Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины производство дегидрированием

    В патентной литературе чаще всего упоминаются два катализатора, применяемые для дегидрирования изопропилового спирта металлическая медь и окись цинка. Медь страдает тем недостатком, что ее активность уменьшается в процессе работы, а окись цинка вызывает в некоторой степени дегидратацию изопропилового спирта в пропилен. В промышленности сейчас, по-видимому, предпочитают производить ацетон дегидрированием, используя в качестве катализатора окись цинка, чистую или промотирован-ную. Одним из преимуществ этого метода по сравнению с методом окисления изопропилового спирта, о котором сообщается ниже, является то, что при дегидрировании в качестве побочного продукта получается чистый водород. В Германии производство ацетона осуществлялось дегидрированием изопропилового спирта, полученного из Сд—С4-олефинов, образующихся в процессе каталитического гидрирования окиси углерода при атмосферном давлении в жидкое топливо (гл. 3, стр. 62 и гл. 8, стр. 149). [c.315]


    На действующих заводах исходным сырьем являются метанол и изобутан. Метанол подвергается окислительной конверсии в формальдегид на типовых установках с катализатором—серебро на пемзе (см. гл. 6), входящих в состав основного производства. Полученный формальдегид после отгонки непрореагировавшего метанола направляется на синтез ДМД. Изобутан дегидрируется в псевдоожиженном слое пылевидного катализатора (см. дегидрирование бутана и изопентана). С4-фракция дегидрирования изобутана, содержащая до 45—50% изобутилена, также подается на синтез. Существенно отметить, что для получения ДМД могут использоваться любые технические С4-фракции, содержащие достаточное количество изобутилена (продукты каталитического крекинга, пиролиза, дегидратации изобутиловых спиртов и т. д.). Обычно сопутствующие изобутилену непредельные углеводороды С4 нормального строения, так же как пропилен и олефины С5, значительно уступают изобутилену, обладающему активным третичным атомом углерода, по реакционной способности во взаимодействии с формальдегидом (табл. 11.3). [c.368]

    Главным методом получения олефинов в промышленности являются процессы расщепления нефтяных фракций или углеводородных газов. Эти процессы можно разделить на две группы термические (пиролиз и термический крекинг парафинов) и каталитические (каталитический крекинг). Первые осуществляют для целевого получения олефинов, а вторые — для производства бензина, и олефины получаются как побочный продукт. Кроме того, часть олефинов получают дегидрированием соответствующих парафинов, а некоторые олефины — реакциями их взаимного превращения (олигомеризация и диспропорционирование). [c.33]

    Основные направления использования жидких и твердых парафинов, получающихся при переработке нефти, показаны на рис. VII.3. Ведущими из указанных направлений являются для жидких парафинов — производство белково-витаминных концентратов и линейных олефинов (процессом дегидрирования)  [c.238]

    Возможность получения олефинов каталитическим дегидрированием парафиновых углеводородов была установлена в 1920-х гг. [1—4]. На основе окиси хрома [5—7], с применением окиси алюминия в качестве носителя [8] был разработан ряд катализаторов, отличающихся удовлетворительными активностью и избирательностью [4, с. 59]. Проектирование производства, в основном с целью получения олефинов для производства моторных топлив, было начато в США в 1930-х гг. [2, с. 66]. Во время второй мировой войны олефины Для этих целей производили американские фирмы Филлипс , Универсал ойл Компани и другие на алюмохромовых катализаторах в неподвижном слое и германская фирма И. Г. Фарбениндустри — на движущихся алюмохромовых катализаторах. [c.652]


    Когда сырьем для производства диенов являются соответствующие парафины ( н-бутан или изопентан), процесс осуществляют двумя способами 1) как двухстадийный (первая стадия — дегидрирование парафина в олефин, вторая — дегидрирование илн окислительное дегидрирование олефина в диен) 2) как одностадийный. [c.490]

    Трубчатые печи широко применяются в производстве ООС и СК как нагревательные аппараты (например, в производствах дегидрирования бутиленов, изобутана, этилбензола) они находят также широкое применение в процессах пиролиза при получении этилена и других олефинов. В этом случае их следует рассматривать как нагревательно-реакционные аппараты. Трубчатые печи являются основными нагревательными аппаратами для большинства технологических установок нефтеперерабатывающих заводов. [c.285]

    На возможность получения диеновых углеводородов дегидрированием олефинов впервые было указано в работах английских ученых [9], но интенсивные исследования в этой области начались значительно позже. В нашей стране первые исследования в этой области проводились под руководством С. В. Лебедева [10, 11], а несколько позже —А. А. Баландина [12]. Уже в ранних работах было установлено благоприятное влияние на дегидрирование олефинов снижения парциального давления за счет разбавителей и, в частности, использования водяного пара [12, 13]. Производство бутадиена дегидрированием бутена было осуществлено в промышленных масштабах в 1940-х гг. [2, с. 67]. [c.652]

    На Международной конференции Ценные нефтехимические соединения из легких олефинов - производство и конверсия (Гамбург, 10-12 окт. 2001 г.) обсуждались новые технологии пиролиза, в частности, каталитического и окислительного дегидрирования легких парафинов [43]. [c.86]

    При 650 °С, времени контакта 0,5—2 мин и объемной производительности катализатора 0,3—0,4 л/ч происходит сильное образование ароматических углеводородов в результате дегидрирования нафтенов и циклоконденсации олефинов. Метод мало применяется для получения олефинов, он больше служит для производства основных ароматических. веществ. [c.36]

    Теперь рассмотрим октановые числа олефинов и их приемистость к тетраэтилсвинцу. Несмотря на значительное увеличение октанового числа олефина при перемещении двойной связи от крайнего положения к центру цепи, среднее октановое число олефиновых продуктов остается все же. низким. Приемистость к тетраэтилсвинцу со стороны такого ненасыщенного бензина также относительно низка. Кроме того, без присадок этот бензин почти непригоден для хранения. В заключение можно сделать общий вывод, что с точки зрения производства бензина путем каталитического риформинга реакция дегидрирования до олефинов не является многообещающей. [c.166]

    Производство химических продуктов из нефтяного сырья основано на большой доступности последнего и на том, что низшие углеводороды легко вступают в основные химические реакции, такие как окисление, галогенирование, нитрование, дегидрирование, присоединение, полимеризация, алкилирование и т. д. Низкомолекулярные парафины и олефины, содержащиеся в природных и нефтезаводских газах, а также простые ароматические углеводороды до настоящего времени представляли с этой точки зрения наибольший интерес, потому что только здесь индивидуальные соединения легко могут быть выделены и переработаны. Можно получить большое число соединений, и многие из них в настоящее время производятся промышленностью. [c.575]

    Одним из наиболее широко распространенных способов получения олефинов и диолефинов для производства полимерных материалов является процесс каталитического дегидрирования низкомолекулярных парадное. [c.234]

    Эти олефины являются основой для производства многих химических продуктов. Так этилен и пропилен идут на производство спиртов, полиэтилена, полипропилена бутилены служат сырьем для получения бутадиена, идущего на производство каучука предельные газообразные углеводороды после пиролиза или дегидрирования увеличивают ресурсы олефинового сырья. Шидкие углеводороды парафинового ряда используются в качестве сырья для получения спиртов, жирных кислот, а низшие ароматические углеводороды — для получения искусственного волокна, пластмасс и ряда других химических продуктов. Возможность выделения этих углеводородов из продуктов деструктивного разложения нефтяного сырья [c.40]

    Сырьем для выделения водорода могут служить й некоторые газы нефтехимических производств, например водород образуется при дегидрировании углеводородов. Такими процессами являются пиролиз углеводородов в производстве олефинов, а также дегидрирование бутана и бутилена в производстве синтетического каучука. [c.37]


    Процесс алкилирования изобутана пропиленом и бутиленами предназначен для получения алкилатов — высокооктановых компонентов бензина. Алкилирование бензола пропиленом проводят с целью получения изопропилбензола — также высокооктанового компонента бензина, либо с целью получения сырья для производства фенола и ацетона. В результате алкилирования бензола этиленом получают этилбензол, который путем дегидрирования превращают в стирол — сырье для производства каучука. Катализаторами алкилирования изобутана олефинами чаще всего служат серная и фтористоводородная кислоты. При алкилировании ароматических углеводородов олефинами применяют ортофосфор-ную кислоту на твердом носителе и хлористый алюминий. [c.197]

    Реакция дегидрирования имеет практическое значение для производства С4-олефинов. [c.109]

    В настояшее время реализовано несколько модификаций процесса каталитического дегидрирования парафинов под давлением водорода на платинсодержащем катализаторе процессы фпрмы ЮОП (США) ио производству олефинов п выше (пакол-процесс) и Сз—С5 (катафин-ироцесс, процесс оле-флекс — рис. 55). Селективность процессов — до 90% для Сз — 5 и более 90% для высших олефинов. Ацетиленовые и диеновые углеводороды практически отсутствуют вследствие давления водорода и применения гидрирующего катализатора. Глубина деструкции исходного парафина минимальная — выход газа С —Сг не превышает 5%. [c.159]

    Для расширения ресурсов олефинов в процесс алкилировання вовлекают пропиленовую фракцию или подвергают дегидрированию н-бутан. Однако, с одной стороны, алкилат на основе пропилена или смеси его с бутиленами имеет более низкое октановое число при использовании только пропилена — примерно на 5 единиц. С другой стороны, пропилен является ценным нефтехимиче-ршм сырьем, а дегидрирование н-бутана чаще проводят с целью получения бутадиена — сырья для производства синтетического каучука. Возможно, что ресурсы олефинов Сз—С4 увеличатся за счет возрастающей тенденции к утяжелению сырья пиролиза и ужесточению режима установок каталитического крекинга. [c.301]

    Секция разделения и очистки. Хотя сырой продукт процесса представляет сравнительно сложную смесь, основные комноненты этой смеси, т. е. альдегиды и спирты, содержащие на один атом углерода больше, чем исходный олефин, обычно легко удается отделить от более легких и более тяжелых побочных продуктов и непрореагировавшего сырья. Значительно ббльшие трудности представляет разделение индивидуальных изомеров, образующих основной продукт синтеза. Если исходить из олефинового сырья высокой чистоты, то разделение продуктов синтеза, содержащих 3—5 углеродных атома в молекуле, не представляет особых трудностей. Если же исходное сырье представляет смесь изомеров или если при оксосинтезе исходить из высокомолекулярных олефинов, то возникают настолько значительные трудности разделения, что целесообразность производства каких-либо индивидуальных продуктов практически исключается поэтому обычно оксосинтезом высших олефинов получают смеси изомеров. Это особенно относится к альдегидам вследствие их высокой реакционной способности при температуре перегонки. Разумеется, чистые высокомолекулярные альдегиды можно получать окислением или дегидрированием индивидуальных спиртов. [c.275]

    В сценарии с принудительными окислами жесткость ЖКК может быть отрегулирована так, чтобы максимально увеличить производство легких олефинов. Увеличение жесткости ЖКК до метода чрезмерно глубокого крекинга, чтобы произвести дополнительные легкие олефины, увеличивает содержание окислов смеси на 40%. Если двухпроцентное содержание окислов будет установлено законом, оно все еще будет составлять лишь около половины требуемого количества. При этих обстоятельствах потребуются либо закупка МТБЭ или ЭТБЭ или же производство на самом нефтеперерабатывающем заводе МТБЭ путем дегидрирования. [c.232]

    Увеличение спроса на МТБЭ обусловило поиск новых источников изо-олефинов. За рубежом разрабатываются новые способы производств , сырья для получения МТБЭ - изобутена из природного и попутного газов, из газов переработки нефти через стадии изомеризации н-бутана и дегидрирования изобутана, а также скелетную изомеризацию н-бутенов фракции Са каталитического крекинга и пиролиза [196]. [c.110]

    В производстве олефинов количество ВЭР достигает 0,7 т.у.т. на 1 т. готовой продукции, в производстве бутадиена двухстадийным дегидрированием бутана 2,1 т.у.т./т бензола. [c.117]

    В настоящее время в промышленности осуществлены синтезы пропионового альдегида (сырье для получения н-пропанола и пропионовой кислоты, щироко применяемых в сельском хозяйстве, химико-фармацевтической промышленности и других отраслях народного хозяйства) масляных альдегидов ( -масляный альдегид — сырье для производства 2-этилгексанола-1 — важнейшего сырья для получения пластификаторов), бутанола, этриола изомасляный альдегид — сырье для получения изобутанола, неопентилгликоля, изобутилизобутирата альдегидов —Сд на основе фракции олефинов крекинга альдегидов Сц—Си и С)5—С18 на основе олефинов, полученных дегидрированием соответствующих н-парафинов. Последующим гидрированием альдегидов С2—Сд получают соответствующие первичные спирты — сырье для производства пластификаторов (фта-латов), а на основе альдегидов Сц—С18 вырабатывают спирты, [c.335]

    В настоящее время на практике для производства высших алкилбензолов в качестве сырья используют тетрамеры пропилена, а-олефины и внутренние олефины, полученные дегидрированием нормальных парафинов. [c.146]

    Новый процесс производства алкилбензолсульфонатов на основе олефинов, получаемых дегидрированием высших -парафинов [126], включает следующие стадии дегидрирование линейных -парафинов гидрирование диеновых углеводородов алкилирование бензола олефин-парафиновой смесью отгонку бензола отгонку парафинов и их рециркуляцию сульфирова-ние алкилбензолов. [c.151]

    Так, новая технология производства низших олефинов дегидрированием парафинов (пропана, бутана) создает предпосылки для реализации модульного принципа. В качестве таких модулей возможно большое число вариантов дегидрирование пропана — бутиловые спирты или масляные альдегиды гидро-формилированием дегидрирование пропана — гидратация в нзопропанол дегидрирование пропана — полипропилен дегидрирование бутана — метилэтилкетон, бго -бутанол и т, д. [c.152]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    Разделение углеводородов, отличающихся числом я-связей в молекуле. Эта проблема возникает, в частности, при производстве 1,3-бутадиена дегидрированием н-бутана и н-бутенов, изопрена— дегидрированием изопентана и изоамиленов, изобутилена— дегидрированием изобутана. В этих процессах необходимо отделить непрореагировавщие исходные углеводороды от продуктов дегидрирования (парафины от олефинов, олефины от диенов и т. п.), а также отделить алкадиены от продуктов более глубокого дегидрирования — ацетиленовых углеводородов. [c.664]

    В настоящее время ведется широкий поиск новых сырьевых источников для производства этилена. Наиболее доступное сырье — метан, однако его дегидрогенизационная димеризация термодинамически становится возможной лишь при температурах выше 800 °С и является более эндо- ермичной, чем дегидрирование этана (222 кДж/моль и 146 кДж/моль). Перспективным представляется синтез этилена на основе угля в процессе производства бензина из метанола. При синтезе олефинов через метанол (при выходе низших олефинов 60%) на 1 кг олефинов расходуется 4,6 кг угля [12]. При этом остальные 40% получаемых продуктов представляют собой ценное химическое сырье. [c.16]

    Производство мономеров для получения синтетического каучука (бутадиена, изопрена, стирола) в значительной мере базируется на процессах каталитического дегидрирования различных углеводородов. Выбор катализатора эависит от типа применяемого сырья [46, 52]. Наиболее распространенными для дегидрирования алканов в алкены являются алюмо-хромовые катализаторы. Для дегидрирования олефинов в диеновые углеводороды кроме алюм о-хромовых применяют железосодержащие и кальций-никель-фосфатные катализаторы, стабилизированные окисью хрома. В процессах дегидрирования алкилароматических углеводородов применяют железо-хромо-калиевые катализаторы. [c.409]

    Дегидрирование парафинов Q—Са не применяется для производства соответствующих олефинов, получаемых в настоящее время олигомеризацией олефинов Ся—Q в мягких условиях (например, процесс Димерсол , разработанный Французским институтом нефти, — см. гл. 10). Ароматизация парафинов Q— g является одной из важнейших реакций процесса каталитического риформинга (см. гл. 5). Дегидроциклизация индивидуальных парафинов (гексана в бензол и гептана в толуол) интенсивно изучалась с целью разработки технологического процесса (Казанский, Дорогочинский — в СССР, Арчибальд и Гринсфельдер — в США) в присутствии промотированного алюмо-хромового катализатора. При 550 °С выход бензола и толуола составлял 60—70% при использовании в качестве сырья индивидуальных углеводородов чистоты 98—99%. Разработан вариант процесса в подвижном слое катализатора, что позволило обеспечить непрерывность рабочего цикла и подвод теплоты, необходимой для компенсации эндотермического теплового эффекта дегидроциклизации (см. табл. 2.1). Однако перспективы его внедрения в настоящее время неопределенны и, вероятно, будут обусловлены экономической эффективностью по сравнению с современными модификациями риформинга жесткого режима [платформинг низкого давления в подвижном слое катализатора, разработан фирмой Universal Oil Produ ts—UOP (США) — см. гл. 5]. Наибольшую роль дегидроциклизация парафинов Q—Се играет в процессе Аромайзинг , разработанном Французским институтом нес и. По рекламным данным, процесс осуществляется в подвижном слое полиметаллического алюмо-платинового катализатора при давлении < 1 ЛШа (приблизительно 0,7 МПа) и температуре 540—580 X. Доля реакции дегидроциклизации парафинов в образовании ароматических углеводородов превышает 50% (см. гл. 5). [c.59]

    Положенное в США в основу производства синтетическою каучука дегидрирование бутанов и бутенов изучалось Гроссом [43] и Моррелем [44]. В качестве катализаторов этими авторами были использованы хром-молибден и окись ванадия, нанесенная на глинозем. Над теми же катализаторами, приготовление которых было описано Гроссом, может быть осуществлено и дальнейшее дегидрирование олефинов в диолефины [45]. Последнюю реакцию, в отличие от дегидрирования парафиновых углеводородов, осуществляют иод вакуумом в 0,25 атм при 600—6.50 и времени контакта от0,3 до0,03сек. Выход бутадиена за проход колеблется в пределах от И до 30%, а максимальный выход 1,3-бутадиена из бутонов достигает 1 % (при отделении сажи, не превышающем 10%). В С(>СР этот путь синтеза дивинила разрабатывался П. Д. Зелинским, О. К. Богдановой, А. П. Щегловой, М.П. Марушкиными Л. Н. Павловым [46, 47].Производство каучука, а затем резины потребовало, в свою очередь, преодоления ряда новых трудностей. Мы приведем лишь два примера, относящихся к полимеризации смесей дивинила п стирола и к производству сажи. [c.474]

    Производство формальдегида из метанола-сырца. Рассмотренные выше схемы производства формальдегида дегидрированием и окислением метанола предусматривают использование преимущественно пемзосеребрянных катализаторов, весьма чувствительных к контактным ядам. Поэтому в них используют метанол-ректификат, тщательно очищаемый от соединений железа, хлора, серы и некоторых органических соединений (олефинов, альдегидов и др.). Необходимость подобной очистки увеличивает капитальные затраты и значительно (на 15— [c.298]

    ДегидрироваЕше мо кет быть также примеиеио и для производства пропена. Но поскольку этот газообразный олефин можно получать и другими путями (например, крекингом бутана) и, кроме того, он в относительно больших количествах содержится также в газах переработки нефти, то большее значение реакция каталитического дегидрирования приобрела для бутана. [c.60]

    Олефины получают термическим или каталитическим дегидрированием парафиновых углеводородов. Термическое разложение или пиролиз этана и пропана приводит к образованию этилена и пропилена [15, 55, 88]. Пропилен, i-бyтилeны и изобутилен получают каталитическим расщеплением газойля,, хотя бутилены можно получать и каталитическим дегидрированием. Каталитическое дегидрирование н-бутана и и-бутена ведет к образованию бутадиена [7, 13, 22, 76]. Стирол можно получать каталитическим дегидрированием этил-бензола [9]. При всех этих реакциях олефин часто является лишь одним из компонентов сложной углеводородной смеси. Выделение и очистка чистого целевого олефина представляют при его производстве значительные трудности [8, 13]. [c.283]

    Наиболее важными с промышленной точки зрения простейшими олефинами являются этилен, пропилен (пропен) и бутены. Их получают парофазным крекингом нефти (фракция, кипящая при 50—200 °С). Этилен используют в производстве полиэтилена, дп-галогенэтиленов, этиленоксида, этанола, этилбензола, ацетальдегида и т. д. Пропилен является важным сырьем в производстве полипропилена, изопропилового спирта, фенола и ацетона (через изопропилбензол), пропиленоксида, аллилхлорида, акриловой кислоты и т. д. н-Бутены используют в производстве бутадиена, а изобутен является важным исходным соединением в производстве бутилкаучука (сополимер с небольшим количеством изопрена). Наиболее важным ароматическим олефиновым углеводородом является стирол (1-фенилэтилен), получаемый высокотемпературным дегидрированием этилбензола. Его используют главным образом для приготовления полистирола и родственных сополимеров. [c.171]


Смотреть страницы где упоминается термин Олефины производство дегидрированием: [c.59]    [c.244]    [c.59]    [c.262]    [c.65]    [c.54]    [c.60]    [c.152]    [c.13]    [c.311]    [c.174]   
Подготовка сырья для нефтехимии (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидрирование парафинов и олефинов. Производство бутадиена и изопрена

Производство олефинов и диенов окислительным дегидрированием углеводородов

СЫРЬЕ И РЕАГЕНТЫ В НЕФТЕХИМИЧЕСКИХ ПРОИЗВОДСТВАХ Лиакумович Пути повышения эффективности дегидрирования олефинов



© 2024 chem21.info Реклама на сайте