Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

резонанс обменный ток

    Я опишу историю этой работы так, как я это помню. Ни одна другая оригинальная идея, ни моя, ни Лондона, не была такой амбициозной, как эта, Поначалу мы помышляли о малом, — требовалось рассмотреть вопрос о силах Ван-дер-Ваальса. Мы полагали, что ответ можно получить, если рассчитать взаимодействие зарядов двух атомов водорода и их зарядовых плотностей, вовсе не думая об обменном взаимодействии... В результате мы пришли к тому, что впоследствии было названо кулоновским интегралом , значение которого было, однако, слишком велико для сил Ван-дер-Ваальса, хотя и отвечало значительному межатомному притяжению. Некоторое время мы действительно испытывали затруднения, которые были связаны с тем, что неясным оставался смысл полученного результата. Мы не знали, что с ним делать. Вскоре появилась статья Гейзенберга об обмене, но почему-то обмен в ней смешивался с резонансом,— с резонансом двух электронов одного и того же атома, когда один из них возбужден, а другой находится в основном состоянии, — хотя сам Гейзенберг представлял дело так, будто оба понятия (обмена и резонанса — И. Д.) следует различать, и мы поначалу не предполагали, что обмен вообще играет какую-либо роль. Но вместе с тем, мы не могли двигаться дальше, и в течение нескольких недель создавшаяся ситуация была главным предметом наших раздумий и частых дискуссий. [c.152]


    Ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР) — два метода радиоспектроскопии, позволяющие изучать структуру и динамику молекул, радикалов, ионов в конденсированных и газовой фазах вещества. Спектры ЯМР обладают высокой специфичностью и широко применяются для идентификации соединений, в структурно-аналитических целях, а также для изучения быстрых обменных процессов. Спектроскопия ЭПР — метод исследования парамагнитных частиц и центров, кинетики и механизмов процессов, происходящих с их участием. Особенно большой прогресс в развитии методов спектроскопии ЯМР и ЭПР, достигнутый в последние годы, связан с появлением импульсных фурье-спектрометров, двухмерной спектроскопии и техники множественного ядерного, электрон-ядерного и электрон-электрон-ного резонанса. [c.5]

    Осложнения при изучении динамических процессов, возникающие из-за наличия спин-спинового взаимодействия, его температурной зависимости (в меньшей степени), одновременно протекающих обменных реакций и некоторых других причин, обходят, применяя методы множественного резонанса и другую технику спектроскопии ЯМР, рассматриваемую ниже. [c.44]

    В отличие от другого радиоспектроскопического метода — метода электронного парамагнитного резонанса ЭПР, где измеряется поглощение СВЧ-излучения равновесной средой, в методе ВКГ изучается удаление СВЧ сигнала инвертированной по сверхтонким уровням системой атомов водорода. Такой прием позволяет повысить на пять-шесть порядков чувствительность метода и проводить измерения при концентрациях атомов водорода 10 —10 частица/см , а исследуемых молекул 10"—lOi частица/см . В этих условиях можно пренебречь с высокой степенью точности всеми вторичными процессами. Кроме того, в отличие от метода ЭПР в методе ВКГ поперечная релаксация (TJ обусловлена исследуемым процессом, а не обменом между парамагнитными центрами. Знание двух кинетических характеристик процесса —констант скорости kl и Л, позволяет получить сведения не только о скорости хими- [c.304]

    Т-обмен. Эксперимент это подтверждает. Установление равновесия по колебательным степеням свободы между двухатомными молекулами одного сорта как гармоническими осцилляторами можно представить следующим образом. Сначала за время 1/2 2ю устанавливается квазиравновесное распределение колебательной энергии между молекулами, соответствующее некоторой колебательной температуре Tv. Затем более медленно за время ху-т 1/2Рю квазиравновесное распределение переходит в равновесное больцмановское (Ту Т). Аналогичным образом происходит V — 1/ -обмен между двухатомными молекулами разного сорта достаточно быстро достигается квазиравно-весное состояние по колебательной энергии молекул, которое затем более медленно переходит в равновесное за счет V — Г-обмена. Особенно быстро V — 1/ -обмен идет в условиях резонанса, когда энергия колебательных квантов обменивающихся энергией молекул одинакова. При невысоких давлениях существенную роль в обмене колебательной энергии играют процессы столкновения молекул с твердой поверхностью. Например, в трубках с диаметром 1 см гетерогенная релаксация может оказаться решающей до давления в б кПа. В случае многоатомного газа вблизи стенки возникает поэтому релаксационная зона, в которой основную роль будут играть процессы V — V-, V — V- и [c.106]


    Ниже не будет обсуждаться применение метода валентных связей для предсказания и описания структур молекул, так как это уже было сделано в гл. 5 для простых соединений непереходных элементов и будет сделано в гл. 7 для комплексных соединений переходных элементов. Однако будет показано, что конфигурации молекул могут быть объяснены с помощью более простых теорий, чем метод валентных связей. Кроме того, будет отмечено, что для метода валентных связей концепции о гибридизации, резонансе п обмене являются просто удобными математическими описаниями, но они не дают объяснений истинным причинам явлений, которые [c.198]

    Метод площадей применяется в том случае, когда сигналы различных форм комплексов не усредняются (медленный обмен). Прямую инфор.мацию о составе комплексов, о равновесиях комплексообразования при исследовании протонного резонанса получают непосредственно по перераспределению площадей сигналов [c.318]

    Обмен энергией в молекулах протекает эффективно в том случае, когда величина освобождающейся кинетической (поступательной) энергии невелика тогда можно ожидать быстрый энергетический обмен между близкими к резонансу колебатель- [c.123]

    Обозначим за VI и V2 (Гц) химические сдвиги ядер в двух состояниях Т1 и Т2 — соответствующие этим состояниям значения времени жизни в секундах. В случае, если Т1 и Т2 много больше (VI—V2)-, между ядрами в состоянии (1) и (2) происходит медленный обмен, при этом в спектре ЯМР регистрируют два сигнала, связанных с резонансом ядер в каждой из двух форм. При уменьшении времени жизни т в каждом состоянии сигналы каждой формы начинают уширяться, затем при некотором т/ они сольются в один сигнал (коллапс), и в дальнейшем происходит сужение сигнала. Таким образом, при достаточно быстром обмене наблюдается один узкий сигнал, положение которого определяется вкладом отдельных состояний  [c.77]

    Действительно, так как система выбирает коэффициенты в линейной комбинации функций таким образом, чтобы энергия была минимальна, привлечение нескольких состояний всегда снижает энергию. Поэтому соединения, в которых существует резонанс состояний, не укладываются в схему аддитивности энергии. Из отклонения величины энергии (например, теплоты сгорания) от аддитивности можно вычислить значение обменного интеграла между соседними р-электронами, определяющего величину энергии электронов ароматических соединений. [c.611]

    Прошло уже свыше ста лет с тех пор, как стало известно, что электроны могут быть скомбинированы в пары двояким образом (1) (1А) и (2) (2А). Обе структуры полностью эквивалентны и взаимодействуют между собой по принципу, названному резонансом связей. Позднее такое взаимодействие, обеспечивающее полную эквивалентность всех С—С-связей, получило название обменное вырождение . Для более полного расчета структуры бензола следует принимать во внимание и другие возможные способы сочетания электронов. Например, два из шести электронов могут образовать пару через кольцо, как в (3)(ЗА), или шесть электронов могут быть поляризованы, как в (4)(4А). Но такие способы сочетания энергетически менее выгодны, и поэтому их вклад в общую структуру бензола весьма незначителен. [c.11]

    Другой путь упрощения спектров включает применение методик двойного резонанса. Одной из таких методик является так называемая спиновая развязка (нарушение спин-спино-вого взаимодействия). Если спектр соединения, содержащего спиновую систему АХ, сканируют, как обычно, при помощи слабого радиочастотного излучения, но с одновременным непрерывным облучением пробы вторым сильным радиочастотным излучением на частоте поглощения ядра X (отсюда и название - двойной резонанс), то создаются условия для спиновой развязки. Сильное радиочастотное излучение индуцирует быстрый обмен между двумя возможными спиновыми состояниями ядра X, в результате чего соседнее ядро А подвергается воздействию ие двух различных полей ядра X, а лишь одного, усредненного по времени. В такой ситуации резонансный сигнал ядра А превращается в синглет, т. е. в сигнал, который ядро А имело бы в отсутствие соседнего ядра X. Таков конечный результат спиновой развязки - нарушение всех взаимодействий сильно облучаемого ядра с друти- [c.144]

    Однако даже при замедлении обмена молекул воды может оставаться быстрым обмен ядер Н и Ю. Поскольку обмен ядер О более медленный, акваионы лучше изучать по резонансу Ю. [c.314]

    В методе ядерного магнитного резонанса минимальная естественная ширина пинии составляет 0,1 с (Гц). Следовательно, уширение снеггральных пиний, регистрируемое этим методом, позволяет, согласно (12.5), фиксировать обменные процессы с временами ХИ31Ш ниже 2 с или со скоростями, превышающими 0,5 с . Для слияния одиночных пиков сигналов, принадлежащих двум вза-имопревращающимся изомерам или топомерам и разделенных, например, на 200 Гц (обычный диапазон химических сдвигов в спектрах ЯМР- С), скорость процесса химического обмена должна быть равна 10 с Поскольку скорость реакции является функцией температуры (8.104), для одного и того же процесса при разных температурах можно выполнить условия как очень быстрого (г >Та), [c.462]


    Постоянство р оказывается вполне удовлетворительным. Аналогичные расчеты делались по методу валентных связей. При этом теоретическая величина энергии резонанса естественно выражалась через обменный интеграл А. Последние два столбца таблицы показывают также постоянство А для различных соединений. Естественно, что величина А приблизительно вдвое больше р, так как она описывает энергии двух электронов. Решение системы линейных уравнений (XXIII.17) позволяет определить коэффициенты Сг. Эти коэффициенты определяют доли участия п-связей в каждой связи и, следовательно, позволяют рассчитать расстояния между атомами в данном валентном штрихе, т.е. так называемую длину связи. [c.616]

    Хотя само это обменное (электростатическое) взаимодействие при условии однородной намагниченности кристалла и не оказывает непосредственного влияния на резонанс, однако оно создает большую результирующую намагниченность ( 10 Гс), а с ней и большое внутреннее магнитное поле. При изменениях величины и ориентации нама- [c.379]

    Обратите внимание, какой контраст составляют эти заключения с теми, которые можно было бы вывести из проекции Фишера (ср. формулы 9 и 10). Так, может показаться, что в глюкозе гидроксил при С-3 стоит особняком, а остальные скучены по одну сторону молекулы, тогда как в галактозе кажется, что гидроксилы при С-3 и С-4 (слева от оси формулы 10) сходны между собой и отличны от остальных. На основании формул типа 27 и 28, так называемых конформационных формул, можно, не прибегая к эксперименту, достаточно обоснованно предсказать множество химичесхсих и физических особенностей веш,ества. Сравнение формул 27 и 28 позволяет, например, оценить относительные скорости окисления глюкозы и галактозы перйодатом (104) и даже в обш,их чертах ход кинетической кривой этой реакции для галактозы, оценить относительное поведение этих сахаров при хроматографии на бумаге, предсказать характерные особенности спектров ядерного магнитного резонанса и даже высказать достаточно обоснованные предположения о том, почему именно глюкоза, а не какой-либо иной моносахарид занимает доминирующее положение в углеводном обмене любой живой системы. [c.16]

    В некоторых случаях протекание обмена между разными соеди-вевиями одного элемента может быть установлено по особенностям спектров ядерного магнитного резонанса. Однако число элементов, обмен которых может изучаться с помощью ЯМР, вевелико и, учитывая чувствительность спектрографов ЯМР, сводится лишь к водороду. [c.130]

    Согласно модели резонанса двух состояний, изложенной в предыдущем разделе, вклад в энергию связи от переноса заряда зависит от потенциала ионизации В и сродства к электрону АН. Р1меются противоречивые мнения о величине энергии переноса заряда в комплексах, однако она, по-видимому, растет пропорционально кулоновской энергии по мере увеличения силы комплекса. Коллман и Аллен [8] проанализировали результаты расчетов димера воды методом молекулярных орбиталей и нашли, что сумма энергий кулоновского притяжения и обменного отталкивания составляет —19 кДж-моль сумма энергии переноса заряда и поляризационной энергии (энергии, обусловленной поляризацией одной компоненты в поле другой компоненты) составляет —13 кДж моль , а дисперсионная энергия равна —6 кДж/моль , [c.370]

    Для непрерывного наблюдения поглощения энергии условия резонанса недостаточно, т.к. при воздействии электромагн. излучения произойдет выравнивание заселенностей подуровней (эффект насыщения). Для поддержания больцманов-ского распределения заселенностей подуровней необходимы релаксационные процессы. Релаксационные переходы электронов из возбужденного состояния в основное реализуются при обмене энергией с окружающей средой (решеткой), к-рый осуществляется при индуцированных решеткой переходах между электронными подаровнями и определяется как спин-решеточная релаксация. Избыток энергии перераспределяется и между самими электронами - происходит спин-спиновая релаксация. Времена спин-решеточной релаксации Г] и спин-спиновой релаксации Т2 являются количеств, мерой скорости возврата спиновой системы в исходное состояние после воздействия электромагн. излучения. Зафиксированное регистрирующим устройством поглощение электао-магн. энергии спиновой системой и представляет собой спектр ЭПР. [c.448]

    А — электронный, X —ядерный спин) должна отражаться i расщеплении сигналов спектра ЯМР. Имеются, однако, две при чины, объясняющие, почему это не так. Первая причина — эт( быстрая спиновая релаксация электронов, а вторая — это быст рый обмен электронов между анион-радикалами (R ) или диа магнитными молекулами (R) в растворе. Как и в случае мета нола (разд. 1 гл. VHI), имеет место усреднение по времени и расщепления исчезают, так как электрон взаимодействует ( большим числом ядер в различных спиновых состояниях. Усредненная линия ЯМР должна находиться там же, где и соответствующий сигнал диамагнитного соединения. Однако, каь показывает явление контактного сдвига, этого не происходит Причина заключается в различной населенности двух электронных собственных состояний. Поскольку разность энергии /ivs (см. разд. 2.4) существенно больше соответствующего вклада hv] в ядерный резонанс, то низкоэнергетический ypOB Hi (ms = +1/2) будет существенно более населен и он будет входить с существенно большим весом N+u2 > Л/ -1/2) при усреднении V по времени в соответствии с уравнением [c.354]

    Рис. 63. 2М обменный спектр МСВ изотопомеров бис-хелата П е D lj (f = 100 МГц) (содержание изотопа d 66 масс. %) в области резонанса протонов -N= H- (с - 1,5 10 моль/ л ) [c.131]

    Большая скорость спиртового обмена, по-видимому, свидетельствует об интересном механизме обмена. При этом надо иметь в виду, что связь металл — кислород в алкоксидах титана очень прочная. Бредли и Хильер [421 определили, что средняя энергия диссоциации связи ряДа алкоксидов титана приблизительно равна 100—110 ккал1моль. Наличие вакантных a-орбиталей в атомах большинства металлов, алкоксиды которых были изучены, облегчает протекание первой стадии нуклеофильного воздействия молекулы спирта на алкоксид металла, и, по-видимому, вследствие этого энергия активации спиртового обмена оказывается небольшой. При подробном обсуждении механизма спиртового обмена нужно учесть также и тот факт, что большинство алкоксидов металлов, содержащих первичные алкоксидные группы, представляют собой полимеры. Полимеризация происходит в результате образования елкоксидных мостиков, при этом проявляется тенденция атомов металлов к увеличению координационного числа металла. Имеется также возможность обмена между концевыми и мостиковыми алко-ксидными группами в пределах полимерной молекулы. Исследование методом ядерного магнитного резонанса [411 показало, что внутримолекулярный обмен в тетраэтоксиде титана при комнатной температуре происходит очень быстро. [c.238]

    Предварительные данные рентгенографического изучения комплекса SF4 SbF5 были интерпретированы с точки зрения решетки, состоящей из SF и SbFg [57]. Другое представление об этих сольватах заключается в предположении ассоциации при помощи мостиков из иона фтора [59] с образованием полимеров, циклических тетрамэров или димеров. Ассоциация с участием мостико-вого фтора хорошо объясняет быстрый интермолекулярный обмен фтором, который наблюдали для этих систем в растворе или жидком состоянии мзтодами ядерного магнитного резонанса [34, 35, 59]. [c.325]

    Идентификация и анализ аминов методом ЯМР несколько затруднительны, поскольку в этих соединениях водородный атом при атоме азота имеет тенденцию к обмену. Точная форма соответствующей линии резонанса (NH) определяется скоростью этого обмена. Применение ЯМР в определении аминов описано в работе Андерсона и Сильверштейна [68]. К сожалению, для таких определений не подходят методы, используемые при ан ализе гидроксильных и спиртовых функциональных групп, и это несколько усложняет задачу. [c.303]

    Теперь рассмотрим влияние небольшого магнитного поля Яь перпендикулярного к Яо- Я1 стремится отклонить диполь в плоскость ху (рис. 2.1), но это действие сравнительно малоэффективно до тех пор, пока Я1 не врап ается вокруг оси Яо с той же угловой частотой О), что и частота прецессии. Если враш,ение Hi медленно изменять, проходя частоту прецессии, то при достижении частоты прецессии угол 0 будет сильно изменяться, что соответствует обмену энергией между прецессируюш им ядром и враш,аюш,имся полем Я1. Это явление есть не что иное, как вид резонанса, так что теперь становится понятным термин ядерный магнитный резонанс (ЯМР). Обмен энергии соответствует поглон ению или испусканию излучения, и его можно регистрировать методами, которые будут описаны ниже (разд. 3.1). Элементы экспериментального устройства, необходимого для регистрации сигналов ЯМР, вытекают из приведенных выше рассуждений ядро нужно поместить в постоянное магнитное поле Яо и затем подвергнуть действию электромагнитного излучения таким образом, чтобы магнитное поле Я1 последнего вращалось вокруг оси Яо с необходимой угловой частотой. [c.23]

    Описанный выше опыт (см. рис. 6) однозначно доказывает, что предположения Циглера и сотрудников (см. гл. VII, стр. 94) о самопроизвольном обмене алкильными группами между алюминийтриалкилами действительно верны и обмен протекает исключительно быстро. Регистрациоппые кривые не позволяют обнаружить никаких последующих явлений, связанных с изменением числа частиц. Непосредственно после смешения и быстрого затухания температурного подъема, вызванного теплотой реакции и достигающего приблизительно 0,05°, достигается конечное состояние. Подобный вывод для аналогичного взаимодействия между триизобутилалюминием и триэтилалюминием может быть сделан косвенно из спектров протонного резонанса [12]. [c.145]

    Ядернын магнитный резонанс (ЯМР). как и ЭПР, основан на принципе магнитного резонанса. Поглощение радиочастотной энергии происходит при переходе ядра с более низкого энергетического уровня на более высокий. Прп этом имеют место два типа релаксационных процессов спин-решеточная релаксация с временем 7 а спин-спиновая с временем Гг. Явлення первого типа охватывают различные процессы обмена энергией между спиновой системой и решеткой, объединяющей все остальные (кроме спнновых) степени свободы. Ti может достигать нескольких часов и зависит от типа ядер и характера молекулярного движения. Спин-спнновая релаксация заключается в обмене энергией между спинами ядер одного типа. Время спин-спиновой релаксации всегда меньше Т[. Оба релаксационных процесса влияют иа время 12в [c.128]


Смотреть страницы где упоминается термин резонанс обменный ток: [c.168]    [c.25]    [c.281]    [c.92]    [c.191]    [c.4]    [c.18]    [c.128]    [c.71]    [c.154]    [c.39]    [c.237]    [c.39]    [c.72]    [c.315]    [c.181]    [c.77]    [c.101]    [c.94]   
Пионы и ядра (1991) -- [ c.259 ]




ПОИСК







© 2025 chem21.info Реклама на сайте