Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носители хлорирования

    Однако галогенирование карбоновых кислот проходит с трудом. Этот факт находится в соответствии с предположением, что в карбоновых кислотах электронная ненасыщенность углеродного атома карбонильной группы в значительной степени нейтрализуется поступлением электронов от гидроксильной группы. Однако хлорангидриды и ангидриды карбоновых кислот ведут себя как карбонильные соединения и могут галогенироваться сравнительно легко. Хлоруксусная кислота получается в промышленности хлорированием уксусной кислоты в присутствии какого-либо носителя. Хлорирование может быть доведено до дихлоруксусной кислоты однако [c.129]


    Каталитическая активность хлорированного окснда алюминия. Хлорированный т -оксид алюминия способен изомеризовать н-бутан в отсутствие платины и в отсутствие водорода (табл. 2.13). Замена водорода гелием в качестве газа-носителя в реакции изомеризации не изменила начальной изомеризующей активности катализатора. Наиболее глубоко изомеризация н-бутана протекала в отсутствие газа-носителя. Присутствие платины в катализаторе несколько снижает его активность в реакции изомеризации н-бутана. Исследования поверхности у- и т -оксида алюминия до и после хлорирования четыреххлористым углеродом различными физико-химическими методами позволили прийти к ряду заключений, которые в свою очередь привели к определенным выводам о природе активности хлорированного т -оксида алюминия. [c.72]

    Нанесение 0,4-0,6% платины на носитель производится путем пропитывания гранул растворами платинохлористоводородной кислоты с добавлением 2—5% к массе носителя раствора органической (уксусной) или неорганической (соляной) кислот технология проведения этих операций описана в разделе 2.3. После сушки, прокаливания в сухом воздухе катализатор направляется на хлорирование. [c.74]

    В промышленности применяются два метода хлорирования катализатора сублимация хлорида алюминия и обработка в токе газа-носителя хлорорганическими соединениями. [c.74]

    Галоидирование. Катализаторы, наиболее часто применяющиеся для хлорирования металлическое железо, окись меди, бром, сера, иод, галоиды железа, сурьмы, олова, мышьяка, фосфора, алюминия и меди растительный и животный уголь, активированный боксит и другие глины. Большинство этих катализаторов является носителями галоидов. Так, Fe, Sb и Р в галоидных соединениях способны существовать в двух валентных состояниях в присутствии свободного хлора они поочередно присоединяют и отдают хлор в активной форме. Аналогично иод, бром и сера образуют с хлором неустойчивые соединения. Катализаторы броми-рования подобны катализаторам хлорирования. Для иодирования наилучшим ускорителем служит фосфор. Для проведения процесса фторирования катализатор не требуется. В присутствии кислорода галоидирование замедляется. [c.329]

    Хлорирование и дехлорирование носителя катализатора — у оксида алюминия является равновесным процессом содержание хлора в катализаторе зависит от мольного отношения водяные пары хлороводород в газовой фазе  [c.134]


    В качестве металлического компонента катализатора используются платина или палладий, в качестве носителя — фторированный или хлорированный оксид алюминия, аморфные или кристал-ческие алюмосиликаты (декатионированные формы фожазита [c.179]

    С и выдерживают систему в течение 4 ч при этой температуре и концентрации кислорода 3% об. На всех стадиях регенерации входная температура, температуры в зоне горения и на выходе из реакторов не должны отличаться больше чем на 40°С. Информацию об указанных температурах получают с помощью зонных термопар, а в реакторах с радиальным вводом, не имеющих термопар по слоям катализатора, эту информацию получают по разности температур на входе и выходе. После завершения окислительной регенерации (выжигания кокса) катализатор хлорируют при атмосферном давлении в среде воздуха, содержащего 0,4-0,5% об. хлора, до выравнивания содержания хлора в газе на входе в реактор и на выходе из него, что указывает на полное насыщение катализатора хлором. В результате хлорирования содержание хлора в катализаторе доводят до оптимального (0,8-0,9% мае.). В результате хлорирования в катализаторе уменьшается содержание свинца, висмута и примесей других металлов что касается платины, изменяется лишь ее дисперсность (разукрупнение платиновых кристаллитов). Свойства носителя (удельная поверхность и пористость) при хлорировании заметно не меняются. После регенерации катализатора с применением хлора практически полностью восстанавливаются активность и селективность катализатора. Рекомендуемый режим регенерации с применением хлора  [c.141]

    Хлорирование силохрома проводят на установке проточного типа (см. рис. 4.1). Газом-носителем является азот. [c.72]

    Хлорирование углеродной поверхности проводят иа установке, схема которой приведена на рис. 3.5. Инертным газом-носителем служит азот или аргон. [c.75]

    Стабильная активность катализаторов риформинга, кислотным промотором является хлор, возможна лишь при достаточном его содержании на катализаторе и низкой влажности в реакционной системе. Объемное содержание влаги в циркулируемом ВСГ поддерживается обычно на уровне (10-30) 10 [54. Хлорирование и дехлорирование носителя катализатора является равновесным процессом содержание хлора в катализаторе зависит от мольного отношения водяные пары хлороводород в газовой фазе. [c.26]

    Галоген является необходимой составной частью катализаторов риформинга, который вводится с целью усиления и регулирования кислотной функции носителя. В качестве кислотного промотора в би- и полиметаллических катализаторах широко используется хлор, который стабилизирует высокую степень диспергирования платины за счет образования комплексов с платиной и окисью алюминия. Преимуществом хлорированных катализаторов является возможность регулирования содержания хлора в катализаторах, а следовательно, и уровня их кислотности, непосредственно в условиях эксплуатации [67, 61]. [c.30]

    Активные угли используются для очистки и дезодорации газов, например, для рекуперации органических растворителей из паров, рекуперации газов, для адсорбции газов в фильтрах (противогазы и сигареты), в ГАХ, в качестве носителей катализаторов. Обесцвечивающие угли применяются для обесцвечивания жидкостей II удаления из растворов примесей, особенно веществ с плохим запахом или вкусом. Их используют, например, в пищевой промышленности для рафинирования сахарных сиропов, обработки масел и жиров, фруктовых соков, кондиционирования пива, вин и других алкогольных напитков в фармацевтической промышленности — для очистки антибиотиков, витаминов и других лекарственных препаратов в химической промышленности — для очистки органических кислот, пластификаторов и т. п. при водоподготовке — для удаления избытка хлора после хлорирования, с одновременным устранением неприятного запаха и вкуса воды. [c.117]

    Каталитический риформинг протекает на активных центрах двоякого рода металлических и кислотных. Металлические центры (платина или ш. 1тина, промотированная добавками хЛора и металлов, например рения, иридия, олова, редкоземельных элементов), ускоря ют реакции дегидрирования парафинов в олефины, нафтенов в арома тические, диссоциацию молекулярного водорода, подаваемого извне гидрирование и содействуют дегидроциклизации и изомеризации Кислотные центры, расположенные на носителе - хлорированном оксиде алюминия, способствуют реакциям изомеризации олефинов циклизации и гидрокрекинга по карбоний-ионному механизму. [c.139]

    Таким образом, независимо от того, каким способом снижают активность металлического компонента алюмоплатинового катализатора в реакции гидрогенолиза, состав продуктов раскрытия кольца метилциклопентана во всех случаях меняется в сторону значительного преобладания н-гексана. Подобное явление можно объяснить тем, что реакция раскрытия пятичленного кольца протекает не только на платине, но и на кислотном носителе — хлорированном оксиде алюминия, [46 ]. Дислотно.-катализируемая реак1 ия приводит главным образом к получению -гексана из метилциклопентана, но" скорость ее значительно меньше скорости гидрогенолиза этого углеводорода на. платине. [c.26]


    Каталитическое хлорирование можно применять для переработки газообразных и жидких углеводородов. Для каталитического хлорирования газообразных углеводородов в конденсированном состоянии целесообразно применять в качестве растворителя четыреххлористый углерод [21]. Для хлорирования в жидкой фазе широкое применение находят так на з-ываемые носители или передатчики хлора — вещества, [c.148]

    Влияние природы хлорагента и условий хлорирования на изомеризующую активность катализатора. Взаимодействие хлорорганического соединения, например четыреххлористого углерода, с кислородсодержащими группами на поверхности оксида алюминия при 250—300 °С в среде газа-носителя выражается суммой химических реакщ1Й, приводящих к образованию фосгена, диоксида углерода, хлороводорода и воды. За счет замещения ионов кислорода на хлор масса катализатора при хлорировании увеличивается. [c.67]

    На основании рассмотренной выше модели разработаны рекомендации по осуществлению хлорирования в его начальный период с пониженной концентрацией четыреххлористого углерода в газе-носителе и одновременном снижении начальной температуры хлорирования. После прохождения теплового фронта по всему слою катализатора температура слоя и концентращш хлорагента могут быть увеличены. [c.72]

    Сущность предлагаемого метода заключается в повышении кислотности катализатора во время проведения окислительной регенерации. Известно, что на адсорбцию 302 (ЗОз) АХзОз воздействуют два фактора температура и число присутствующих гидроксильных групп. Поэтому, чем сильнее гидратирование носителя катализатора, тем существеннее образование сульфатной серы. А так как при хлорировании катализатора происходит замещение группы -ОН на группы -С1, то при этом образования сульфатов не происходит, а катализатор сохраняет свою активность и механическую прочность. [c.56]

    Роль водорода. Пропускание углеводородов над хлорированным и фторированным оксидом алюминия при температурах риформинга приводит к быстрому их закоксовыванию [Ш, 112]. Однако катализаторы риформинга на этих носителях работают длительное время, не изменяя существенно своей активности и селективности. Следовательно, в условиях риформинга, гидрирование ненасыщенных соединений, ответственных за образование кокса, происходит не только на платине, но и на носителе. Гидрирование же на носителе может осуществляться только за счет водорода спилловера. [c.56]

    Процесс производства катализаторов риформинга многостадиен. Он включает приготовление носителя — оксида алюминия. Далее следует нанесение платины и других активных компонентов. После этого осуществляют сушку и прокаливание катализатора. Если это требуется, то прокаливание завершают газофазным хлорированием. Затем проводят восстановление катализатора. Ряд модификаций катализатора риформинга (например, содержащие рений и иридий) подЬергают осернению. Восстановление и осернение катализаторов обычно осуществляют на установках каталитического риформинга. [c.75]

    Этот способ используют, например, при приготовлении алюмо-платннооловяпного катализатора (пат. США 3929683, 3948804, 3960710). Сперва соосаждением получают носитель, содержащий оксид олова (IV), который сушат и прокаливают. Потом обычным способом наносят платину, после чего катализатор прокаливают и восстанавливают. Если подобный катализатор готовить пропиткой оксида алюминня растворами хлоридов олова, то, вследствие их пучести, происходят значительные потери олова при прокаливании. катализатора [164, 165]. Преимущество соосажденного катализатора — отсутствие таких потерь не только при прокаливании, но и при окислительном хлорировании.. [c.78]

    При всей сложности химизма каталитического риформинга его технологическое оформление довольно просто. С одной стороны, это имеет очевидные преимущества, а с другой — ограничивает возможности активного воздействия на процесс. Все параметры риформинга, кроме температуры, довольно жестко определяются на стадии проектирования установки и могут изменяться при ее эксплуатации. лишь в узких пределах. Использование хлорированного оксида алюминия в качестве носителя в катализаторах ри< рминга дает еще одну [c.207]

    Первые биметаллические катализаторы были приготовлены осаждением платины и рения на хлорированную окись алюминия. На их базе возникло много новых процессов, в том числе ренифор-минг. Биметаллические катализаторы более устойчивы и позволяют работать при сниженных давлениях и повышенных температурах, увеличивают продолжительность циклов без опасности закоксовывания. Другой их характерной особенностью является возможность варьировать в более широких пределах соотношение отдельных реакций, слагающих процесс платформинга. Особенный интерес представляет увеличение скорости ароматизации парафинов при понижении скоростей гидрокрекинга. Заслуживает также внимания, что металлы — промоторы помимо взаимодействия с основным активным компонентом катализатора (большей частью платиной) влияют на селективность процесса, взаимодействуя с носителем (табл. 20). [c.146]

    В процессе Рашига бензол, НС1 и водяные пары (из водного раствора НС1 ) в смеси с воздухом пропускают над смешанными хлоридами Си и Fe, нанесенными на пористый носитель, при давлении, близком к атмосферному и температуре 210-230°С. Превращение бензола в хлорбензол составляет 10% за проход. Как и следовало ожидать, реакция экзотермична, а сырье и продукты корродируют аппаратуру /7,34/. Автору не известны поставщики катализатора, но если начинать экспериментировать в этой области, то можно взять такой катализатор 5% u l2+5% Fe lg, нанесенные на кизельгур. Во второй стадии процесса Рашига хлорбензол гидролизуется в фенол и водный раствор НС1 в присутствии силикагеля при 500 С. Водный раствор НС1 возвращают в цикл на первую стадию хлорирования. [c.317]

    Этилен можно также хлорировать в присутствии кислорода. Хлорирующими веществами служат либо хлор, либо хлористый водород. При высокой температуре получается смесь высокохлорированных этиленов. В данном случае кислород окисляет в хлоо хлористый водород, присутствовавший в исходной смеси или выделившийся в начальной стадии хлорирования таким образом достигается высокая степень использования хлора. Дня облегчения згой реакции следует применять катализатор окисления [5]. Так, например, если смесь этилена, хлора и кислорода, взятых в молярном отношении 1 2 1, пропускать при 375—425° над окисью меди на носителе, основными продуктами реакции являются трихлорэтилен и перхлор-этилен СС1г=СС12. Возвращая низшие хлорэтилены в процесс, можно получить 75—80%-ный выход пер хлорэтилена, считая на этилен. [c.166]

    Замена гидроксильных групп на поверхности носителя (для уменьшения их числа) другими атомами и группами — фторированием, хлорированием, фенилированием и др. Наилучшие результаты дает обработка носителей органическими и кремнийорганически-ми соединениями, триметилхлорсиланом, гексаметилдисилазаном, диметилдихлорсиланом и т. д. [c.197]

    Пирогаз, содержащий по 8-10% ацетилена и этилена, очищают от смолы и высших гомологов ацетилена и этилена, осушают и подвергают гидрохлорированию (по схеме метода 1, только под давл. до 0,61 МПа). После выделения В. этилен поступает на хлорирование до ДХЭ (0,51 МПа кипящая реакц. среда), к-рый выделяют из реакц. газов конденсацией и после ректификации дегидрохлорируют (по схеме метода 2, только под давл. 1,0 МПа). 4) Наиб, распространение получил процесс получения В. из этилена по сбалансированной по хлору схеме (см. ниже). Этилен примерно в равных кол-вах подают в реакторы прямого и окислит, хлорирования. Катализатор окислит, хлорирования - СиС на носителе. Образовавшийся на обеих стадиях ДХЭ после очистки и сушки объединяется, подвергается ректификации и дегидрохлорированию по схеме метода 2 (условия дегидрохлорирования, как в методе 3). Побочные продукты (до 100 кг на 1 т В.) в основном м.б. переработаны в перхлоруглеводороды. [c.374]

    Получают Т (совместно с ССЦ) исчерпывающим хлорированием индивидуальных углеводородов С1-С3 или их смесей либо соответствующих хлоруглеводородов в паровой фазе при 600 С, хлорированием смеси производных пропана, пропилена и хлоруглеводородов С3 в кипящем слое песка при 520-540 °С, окислит хлорированием углеводородов С2-С3, их хлорпроизводных или их смесей (кат - u lj -I- K l на корунде, силикагеле или др носителе) при 350-400 С [c.557]

    МПа в присут. N,N -аао-бмс-изобутиронитрила. X. может быть получен (совместно с H2 I2 и ССЦ) окислит, хлорированием метана при 350-400 С в присут. u lj + K l, нанесенных на носитель (коруцд, силикагель и др.), взаимод. хлораля или гексахлорацетона с Са(ОН)2 (метод потерял пром. значение из-за относительно высокой стоимости сырья и образования большого кол-ва отходов)..  [c.294]

    На втором этапе развития стали применять алюмоплатиновые катализаторы типа АП-64, в которых содержание платины составллто 0,62% (масс.), в качестве носителя была использована хлорированная у-окись алюминия. Внедрение катализатора АЛ-64 в промышленном. масштабе началось в 1967 г. и проходило быстрыми темпами в 1970-1975 годах [79]. Использование хлорированного катализатора потребовало разработки новой технологии процесса, обеспечивающей поддержание в катализаторе необходимого количества хлора. Указанные катализаторы, обладая лучшими активностью и селективностью, позволили повысить октановое число бензина риформинга до 96 по исследовательскому методу (ИМ). [c.41]

    Современные промышлеЕшые катализаторы изомеризации алканов представляют собой бифункциональные системы металл — носитель типа катализаторов риформинга. В качестве металлического компонента катализатора используют платину или палладий, в качестве носителя — фторированный или хлорированный оксид алюминия, аморфные или кристаллические алюмосиликаты, внесенные в матрицу оксида алюминия. [c.121]

    Известны три общих метода введения галогена в ароматическое соединение с помощью электрофильного реагента. Такими реагентами, в порядке увеличивающейся реакционной способности, являются 1) молекулярный галоген 2) молекулярный галоген в присутствии катализатора, такого как галогениды иода, олова(IV), железа (III), сурьмы(V) и алюминия 3) положительно заряженный галоген, обычно связанный с носителем, например ионом хлорноватистой кислоты. Выбор одног из этих методов зависит от нуклеофильности ароматического субстрата. Так, хотя хлор или бром реагируют с бензолом в полярных или кислых растворителях, однако реакция проходит очень медленно для завершения реакции между хлором и бензолом требуется несколько дней. С другой стороны, реакция брома с анилином протекает настолько быстро, что ее можно проводить в разбавленных водных растворах при комнатной температуре. Но даже в этих условиях невозможно прекратить реакцию раньше, чем образуется 2,4,6-триброманилин. Это обусловлено, в основном, тем, что каждый из промежуточно образующихся броманилинов является более слабым основанием, чем предыдущий, и поэтому менее способен к протонированию. Для удобства дальнейшее изложение разделено на три части, в которых будут обсуждены реакции фторирования, хлорирования и бромирования, иодирования. [c.375]

    Hf U синтезируют аналогичным способом [10, 13]. Хлорирование гафния проводят при 320 °С. Из 70 г металла получают 100—115 г Hf U, что соответствует 80—90%-иому выходу. При получении хлоридов и бромидов циркония и гафния в случае применения азота в качестве газа-носителя реакция катализируется за счет образования нитридов на поверхности металла. В ходе процесса происходит также пассивирование металла, и остаток в 10—20% более не галогенируется. Для проведения с достаточной скоростью взаимодействия в атмосфере аргоиа необходимо поддерживать температуру почти на 200 С выше. [c.1451]

    Эти недостатки привели к утрате его промышленного значения. Современные промышленные катализаторы изомеризации алканов представляют собой бифункциональные системы металл — носитель типа катализаторов риформинга. В качестве металлического компонента катализатора используют платину или палладий, в качестве носителя — фторированный или хлорированный оксид алюминия, аморфные или кристаллические алюмосиликаты, внесенные в матрицу оксида алюминия. Для предотвращения закоксовывания катализатора процесс проводят под давлением водорода 1,4—4 МПа. Первые алюмоплатиновые катализаторы, содержащие 1—2 % хлора или фтора, обладали недостаточной активностью, поэтому процесс проводился при высокой температуре (350—400°С), что снижало термодинамически возможную степень изомеризации. Этот процесс в технике получил название высокотемпературной изомеризации. Повышение активности катализатора и снижение рабочих температур до 230—380 С было достигнуто увеличением кислотности носителя при переходе на металлцеолитные катализаторы (среднетемпературная изомеризация). Наибольшую активность имеют платиновые или палладиевые катализаторы на оксиде алюминия, содержащие 7—10 % хлора. Они позволяют проводить реакцию при температуре 100—200°С (низкотемпературная изомеризация). Необходимым условием изомеризации на бифункциональных катализаторах, как и каталитического риформинга, является глубокая очистка сырья и водородсодержащего газа от примесей влаги, серы, азота и кислорода, отравляющих катализатор. Для восполнения потерь галогена на катализаторе в сырье вводят небольшое количество галогонсодержащих сподинений. [c.361]

    На рис. 140 представлены реакции, протекающие при получении привитых фаз. "Эфиры силикатов" (а) получают прямой этерификацией илaнoльныз групп (Si-OH) спиртом (R-OH) или хлорированием носителя под действием SO lj с последующим взаимодействием со спиртом. Полученная фаза является мономерной и облегчает процессы массопереноса. К сожалению, этерифииированный силикат является гидролитически нестабильным, что исключает использование воды и спиртов в качестве элюентов. [c.380]


Смотреть страницы где упоминается термин Носители хлорирования: [c.199]    [c.140]    [c.55]    [c.92]    [c.346]    [c.508]    [c.11]    [c.47]    [c.59]    [c.107]    [c.555]    [c.354]    [c.61]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.471 , c.507 ]




ПОИСК







© 2025 chem21.info Реклама на сайте