Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная пара, энергия образования

    Энергия полного удаления электрона из свободного атома называется ионизационным потенциалом (/), а энергия, выделяемая в результате присоединения атомом электрона, — сродством к электрону Е). Из данных, приведенных справа, следует, что. .. потенциал натрия больше. .. хлора, причем энергия, затрачиваемая на образование ионной пары Na+ l , равна. ... [c.182]

    Появление определенной симметрии в молекулах было уже объяснено (разд. 6.3.2) на основе метода валентных связей при образовании ковалентной связи (гибридизация). Однако как чисто электростатические, так и геометрические соотношения могут привести к определенной симметрии в координационных соединениях, если исходить из ионной модели строения молекулы. Рассмотрим, например, координационный полиэдр А +Вр, в котором центральный ион с зарядом - п окружен р однозарядными лигандами. Потенциальная энергия комплекса складывается из отдельных членов, учитывающих кулоновское взаимодействие ионных пар. Сумма отрицательных (связывающих) членов тем больше, чем меньше расстояние между ионом и лигандом. Минимальное расстояние между ионом и лигандом равно гп+г (гп —радиус центрального иона, г —радиус лиганда). Для октаэдрического комплекса с симметрией Ол [c.121]


    Считается, что реакции молекулярного галогенирования арилзамещенных олефинов в неполярных растворителях, имеющие положительные энергии активации [13], также протекают через образование ионных пар, энергия образования которых снижены за счет стабилизации арильными заместителями положительного заряда.,  [c.64]

    ГИИ. Ионные триплеты играют важную роль в электропроводности четвертичных аммониевых солей и других электролитов, когда диэлектрическая проницаемость растворителя меньше 12. Ассоциация двух ионных пар с образованием димера соли также сопровождается уменьшением электростатической энергии, и дальнейшее уменьшение энергии происходит при присоединении к димеру других ионов или иных ионных пар в конце концов этот процесс приводит к кристаллу соли. Степень ассоциации можно определить криоскопически как отношение среднего молекулярного веса к молекулярному весу мономерной соли. В бензоле (е = 2,3) степень ассоциации для объемистых четвертичных аммониевых иодидов, перхлоратов и тиоцианатов составляет от 2,4 до 3,2 при концентрации соли 0,001 М (в расчете на мономер) в 1000 г растворителя [11]. Для тиоцианата тетра-н-бутиламмония степень ассоциации постепенно увеличивается с концентрацией соли, достигая 32 при формальной концентрации 0,3 М, и далее уменьшается, вероятно, потому, что в этой точке объемная концентрация соли равна примерно 0,1. В таких растворах частицы растворенного вещества больше напоминают фрагменты кристалла, а не свободные ионы или ионные пары, а среда весьма сходна с умеренно разбавленным солевым расплавом. [c.286]

    Теория ассоциации ионов Саханова — Семенченко — Бьеррума— Фуосса — Крауса достаточно удовлетворительно объясняет образование ионных пар. Энергия электростатического притяжения противоположно заряженных ионов может значительно превосходить их тепловую энергию, что и обусловливает образование ионных пар, представляющих собой довольно стабильные новые дипольные частицы. [c.216]

    Экзотермический характер перехода контактная пара- сольватно-разделенная пара не кажется очевидным. Вызывает удивление понижение общей энергии системы при замещении карбаниона молекулой (или молекулами) растворителя, которые становятся соседями катиона. Тем не менее вполне вероятно, что частичная нейтрализация зарядов в контактной ионной паре мешает образованию внешней связи катиона с молекулами растворителя. Координирующая сила катиона восстанавливается при его частичном удалении от аниона. Об этом свидетельствует небольшая отрицательная энтропия процесса. [c.257]


    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]

    Следовательно, на образование ионной пары Ка+ и С1 следует затратить энергию, равную 128 кДж / моль + Самопроизвольное образование соединения Ка+С1 объясняется тем, что эта затрата энергии компенсируется энергией электростатического притяжения ионов Ка+ и С1 . [c.35]

    Степень протекания химических сольватационных процессов зависит от электронной структуры молекул и частиц компонентов растворителя и растворенного вещества, способности частиц к ком-плексообразованию, диссоциации, ассоциации, образованию ионных пар и т. д. При сольватационных близкодействующих взаимодействиях их энергия достигает 400 кДж/моль. К дальнодействующим силам взаимодействий относят электростатические взаимодействия между ионами, металлическую связь и силы Ван-дер-Ваальса. Молекулы растворителя ориентируются в структуры различной устойчивости вокруг растворенных частиц с образованием сольватных оболочек. Число частиц растворителя в первой сольватной оболочке определяют как координационное число сольватации (гидратации) Пс- Значение Пс в водных растворах достигает 6—8. [c.91]

    Первая возможность отпадает, так как существует очень малая вероятность одновременных соударений большого числа ионных пар (примерно 10) в одном и том же месте. Во втором случае всегда необходимы два соударения, что во много раз вероятнее. Отсюда вытекает вывод, что большие зародыши растут за счет малых или за счет растворенного вещества. Этот процесс подобен изотермической дистилляции маленьких капель. В принципе невозможно образование центра кристаллизации в результате соударения двух частиц, так как энергия при этом должна складываться из энергии образования и относительной кинетической энергии обеих соударяющихся частиц, т. е. значение энергии больше, чем нужно для образования связей, поэтому зародыш тотчас же распадается. Зародыш кристалла может образоваться, если избыточная энергия свое- [c.199]

    Метод ВС позволяет понять способность атомов к образованию определенного числа ковалентных связей, объясняет направленность ковалентной связи, дает удовлетворительное описание структуры и свойств большого числа молекул. Однако в ряде случаев метод ВС не может объяснить природу образующихся химических связей или приводит к неверным заключениям о свойствах молекул. Так, согласно методу ВС, все ковалентные связи осуществляются общей парой электронов. Между тем, еще в конце XIX века было установлено существование довольно прочного молекулярного иона водорода энергия разрыва связи составляет здесь 256 кДж/моль. Однако никакой электронной пары в этом случае образоваться не может, поскольку в состав иона Hj входит всего один электрон. Таким образом, метод ВС не дает удовлетворительного объяснения существованию иона. Далее, образование молекулы кислорода О2 описывается методом ВС как результат создания двух общих электронных пар. Согласно такому описанию, молекула О2 не содержит неспаренных электронов. Однако магнитные свойства кислорода указывают на то, что в молекуле О2 имеются два неспаренных электрона. [c.105]


    Важную роль играет также выбор растворителя и электролита фона. Применение растворителей с высокой диэлектрической постоянной (б>20) и прежде всего воды приводит к высоким диэлектрическим потерям энергии сверхвысокочастотного поля в резонаторе спектрометра ЭПР и ухудшает условия получения хорошо разрешенного спектра. С другой стороны, в растворителях с низким значением е возможно образование ионных пар, искажающее спектры. Этот эффект ослабляется при использовании в качестве электролита фона тетраалкиламмониевых солей. Влияние на спектр ЭПР природы растворителя и соли фона имеет и положительное значение, так как открывает пути для изучения процессов сольватации ион-радикалов и образования ионных ассоциатов. [c.226]

    При концентрациях электролита больших, чем Скр, энергия электростатического взаимодействия ионов противоположного знака превышает энергию теплового движения ионов, что приводит к образованию ионных пар. [c.179]

    При выводе уравнения Бьеррума определялась вероятность образования ионных пар в зависимости от расстояния между ионами и распределения ионов по энергиям. [c.121]

    Первый интеграл берется от расстояния наибольшего сближения между центром тяжести противоположного заряда диполя и ионом аз до наиболее вероятного расстояния (Л ), которое является корнем уравнения (111,37). Этот интеграл дает величину энергии, зависящую от изменения расстояния между ионом и диполем он почти в точности подобен тому интегралу, который мы имели ири подсчете вероятности образования ионных пар. [c.122]

    Характер химических связей в серной кислоте определяется возможностью ионизации атома серы. От последнего можно оторвать лишь два электрона, по одному от каждой пары отрыв третьего электрона невозможен, так как требует большого количества энергии, не окупаемой энергией образования связи. Отрыв двух электронов приводит к образованию двухзарядного положительного иона серы  [c.578]

    Ионная связь обусловливает образование ионных кристаллов, а также ионных молекул, существующих в парах ионных соединений. Она является следствием электростатического притяжения противоположно заряженных ионов и возникает между атомами, сильно отличающимися потенциалом ионизации и сродством к электрону. Наименьшим потенциалом ионизации обладают атомы щелочных металлов. Отдавая свой внешний электрон, эти атомы превращаются в одновалентные катионы, электронная оболочка которых подобна оболочке атомов инертных газов. Наибольшей энергией сродства к электрону обладают атомы галогенов. Достраивая свою электронную оболочку, эти атомы становятся одновалентными анионами. [c.114]

    При образовании кристалла из одноатомных ионов, первоначально находящихся в состоянии пара, энергия. ... Эту энергию, называемую энергией кристаллической решетки, можно определить, используя цикл Борна — Габера. [c.174]

    Самопроизвольное образование ионной пары Ка+—С1 объясняется тем, что энергия, затрачиваемая на образования ионов из. .. (/ка—Ес ), компенсируется энергией электростатического притяжения (V). Ионная пара Ыа+С1 стабильна, если величина V... величины (/ма— с1), т. е. 30,6 ккал/моль. [c.184]

    При образований отрицательно заряженных тройников из других анионов реакция У1 —по-видимому, ае имеет существенного значения. На это указывает тот факт, что с увеличением концентрации соли скорость ионизации РЬ2СНВг стремится к нулю. На том же основании можно считать, что реакции У1Г- Шу, и УП —Шу также не имеют места, во всяком случае ддя анионов 01 , Вг , 3 и НОд .- Основным результатом образования тройников в этом случае будет снижение концентрации П и таким образом подавление реакций П- Ш. По существу образование У1 можно рассматривать шк. процесс стабилизации исходной ионной пары П (образование ионного тройника снижает энергию систеш ). Стабилизирующий эффект солей должен возрастать за счет равновесного превращения У1 в УП и У . Контактный анионный тройник У может подвергаться последующим превращениям - распадаться с образованием исходной ионной пары П и ионной пары П . Последняя ионная пара может захлопываться в ковалентный продукт (обмен аниона), переходить в Шу и превращатьс.ч в частично сольватно-разделенный тройник У1 , который может находиться в равновесии с ионными тройниками УТГ и У7 или распадаться с образованием Пу или Ш . Накопление 1у могло бы привести к ускорению (у = МОд, "3 ) или замедлению (у =01 ) общей скорости реакции за счет изменения природа субстрата. [c.318]

    В принципе нет оснований для того, чтобы применять такой метод к молекулам с ковалентной связью. Очевидно, что для таких частиц работа ионизации должна включать особый компонент, который соответствует работе образования ионной пары из ковалентной молекулы. Однако можно ожидать, что этот компонент будет подобен по форме кулоновскому, так что различие может заключаться попросту в коэффициенте пропорциональности. Более серьезное возражение, которое было выдвинуто Питцером, относится к пренебрежению в таких уравнениях, как уравнение (XV.12.1), компонентом, включающим энергию отталкивания, благодаря которой поддерживается равновесная концентрация ионных пар. Если эти силы значительно изменяются с изменением расстояния, например пропорционально можно показать, что энергия отталкивания составляет 1/(2 часть кулонов-ской энергии. Такое же значение имеет энергия взаимной поляризации и ван-дер-ваальсовых сил притяжения. [c.460]

    Значение ионов при образовании новой фазы в газовой среде легко доказать с помощью камеры Вильсона. Для этого камеру следует заполнить воздухом и паром исследуемой жидкости, пересыщение которого недостаточно для образования тумана в неионизированном газе, и вызвать в камере ионизацик> газа, например, путем облучения частицами высоких энергий (продуктами распада радиоактивных элементов, космическими лучами). В таких условиях в камере можно наблюдать дорожки из тумана, соответствующие пути частиц. Причиной образования таких дорожек является образование ионов в результате столкновения частиц высоких энергий с молекулами газа и конденсация на этих ионах паров. [c.358]

    В водных растворах электролитов энергия теплового движения значительно превышает энергию электростатического притяжения противоположно заряженных ионов. Однако в неводных растворителях, для которых диэлектрическая проницаемость В значительно меньше, чем для воды, эти энергии соизмеримы, и поэтому наблюдается образование ионных пар. Ионные пары представляют собой ассоциаты, образованные за счет электростатического взаимодействия двух сольватированных противоположно зарял енных ионов. В случае симметричных электролитов, когда = г , ионные пары электрически нейтральны и, подобно нейтральным молекулам, не участвуют в процессе переноса электричества при электролизе. Энергия электростатического взаимодействия двух ионов, равная (г 2д)е / )г (где г— среднее расстояние между центрами сольватированных ионов), при каком-то значении г = называемом критическим расстоянием, равна наиболее вероятному значению энергии теплового дв-ижения 2/еТ  [c.178]

    Особенностью протекания органических реакций является то, что ионы, столь характерные для неорганических реакций, возникают лишь в момент прёвращения реагентов и имеют скрытый характер. По этой причине их называют скрытыми ионами, или криптоионами. При этом для органической среды, в отличие от водной, более характерно образование не изолированных ионов, а ионных контактных пар и их ассоциатов. Если же в ряде случаев под влиянием сольватации ионная пара и разделяется, го в силу высокой энергии образующиеся сольватированные катионы и анионы чрезвычайно реакционноспособны и поэтому существуют в течение короткого промежуч ка времени. [c.37]

    В концентрированных растворах сильных электролитов расстояния между ионами могут быть настолько малы, что возможно непосредственное сближение двух ионов противоположного заряда и образование ионной пары, если кинетическая энергия теплового движения недостаточна для преодоления сил взаимного притяжения ионов. Ионная пара в некоторых отношениях подобна недиссоцнирующей молекуле. Содержание ионных пар изменяется в зависимости от концентрации электролита от десятых долей процента до нескольких процентов в очень концентрированных растворах. [c.287]

    В работе совместно с Ю. А. Кругляком нами был предложен новый метод нахождения энергии и теплоты сольватации отдельных ионов. Этот метод основан на представлении о сольватации ионов как о процессе комплексообразования. Согласно этим представлениям, связь между молекулами растворителей и ионами осуществляется вследствие образования молекулярных орбит. При этом центральные атомы молекул растворителей (кислород, азот) являются донорадги неподеленных пар ялектронов, а ионы — их акцепторами, представляющими им свои вакантные орбиты. Число сольватации онределяется координационным числом, т. е. числом ближайших к заполненным вакантных орбит с близкими энергетическими уровнями. Первичная анергия сольватации представляет, следовательно, энергию комплексообразования, а вторичная — энергию электростатического взаимодействия комплекса с молекулами растворителей. [c.169]

    В ЭТОМ цикле мы мысленно переходим от твердого металлического натрия и газообразного хлора (левая часть схемы) к кристаллическому хлориду натрия (правая часть схемы) двумя путями. Первый состоит в превращении натрия и хлора в состояние ионов Na+ и СГ и образовании из них твердого хлорида натрия. В соответствии с определением понятия энергия кристаллической решетки при образовании Na l из газообразных ионов выделяется энергия, равная по абсолютной величине Ug. Для получения ионов натрия требуется превратить металлический натрий в пар. На это затрачивается теплота сублимации AH yg , величина которой может быть определена термохимическими методами. Затем нужно подвергнуть атомы ионизации, что требует затраты энергии ионизации /ма, которая также может быть измерена (см. стр. 52). Для получения ионов хлора необходимо сначала разорвать связь в молекуле I2 на получение одного атома хлора потребуется затрата (об определении данной величины см. [c.268]

    Мюллера О —VВ области напряжений О — амплитуда импульса тока возрастает пропорционально напряжению, так как с ростом напряжения снижается вероятность рекомбинации образующихся ионов или диффузии их из электрического поля. В области напряжений —11 все образующиеся ионы достигают электродов, процессы рекомбинации и диффузии практически отсутствуют. Эта область является областью работы ионизационной камеры. При напряжениях больше начинается вторичная ионизация газа, в процессе которой первично образовавшиеся ионы настолько ускоряются приложенным силовым полем, что сами вызывают образование вторичных ионных пар. Вторичная ионизация молекул газа в рабочей области пропорционального счетчика зависит от вида и энергии излучения. При напряжениях больше фактор вторичной ионизации лишь относительно пропорционален энергии и при напряжении U уже не зависит от вида и энергии излучения. Напряжение Иц называют гейгеровским порогом, между напряжениями расположена область работы счетчика Гейге- [c.307]

    В газах под действием излучения наряду с процессами первичной ионизации и возбуждением происходит вторичная ионизация, Кроме того, образующиеся ионы и электроны обладают определенной кинетической энергией. Поэтому значение средней энергии, необходимое для образования ионной пары больше, чем значение энергии ионизации, и зависит от природы газа. Для разных газов значения W различны, что дает возможность определять состав двухкомпонентной смеси. Различие в свойствах молекул разных газов еще отчетливее проявляется в различной способности их к присоединению электронов. Способность к присоединению электрона обусловлена тем фактом, что электрическое поле положительно заряженного ядра неполностью экранировано электронными оболочками, в связи с чем возникает возможность присоединения одного электрона. Получающиеся отрицательные ионы движутся в электрическом поле со значительно меньшей скоростью, чем свободные электроны. Вследствие большого сечения столкновения их с положительно заряженными ионами рекомбинация их значительно более вероятна. Аналогичным образом электроны и ионы могут присоединяться также к частицам аэрозоля. Частицы аэрозоля, имеющие большую массу, настолько медленно движутся в электрическом поле, что полностью теряют свой заряд в процессе рекомбинаций, не достигая электродов. При этом происходит уменьшение ионизационного тока в камере в соответствии с долей присоединившихся к аэрозолю ионов. [c.324]

    Для доказательства того, что реакция [Со(ЫНз)5Н20] с анионами У" (так называемая реакция анации) идет по механизму рассмотрим вначале форму кинетического уравнения для нее. Скорость этой реакции увеличивается с ростом [Y ] согласно уравнению (VII. 15). Установлено, что образуются ионные пары [ o(NH з) аН аО JS N-+, [ o(NH 3) 5Н 2О ]S04 [ o(NH 3) 5Н 2О ]H2P0f и др., определены константы их образования, показано, что скорость пропорциональна равновесной концентрации ионных пар согласно (VII. 14) и вычислены значения k . Перечисленные факторы указывают на то, что осуществляется один из двух механизмов или 1 Различить их позволяет зависимость энергии активации и скорости реакции от характера входящей частицы. Поскольку значения ki близки между собой, то реализуется механизм I [c.145]

    Из соотношения (УП1.28) следует, что при увеличении заряда ионов расстояние, на котором они начинают взаимодействовать, увеличивается. Наоборот, при увеличении диэлектрической проницаемости растворителя сила электростатического взаимодействия между ионами уменьшается в В раз. Поэтому полярные растворители, характеризующиеся большим значением диэлектрической проницаемости, способствуют образованию растворов с малой склонностью к возникновению ионных пар. Даже на сравнительно малых расстояниях взаимодействием ионов можно пренебречь д мал по величине), поэтому ионы можно считать практически изолированными. При увеличении температуры, как следует из (УП1.28), параметр Бьёррума q уменьшается и взаимодействие между ионами ослабляется на меньших расстояниях, что объясняется возрастанием энергии теплового движения ионов. Параметр Бьёррума имеет вполне определенное значение для каждого растворителя при заданных температуре и заряде ионов. Например, для однозарядных ионов в воде (2+ = 2 =1) при 25° С = 298 К [c.260]

    Если в кач тве растворителя используют диметилсульфоксид, то основание сильно диссоциировано, что благоприятствует нормальному пути — а /гаи-элиминированию. В эфире литиевое основание ведет себя скорее как ионная пара, что способствует син-элимини-роваиию. В других примерах наблюдается та же тенденция [44]. Углы между связями обусловливают следующее могут быть выделены только г ис-формы циклоолефинов от Сз до С, г ис-формы цик-лоолефинов от Q до Сц термодинамически более стабильны, чем /ирйнс-формы трйнс-формы стабильнее цис-фо и в случае 12 и более высокомолекулярных циклоолефинов. При образовании ациклических олефинов достигнуть стереоспецифического дегидрогалогенирования не так легко. Предполагая, что линейное транс) дегидрогалогенирование требует наименьшего количества энергии и что конформация в переходном состоянии ограничена, можно получить транс-олефин так, как показано ниже [c.93]

    Образование слоя хемосорбционного комплекса Л1е(0Н)адс снижает энергию поверхности, и последующий процесс адсорбции воды протекает по ранее рассмотренному механизму конденсации (для полимолекулярной адсорбции). Однако свойства воды в таком физически сорбированном слое вследствие действия поверхностных сил отличаются от свойств объемной воды1 Структурирование воды в тонких стенках, по-видимому, влияет на концентрацию и подвижность гидратированных ионов, образующихся по реакции Н20ч=ьН+адс-Ь -ЬОН-адс. Учитывая, кроме того, чрезвычайно малый объем физически адсорбированной воды ( 10 моле- ул/см2), нет оснований ожидать заметных скоростей реакций с участием гидратированных ионов. Действительно, если даже допустить, что ионное произведение В0ДЫ1 в адсорбированном слое такое же, как и в ее объеме (10 ), то количество ионных пар в адсорбированной фазе при п= 15-т-20 статистических монослоев составляет около 10 на 1 см . Эта величина еще меньше в области отрицательных температур, где ионное произведение воды (льда) быстро уменьшается. [c.58]


Смотреть страницы где упоминается термин Ионная пара, энергия образования: [c.269]    [c.62]    [c.275]    [c.137]    [c.463]    [c.174]    [c.181]    [c.34]    [c.385]    [c.407]    [c.14]    [c.181]   
Радиационная химия органических соединений (1963) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная пара

Ионные образование

Ионные энергия образования

Ионов образование

Ионы образование

Ионы энергия,

Энергия ионов

Энергия образования



© 2025 chem21.info Реклама на сайте