Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эфиры из хлористых из олефинов

    Влияние температуры. Температура, необходимая для того, чтобы данная кислота могла активировать парафины, определяет степень, до которой будет идти такая активация в реакции алкилирования. Роль температуры в отношении ионизации сложных эфиров, образованных олефином и кислотой, уже указывалась. В общем случае чем быстрее происходит ионизация олефина, тем более вероятно, что будут получаться ионы, а следовательно, и олефины, соответствующие исходному парафину. В результате этого сложность алкилата возрастает. Сочетание хлористый алюминий — хлористый водород наиболее активно в этом отношении, и потому алкилаты, полученные с этим катализатором, более сложны, чем получепные с катализаторами, обладающими более умеренным действием при прочих равных условиях. Катализатор хлористый алюминий — хлористый водород, разумеется, более действенный в отношении провоцирования Других реакций образовавшихся первичных продуктов. Этого одного уже достаточно для того, чтобы алкилаты, полученные при помощи этого катализатора, были более сложными. [c.38]


    Многие из упомянутых выше комплексов получены также фотохимически при УФ-облучении смеси олефина и Ре(СО)д при комнатной температуре [591-594]. Важно отметить, что фотохимический метод оказался особенно ценным в случае малоустойчивых соединений, которые трудно получить упомянутым выше термическим методом. Фотохимически были получены неустойчивые к нагреванию комплексы с метилметакрилатом, стиролом, винилацетатом, алкилвиниловыми эфирами, хлористым винилом, этиленом и пропиленом [592, 593, 595]  [c.288]

    Склонность моноолефинов к полимеризации значительно увеличивается при введении электроотрицательной группы, связанной с одним из углеродных атомов этиленовой группировки [41]. Так называемые виниловые соединения типа Hg HR, в которых R—отрицательная группа, например галоидные винилы, виниловые эфиры, простыв и сложные, играют все большую и большую роль в производстве пластмасс и смол. Хлористый алюминий редко применяется для полимеризации одних только непредельных виниловых соединений. Если олефин, содержащий электроотрицательную группу, например хлористый олефин, обработать хлористым алюминием, то происходит не тол ько полимеризация, но и конденсация с растворителем получающийся полимер обычно имеет очень сложное строение и низкий молекулярный вес [42]. [c.813]

    Образова.ние сложных эфиров. Сложные алкилэфиры иногда присутствуют как примеси в продукте алкилирования. Их образование связано с реакцией второй ступени цепного механизма алкилирования. Они могут также образоваться в результате присоединения катализатора (фтористый водород, серная кислота) или активатора катализатора (хлористый водород при применении хлористого алюминия в качестве катализатора) к олефину или к полимеру. В неблагоприятных условиях для водородного обмена с изопарафиновым углеводородом эфиры получаются как таковые. [c.320]

    Реакция изучалась аналогично алкилированию ароматических углеводородов (см. главу вторую) газообразными олефинами в приборе, представленном на рис. 12, и жидкими олефинами в приборе, представленном на рис. 13. В случае алкилирования фенолов после завершения реакции продукты обрабатывались водой с целью удаления катализатора, затем 5—10%-ным раствором щелочи до полного отделения фенольных соединений от эфирных (пока капля раствора, нанесенная на часовое стекло не давала мути с соляной кислотой), смесь обрабатывалась эфиром. Эфирный экстракт отделялся от щелочного, сушился хлористым кальцием и перегонялся. Из щелочного слоя путем обработки соляной кислотой выделялись алкилфенолы, сушились и фракционировались. При алкилировании алкилфениловых эфиров реакционная масса разбавлялась водой, нейтрализовалась содовым раствором, сушилась и перегонялась. Реакция изучалась при различных молярных отношениях реагентов, катализатора и температуре. В результате было показано, что алкилирование фенолов и алкил- [c.167]


    Чем больше количество воды, введенной для гидролиза, тем меньше получается эфира. Однако даже при очень большом избытке воды эта побочная реакция все-таки наблюдается, поскольку взаимная растворимость спирта и хлористого изопропила больше, чем растворимость последнего в воде. С повышением концентрации раствора щелочи образование эфира сильно увеличивается. Желательно работать в слабощелочной среде, выдерживая ее pH на уровне pH бикарбоната. В этом случае на практике получают 90%-ный выход металлилового спирта (остальное эфир). Дегидрохлорирование с образованием олефина, которое наблюдается нри гидролизе хлористых алкилов, здесь невозможно, так как в молекуле хлористого металлила у соседнего атома углерода водород отсутствует. И металлиловый спирт и ди- [c.360]

    В 1936 г. было установлено что монохлорметиловый эфир под влиянием сулемы или хлористого цинка присоединяется к некоторым олефинам  [c.11]

    Галоидопроизводные присоединяются не только к олефинам, но н к диолефинам. Штраус и Тиль 5, а также Б. А. Арбузов и А. Н. Пудовик осуществили присоединение (под влиянием хлористого цинка) монохлорметилового эфира к бутадиену, которое [c.11]

    На эти реакции несколько похожа реакция присоединения спиртов к третичным олефинам, в результате которой получаются эфиры третичных алкилов. Процесс проводят при 60° и под давлением в присутствии серной кислоты как катализатора. Как и в случае непосредственного получения сложных эфиров из олефинов, образуется равновесная сМесь, которая разделяется на два слоя в верхнем, углеводородном, слое находится эфир. Эфиры третичных алкилов легко гидролизуются минеральными кислотами, в щелочной же и нейтральной среде они устойчивы. От эфиров первичных или вторичных алкилов их отличает очень слабая способность образовывать перекиси. Простейший член этого ряда — метил-трет-бутиловый эфир СНзОС(СНз)з — кипит при 55°. Получен целый ряд таких эфиров, и этот метод распространен тоже на синтез mpem-бутилфенилового эфира ( Hajg O eHs (т. кип. 185—186°), который в мягких условиях перегруппировывается под действием хлористого алюминия в -трет-бутилфенол [28]. [c.201]

    Этерификация третичными или другими чувствительными спиртами затруднена, так как в этом случае катализаторы этерификации часто вызывают отщепление воды. Правда, по Кондакову [468], удается получать третичные эфиры из олефинов, соответствующих этим третичным спиртам, и жирных кислот под действием хлористого цинка. Однако более надежен путь, при котором не появляется кислой реакции. Реакцию между третичным спиртом и легко доступным реактивом Грипьяра проводят но схеме К OH- - 2H5MgX —> К 0MgX-j-G2Hg и получают таким путем алкоголят магния, который в свою очередь реагирует с хлорангидридом или ангидридом этерифицируемой кислоты  [c.193]

    Хлористый алюминий может быть использовап как катализатор для получения сложных эфиров из олефинов и кислот и простых эфиров из олефинов и спиртов. Он катализует присоединения окиси олефинов к галоидопроизводным с образованием спиртов. Сообщается о применении хлористого алюминия для дегидратации при получении простых эфиров из спиртов и для гидратации при превращении спиртов в эфиры. Хлористый алюминий вызывает изомеризацию парафинов и циклизацию парафинов и олефинов. Полимеризующее и крекирующее действие хлористого алюминия по отношению к алифатическим и циклоалифатическим углеводородам детально разобрано ниже. Хлористый алюминий является активным катализатором, вызывающим присоединение галоидоводорода и галоидов к олефинам и получение галоидопроизводных из парафинов. Он щироко применяется для получения полихлорпроизводных присоединением парафинов к хлорированным этиленам  [c.739]

    При присоединении хлорноватистой хаюлоты к олефинам, например к этилену, образуются хлоралкоголи — соединения, в которых атом хлора и гидроксильная группа находятся у соседних углеродных атомов. Такие соединения называют хлоргидринами. Реакцией хлоргидринов со щелочами, сопровождающейся отщеплением хлористого водорода, очень легко образуются циклические эфиры, так называемые окисные соединения  [c.183]

    Эти амиловые спирты, выпускаемые под фирменным названием пентазолы , содержат около 60% первичных и до 40% вторичных спиртов. Содержание первичных спиртов весьма ценно, так как именно они в виде ацетатов представляют исключительно важный растворитель для лакокрасочной промышленности их сложные эфиры винокаменной или фталевой кислоты являются важными мягчителями или (пластификаторами. Если бы гидролиз всех хлоридов амила протекал одинаково, то содержание первичного спирта должно было составлять лишь около-33%. Однако вследствие того, что первичные хлориды практически полностью превращаются в соответствующие спирты, в то время как вторичные и особенно третичные хлориды превращаются главным образом в олефины и, таким образом, в образовании спирта почти не участвуют, содержание первичных спиртов в гидролизате неизбежно увеличивается. Это совершенно ясно из всего сказанного выше. В олефины превращается около 50% не первично замещенных хлористых амилов, что соответствует приблизительно /з общего количества хлоридов. [c.220]


    При частичном сульфохлорировании углеводородов с последующим экстрагированием сульфохлорида селективными растворителями (см. стр. 405) и отделении моносульфохлорида от дисульфохлоридов петр-олейным эфир-ом или пентаном при —30° можно получить практически чистые 100%-ные моносульфохлориды. После десульфирования и обработки небольшими количествами концентрированной серной кислоты (для удаления олефинов, образовавшихся в качестве побочных продуктов) из этих моносульфохлоридов можно получить чистые, не содержащие углеводородов хлористые алкилы. [c.388]

    Прохлорировав н-гексан (из маннита) [12] и отщепив спиртовой щелочью хлористый водород от хлористых гексилов, он получил смесь гексиленов, которую оставил на несколько недель стоять в темноте с концентрированной соляной кислотой в хорошо закрытых склянках. При последующей перегонке в головных погонах не оказалось никакого гексилена, так что весь олефин перешел в хлористый алкил, кипевший при 124—125°. Этот хлористый алкил был нагрет с ацетатом свинца и ледяной уксусной кислотой при 125°, причем произошло быстрое взаимодействие. Полученный сложный эфир подвергся омылению, и спирт был разогнан на две фракции, каждую из них окисляли отдельно. Поскольку было установлено только образование уксусной и масляной кислот, пропионовая кислота получалась, очевидно, в количествах, не обнаруживаемых применявшимися методами. Таким образом, вероятность присутствия этилпропилкетона, а следовательно, гексанола-3, была незначительна. Поэтому Шорлеммер мог лишь снова подтвердить то, что нашел уже 7 лет назад, а именно, что при действии хлора на н-гекса.н образуются только первичный и вторичнин хлористые алкилы. [c.536]

    Вторичные галоидпроизводные уже при 200—250° частично расщепляются па олефины без промежуточного образования сложного эфира, соответствующего вторичному спирту. При этом образовавшийся хлористый водород, взаимодействуя со стеаратом серебра, тотчас же переходит в галоидное серебро и стеариновую кислоту и не может вызвать никакой изомеризации связей. Дегидрогалоидироваиие такого типа протекает по схеме, не включающей промежуточного образования эфира стеариновой кислоты. Это видно из того, что термическое разложение эфиров стеариновой кислоты и вторичных высших спиртов, взятых в чистом виде, также требует 300—320° [47]. [c.550]

    Ненасыщенные соединения нитруют обычно двуокисью азота, часто в среде эфира четыреххлористого углерода и хлористого метилена. Процесс нитрования, как правило, протекает весьма активно. Поэтому нитрование олефинов особенно четырехокисью N204 или пятиокисью азота N205 и обработка продуктов реакции требуют максимальных мер предосторож1ности. [c.357]

    Здесь следует рассмотреть два основных варианта реакции Фри-деля-Крафтса. Первый вариант — прямое алкилирование бензола (или гомологов) с применением олефинов или неорганических сложных эфиров (алкилгалоидов или сульфатов) и небольших количеств катализатора. Другой вариант заключается в ацилировании с образованием арилал-килкетонов (как промежуточных соединений) и восстановление их в ароматические углеводороды. Ацилирование производится хлорангидридами или ангидридами с добавлением стехиометрических количеств катализатора — галогенида металла, обычно безводного хлористого алюминия  [c.480]

    Хотя соединение Н+(А1С14) не существует, взаимодействие хлористого алюминия и хлористого водорода происходит в присутствии таких веществ, как бензол и, продноложительпо, олефины, которым можно приписать основные свойства [8]. Иначе говоря, Н+(А1С14) представляет собой неустойчивую кислоту, но се эфиры очень устойчивы и являются промежуточными соединениями в реакциях алкилирования. [c.310]

    Реакция изопарафиновых углеводородов со сложными эфирами. С алкилхлоридами. При взаимодействии изонарафинов с алкилхлори-дами в присутствии хлористого алюминия реакция алкилирования идет лишь в незначительной степени. Вместо этого имеет место реакция хлорводородного обмена, в результате которой нолучаются продукты, подобные тем, которые нолучаются но реакции переноса водорода при алкилировании изопарафинов олефинами. Алкилхлориды восстанавливаются в соответствующий парафин и хлористый водород, тогда как изопарафин превращается в продукт самоконденсации (и в парафины, образующиеся путем деструктивного алкилирования этого продукта) или же дает комплекс с катализатором. [c.332]

    При помощи нагрева и давления этилен можно превращать в полимерные жидкости. Под давлением 70—135 атм и при температурах между 325 и 385° С получены жидкие продукты, в которых около 50% кипит ниже 200°С [354, 355]. Конечные продукты содержат заметное количество нафтеновых углеводородов. Термическая полимеризация ускоряется следами кислорода [356 и видоизменяется меркаптанами [357]. При помощи концентрированной серной кислоты этилен не нолимеризуется вместо этого образуются устойчивые сложные эфиры. С 90%-ной фосфорной кислотой сложные эфиры образуются ниже 250° С, но свыше температуры 250—350° С и под давлением 53—70 кГ сл1 образуются полимеры, кипящие в пределах бензин — осветительный керосин. Это полимеры комбинированного типа, содержащие олефины, парафины, нафтены и ароматику с изобутеном в отходящем газе [358, 322]. При помощи чистого хлористого алюминия этилен не иолимеризуется даже под давлением, но если катализатор активирован влагой или хлористым водородом, то в зависимости от времени, количества катализатора и т. д., получаются жидкие продукты, находящиеся в пределах от бензина до масляных фракций [360]. Они онять-таки являются полимерами комбинированного тина. Бензиновая фракция, выкипающая до-200° С, является большей частью предельной и имеет октановое число около 77 это наводит на мысль о присутствии разветвленных структур. Высококипящие порции дистиллята содержат [c.109]

    Хлористый алюминий легко растворим в ряде органических растворителей, и такие растворы обычно обладают в различной степени каталитическими свойствами. Растворы соли в нитро-алканах эффективны в промотировании алкилирования изопарафинов и ароматики олефинами, но оказывают слабое влияние на изомеризацию парафинов. Они показывают только сдерживающие действия по отношению к нафтепам [658]. Однако растворы хлористого алюминия в простых и сложных эфирах, ацетоне, бензофеноне, нитробензоле и двуокиси серы, особенно концентрированные растворы, содержащие молярный излишек растворенного вещества, являются сильными катализаторами и для алкилирования и для изомеризации парафинов [659]. [c.143]

    Особый интерес представляют смазки, получавшиеся синтетическим путем в Германии в условиях военного времени [55, 56]. Этилен и олефины с более длинной цепью полимеризовали (катализатор — хлористый алюминий), получая с хорошим выходом масла, которые обладают неплохими вязкостно-температурными свойствами. Парафинистый газойль, полученный синтезом по Фишеру — Тропшу, хлорировали продукт синтеза конденсировали с нафталином, что дало масло сравнительно невысокого-качества. В качестве смазочных масел использовались эфиры адипиновой кислоты, но себацинаты широкого распространения не получили. [c.501]

    Были также запатентованы комплексы Pd l2 с фосфином как катализаторы гидрокарбоксилирования олефинов при 50—90°С и 700 атм (6864-10 Па) [51]. На Ы1(С0)4 проводили каталитическое превращение хлористых аллилов в ненасыщенные сложные эфиры [52] и выдел я- [c.203]

    Реакции Циглера открывают совершенно новые пути использования олефинов синтез полиэтиленов и димеров олефинов для превращения в синтетические каучуки и ароматические углеводороды, получение первичных спиртов, синтетического волокна и т. д. Полимеризация этилена в смазочные масла в Германии проводится с 95—99% этиленовой фракцией путем обработки ее, после очистки от кислорода и сернистых примесей, хлористым алюминием при 180—200° и 10—25 ат. Давление в автоклавах при этом процессе приходится регулировать, так как оно непрерывно растет из-за образования газов (метана, этана и других углеводородов). Сырой полимеризат после дегазации нейтрализуют при 80—90 взвесью извести в метаноле (разложение А1С1,-комплекса), фильтруют центрифугируют. Из остаточных газов выделяют этилен, который поступает обратно на полимеризацию. Для обеспечения низкой температуры застывания и пологой температурной кривой вязкости к таким смазочным маслам прибавляют эфиры адипиновой кислоты или другие добавки [18]. [c.597]

    Достаточно подробно исследованы реакции прямого получения эфиров нз карбоновых кислот н олефинов. Эти реакции были предсказаны Н. А. Меншуткиным [24] и впервые осуществлены Д. П. Коноваловым [251 для алкилирования уксусной кислоты олефинами с третичными атомами углерода. И. Л. Кондаков [26[ впервые предложил использовать для этих процессов 2пС1.2 в качестве катализатора. Несмотря на простоту, указанные реакции практически до сих пор не используются, так как не найдены соответствующие условия и активные катализаторы. Пропилен или бутилен с уксусной кислотой в присутствии хлористого цинка при 50 ат и 150° образует 25—27% пропил- или бутилацетата [27]. Из гептена с уксусной кислотой ири 300"" в этих условиях образуется гептил-ацетат. Амилен с уксусной кислотой в присутствии 2пС12 образует при обычной температуре амилацетат, но выход последнего невелик, так как значительная часть амиленов полимеризуется. Выходы эфиров зависят от констант диссоциации карбоновых кислот. Сравнительно сильная трихлоруксусная кислота СС1чС00Н настолько активна, что без катализатора в автоклаве при 100 через 1 час образует 88% соответствующего эфира. [c.664]

    В реакции Фриделя—Крафтса вместо галоидалкилов можно использовать и олефины, например этилен или пропилен, которые при взаимодействии с бензолом в присутствии хлористого алюминия образуют этилбензол и, соответственно, высшие гомологи бензола . Далее, в некоторых случаях, галоидалкилы можно, по-видимому, заменить эфирами борной кислоты (С,1Н2,,+гО)зВ. [c.486]

    Хотя реакция самого карбена с олефинами мало пригодна для синтеза не содержащих галоида циклопропанов, метод, разработанный Симмонсом и Смитом (1959), позволяет получать эти продукты присоединения с удовлетворительными выходами. Активным реагентом в этом случае является иодистый иодметилцинк, образующийся при реакции иодистого метилена в эфире с активной цинк-медной парой, которую получают из промытой кислотой цинковой пыли и раствора сульфата меди и промывают водой, абсолютным спиртом и абсолютным эфиром. К суспензии этой пары в безводном эфире прибавляют кристалл иода, а затем олефин и иодистый метилен смесь кипятят в течение некоторого времени, эфирный раствор декантируют с мелкораздробленной медью, промывают насыщенным раствором хлористого ам.мо-ния, высушивают и упаривают  [c.21]

    Кроме галоидопроизводных с открытой цепью, к олефинам присоединяются также циклопарафины, содержащие вторичные или третичные атомы галоида. Особенно легко присоединяются к олефинам полигалоидопроизводные парафинов — такие, как хлороформ, бромоформ, трихлорэтан, четыреххлористый углерод, четырехбромистый углерод и др. Несколько труднее присоединяются к олефинам хлористый и бромистый метилен. Введение групп, активирующих галоид, увеличивает способность к присоединению по двойной связи (присоединение а -галоидоэфиров, эфиров й-галоидокислот). [c.19]

    Олефины 2-метилоктадецен-7 (/), октен-1 (2), гексен-1 (3), аллилэтилопый эфир (4), хлористый аллил (5), бромистый аллил (6), 1,4-дихлорбутен-2 (7) [c.22]

    Интенсивность реакций перераспределения водорода значительно усиливается и эта реакция становится основной, если в качестве алкилирующего. агента вместо соответствующего олефина применять сложный алкильный эфир. Этого и следовало ожидать на основании предложенного механизма,. так как сложный эфир является источником высокой, концентрации карбоний-ионов,. принимающих участие в (обычно) необратимой первой ступени цепной реакции, давая трет-бутильные ионы, претерпевающие реакцию автоалкилирования вследствие исчерпания ресурсов олефинов для стадии 2. Так, в присутствии хлористого алюминия в качестве катализатора взаимодействие изобутана с хлористым изопропилом при 40—70° приводило к образованию пропана (выход 60—90%), наряду с жидким продуктом, содержавшим несколько больше-октанов, чем гептанов [30]. В присутствии фтористого бора реакция изобутана с фтористым изопропилом при —80° ведет к образованию 2,2,4-триметилпен-тана в качестве основного компонента жидкого продукта на 1 моль фтористого-пропила, восстанавливающегося до пропана, расходуются 2 моля изобутана [10]. В присутствии серной кислоты в качестве катализатора реакция изобутана с тре/тг-амиловьш спиртом при 2° давала изопентан с выходом 50%. Аналогично при взаимодействии изопентана с тре/п-бутиловым спиртом при 27° получался изобутан с выходом 111% [22]. Образование продуктов перераспределения водорода при этих катализируемых серной кислотой реакциях сопровождалось расходованием изопарафинового сырья в количестве, превышающем эквимолярное при взаимодействии около 1,8 молей изобутана и около- [c.185]

    Образование сложных эфиров. В зависимости от применяемого катализатора — хлористого алюминия, промотированного хлористым водородом, фтористого водорода или серной кислоты — продукты алкилирования иногда содержат небольшие количества соединений хлора, фтора или серы. Эти соединения обьпшо представляют алкильные сложные эфиры, образовавшиеся в результате присоединения хлористого водорода, фтористого водорода или серной кислоты к олефину. Их образование неизбежно сопутствует второй стадии механизма первичного алкилирования. При условиях, не благоприятствующих дальнейшему взаимодействию этих сложных эфиров с изонарафи-новыми углеводородами (нанример, реакциям стадии 1 или стадии 3), они остаются в алкилате в качестве примесей. Как правило, они образуются при тех же условиях, которые способствуют усилению полимеризации в результате алкилирования. При рационально выбранных условиях образование сложных эфиров крайне незначительно при промышленных процессах алкилат подвергают очистке для удаления образовавшихся сложных эфиров, [c.189]


Смотреть страницы где упоминается термин Эфиры из хлористых из олефинов: [c.191]    [c.122]    [c.215]    [c.193]    [c.203]    [c.204]    [c.349]    [c.683]    [c.684]    [c.359]    [c.441]    [c.257]    [c.140]    [c.617]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.147 , c.1081 ]




ПОИСК







© 2025 chem21.info Реклама на сайте