нитросоединений: [c.178]    [c.102]    [c.429]    [c.105]    [c.221]    [c.357]    [c.491]    [c.1638]    [c.120]    [c.37]    [c.307]    [c.218]    [c.25]   
Органическая химия Том1 (2004) -- [ c.519 , c.522 , c.524 ]




ПОИСК





Смотрите так же термины и статьи:

Нитросоединения

Нитросоединения аци-Нитросоединения



© 2025 chem21.info Реклама на сайте