Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменные разделения принципы

    Принципы ионообменных разделений . 385 [c.385]

    Принципы ионообменных разделений [c.385]

    Некоторые из классических методик ионообменного разделения неорганических веществ эффективны и оригинальны. Они являются ценным источником хроматографической информации. В гл. 2 дан обзор основных принципов разделения методом ионной хроматографии, которые иллюстрируются характерными примерами. Обсуждаются также приемы работы и конструкция колонок, смолы и детекторы. [c.13]


    Для регистрации ионообменного разделения наиболее распространен кондуктометрический способ детектирования. Обсуждаются уравнения, описывающие электропроводность, и принципы детектирования. Рассматриваются также спектрофотометрические и электрохимические детекторы. Детекторы могут регистрировать ионы либо непосредственно после разделения, либо после перевода их в соответствующие производные. Описываются цветообразующие реагенты и дополнительное оборудование для осуществления детектирования. [c.36]

    Детекторы для ионообменного хроматографического разделения обеспечивают непрерывную регистрацию концентрации анализируемых ионов в элюате в присутствии ионов элюента. Конструкция автоматической детектирующей системы иногда бывает довольно сложной. Очень важно правильно выбрать тип элюента, его концентрацию и величину pH, необходимые для ионообменного разделения. Не менее важно, чтобы детектор был согласован как с элюентом, так и с анализируемыми ионами, т. е. он должен реагировать на анализируемые ионы, но не на ионы элюента. Зная принцип работы детектора, мон но наиболее полно реализовать потен- [c.37]

    Электрохимические детекторы являются одними из наиболее избирательных и чувствительных устройств, применяемых для регистрации ионообменного разделения. Эти детекторы селективны, так как их принцип работы заключается в окислении илп восстановлении веществ на электродах. Способность окисляться или восстанавливаться для каждого вещества различна п определяется потенциалом, необходимым для инициирования процесса электролиза. Селективность детекторов легко изменяется при изменении приложенного к ячейке напряжения. Более подробное обсуждение факторов, воздействующих на электролиз, проводится в руководствах по вольтамперометрии. [c.53]

    В литературе опубликован метод разделения железа и хрома в форме цитратных комплексов при помощи ионообменных смол. Принцип метода разделения состоит в том, что ионы трехвалентного железа в присутствии лимонной кислоты поглощаются смолой, а ионы трехвалентного хрома в этих условиях не сорбируются. Колонку заполняют амберлитом ИРА-400 и промывают сначала водой, а затем 1-м. раствором лимонной кислоты. В подготовленную колонку вводят раствор (pH = 1- -2 по соляной кислоте), содержащий железо и хром. Сначала вымывают водой хром, а затем 1-м. раствором соляной кислоты железо. В первом фильтрате определяют хром, во втором — железо. [c.188]


    В анализе нефтяных ГАС получили распространение сорбционные и хроматографические процессы, основанные на использовании адсорбционного, абсорбционного (разделение на инертном носителе, смоченном не испаряющейся в условиях анализа жидкостью), ионообменного, эксклюзионного (молекулярно-ситового, гель-фильтрационного) и координационного принципов разделения, в колоночном или плоскостном (тонкослойная или бумажная хроматография) техническом оформлениях, с применением жидкой или газообразной подвижной фазы, [c.15]

    Хроматографические процедуры чрезвычайно многообразны. Они классифицируются в зависимости от агрегатного состояния подвижной фазы (жидкостная и газовая хроматография), от физико-химического принципа, лежащего в основе разделения веществ между подвижной и неподвижной фазами (адсорбционная, распределительная, ионообменная и гель-хроматография), от аппаратурного оформления (колоночная и плоскостная хроматография), от решаемой задачи (аналитическая и препаративная хроматография). [c.338]

    Широкое применение хроматографического метода в различных областях химии началось с 30-х годов этого столетия и было связано с развитием теории адсорбции и ионного обмена, а также с синтезом и применением новых эффективных неорганических и органических сорбентов, в том числе ионообменных смол. Одновременно совершенствовалась техника хроматографического анализа и разрабатывались новые принципы сорбционного разделения веществ. [c.6]

    В табл. 1 дана классификация хроматографических методов анализа, основанная на этих показателях. Как видно изданных, приведенных в таблице, при хроматографическом анализе наиболее часто используется колоночная техника работы. Один и тот же метод хроматографического анализа может применяться в различных вариантах, например, осадочную хроматограмму можно получить в колонке с сорбентом, на бумаге или в гелях. Определенный принцип разделения, например, распределение молекул между двумя фазами, лежит в основе различных методов хроматографического анализа. Необходимо также отметить, что в методах тонкослойной хроматографии возможен практически любой принцип разделения — сорбционный, распределительный, ионообменный и т. д. Однако чаще всего разделение в тонких слоях сорбента используется в адсорбционной, распределительной и ионообменной хроматографии жидкостей. [c.7]

    В своем первоначальном варианте метод хроматографического разделения был основан на различной степени адсорбции компонентов смеси и сводился к многократному установлению равновесия между твердым неподвижным адсорбентом и перемещающимся по колонке раствором разделяемой смеси веществ. В настоящее время в хроматографии, помимо адсорбции, используют и другие явления. При распределительной хроматографии на разделение влияют коэффициенты распределения компонентов смеси между двумя жидкими фазами, а при ионообменной хроматографии — неодинаковая степень диссоциации компонентов и связанная с ней различная прочность соединения с ионообменником. Все методы хроматографического разделения основаны на принципе многократного установления равновесия, но различаются по методическим особенностям и по характеру основного физико-химического явления, на котором основан данный метод. Поэтому распределительной и ионообменной хроматографии посвящаются отдельные главы (гл. ХУП и XX). [c.335]

    Последовательное и фракционное экстрагирования, занимающие среднее положение между простым экстрагированием и противоточным распределением, предпочтительны в тех случаях, когда хотят с небольшими затратами времени и труда добиться более эффективного разделения. Использование этого метода для количественного анализа возможно только, если известен качественный состав смеси. Так, например, в свое время был разработан метод определения низших жирных кислот в смеси, основанный на принципе последовательного экстрагирования и титровании отдельных фракций [145, 155]. В настоящее время, когда имеются гораздо более точные и быстрые методы, основанные на распределительной, газовой и ионообменной хроматографии, эта методика уже устарела. [c.405]

    Тонкослойная хроматография является вариантом жидкостной хроматографии, протекающей в тонком слое сорбента, причем толщина слоя существенно меньше его ширины (не менее чем в 5 раз). В тонкослойной хроматографии используются те же варианты, что и в колоночной жидкостной хроматографии. По составу фаз, участвующих в процессе хроматографического разделения, можно выделить следующие основные виды тонкослойной хроматографии [2] жидкость—[твердое тело], жидкость — [жидкость — твердое тело] и жидкость—[гель]. Разделение может быть реализовано при использовании различных принципов удерживания, поэтому тонкослойная хроматография бывает адсорбционной, распределительной, ионообменной, молекулярно-ситовой и аффинной. [c.5]


    Это разделение происходит, если через колонку с ионитом пропускать постоянный электрический ток. При этом ионы в ионообменной колонке располагаются в электрическом поле в соответствии со своими подвижностями, а поэтому те, которые двигаются быстрее, выходят из колонки в первую очередь, за ними следуют менее подвижные и, наконец, самые медленные. Согласно этому принципу, падение потенциала распределяется по всей колонке это падение потенциала наиболее полого в области наименее подвижных ионов и самое крутое — в области наиболее подвижных. Найдено, что границы между отдельными ионами очень резко выражены. Чем больше разница в подвижности отдельных ионов в ионите, тем лучше они разделяются. [c.87]

    Особенно успешное применение ионообменная хроматография нашла для разделения ионов металлов, присутствующих в анализируемом растворе в соизмеримых количествах. Для достижения эффективного разделения и хорошей избирательности используют различные принципы. В некоторых случаях эффективного разделения можно достичь, если разделяемые ионы отличаются по заряду и, следовательно, по склонности к поглощению ионитом. Таковым является, например, разделение и Mg + на катионите при использовании 0,7 М раствора НС1 в качестве элюента (рис. Х1И. 5). [c.419]

    Книга написана крупнейшим специалистом по применению ионного обмена в аналитической химии. Она посвящена применению ионитов в качественном и количественном анализе. В книге изложены основы ионного обмена, принципы простого разделения поглощаемых и непоглощаемых ионов, а также ионообменной хроматографии. Кроме того, рассмотрены различные методы разделения катионов и анионов. Значительная часть этих методов разработана самим автором. В книге использованы работы советских ученых. [c.304]

    Для фракционирования смол и асфальтенов ранее применялись экстракция различными наборами растворителей [22, 29], молекулярная перегонка [30], жидкостно-адсорб-ционная [31, 32], гель-фильтрационная [33, 34] и ионообменная [35] хроматография, осаждение газообразным НС1 [36] и другие методы. Независимо от используемого принципа эффективность разделения нефтяных ВМС всегда значительно ниже, чем в случае нефтяных дистиллятов. [c.182]

    Аналогично цинку с роданидом метилового фиолетового можно соосаждать и другие элементы, образующие комплексные анионы, например, висмут, медь, кадмий. На этом же принципе основан способ отделения микроколичеств цинка, кадмия, ртути, висмута и кобальта от макроколичеств никеля, магния и хрома [147]. Разделение ионов при помощи ионообменников. Применение органических и минеральных ионообменников для разделения ионов основано на различии прочности соединений ионов с ионообмен-ником. При этом методе разделения ионов используют различие в таких свойствах, как заряды или объемы ионов, степень их гидратации или гидролиза, различие в способности к образованию комплексных соединений с растворителем (элюентом) и изменение этих свойств в зависимости от pH среды и природы ионообменника. [c.81]

    Ионообменная хроматография широко применяется для разделения ионов с близкими свойствами, т. е. в таких системах, которые очень трудно или даже невозможно проанализировать другими методами. Ионообменная хроматография основана на различии в поглощаемости разделяемых ионов. В системах, не содержащих комплексных ионов, селективность часто слишком мала, чтобы обеспечить возможность эффективного разделения. Однако, используя комилексообразование или другие реакции в растворе, можно значительно повысить разделяем ость ионов. Принцип ионообменной хроматографии в общих чертах тот же, что и принцип обычного хроматографического анализа. Ионообменная хроматография несколько сложнее, чем описанный ранее метод простого ионного обмена. При разделении смесей ионов с близкими свойствами часто требуется несколько часов или даже дней, чтобы достичь количественного разделения. Однако ионообменная хроматография легко поддается автоматизации, а поэтому может применяться даже для серийных анализов сложных смесей родственных веществ. [c.24]

    Необходимо подчеркнуть, что количе ственное выделение какого-либо вещества в совершенно чистом состоянии методом вытеснительной хроматографии теоретически невозможно. Поэтому он представляет ограниченный интерес для аналитической химии. В принципе ширина каждой полосы (измеряемая объемом, который занимает эта полоса либо в колонке, либо в элюате) пропорциональна количеству соответствующего этой полосе вещества на практике, одпако, полосы часто асимметричны, и простыми способами бывает трудно точно определить их ширину. Для препаративных целей вытеснительная хроматография предпочтительнее, чем элюентная, так как позволяет получить за одну операцию значительно большее количество вещества. Можно с успехом использовать колонки, заполненные на 50%, и получать растворы веществ в чистом виде и с высокими концентрациями. Ионообменные разделения методом вытеснительной хроматографии изучались Снеддингом с сотрудниками [35], Тремийоном [41], Корне с сотрудниками [6] и другими авторами. Подробное обсуждение этого метода выходит за рамки настоящей книги. Следует, однако, отметить, что существуют промежуточные случаи между элюентной и вытеснительной хроматографией. К ним относятся некоторые разделения, выполняемые с помощью комплексообразователей или буферных растворов. Примером может служить разделение металлов на катионообменных колонках с помощью цитрат-ных растворов. При низких значениях pH (когда концентрация некомплексных ионов сравнительно велика) происходит элюентная хроматография при высоких же значениях pH (когда концентрация некомплексных ионов мала) — вытеснительная хроматография. [c.110]

    Процесс концентрирования веш.еств (катионов и аниопов) из разбавленных растворов основан на типовых ионообменных реакциях. Принцип, лежащий в основе метода концентрирования веществ ионитами, практически не отличается ог принципов очистки и разделения венгеств ионитами. Различие состоит только в том, что при концентрировании главным объектом внимания экспериментатора или технолога является раствор, полу-чаемьп на стадии регенерации. [c.195]

    Шульц и Матис [410] недавно показали, что ион-селективные электроды можно использовать в качестве детекторов ионообменной хроматографии, если допустить, что все ионы в элюате, кроме анализируемого, не влияют на электродную функцию. Хотя твердые кристаллические и стеклянные электроды в принципе могут служить детекторами ввиду их высокой селективности, однако такие электроды чувствительны лишь к относительно немногим ионам. Электроды с жидкой мембраной, селективность которых ниже, обладают зато чувствительностью к значительно большему числу ионов и поэтому более подходят к роли детектора. Многие ионы, которые нельзя определить, потенциометрически из-за мешающего действия других ионов, легко определяются этими электродами после хроматографического разделения. Селективность электродов с жидкими мембранами по отношению к анализируемым ионам в присутствии элюентов и буферных растворов, обычно применяемых при ионообменном разделении, например солей сульфата, фосфата и бората, достаточно велика для электродов, применяе.мых в качестве хроматографических детекторов. [c.136]

    В принципе почти все ионообменные разделения могут быть в той или иной степени автоматизированы, однако, как и следовало ожидать, до сих пор развитие автоматических методов почти полностью сосредоточено на длительных и трудоемких разделениях аминокислот и сахаров, определение которых является важной частью биохимических и клинических исследований. Различается два основных уровня автоматизации оборудования для ионообменной хроматографии а) автоматизация последовательности операций от загрузки пробы в колонку до колориметрического измерения и регистрации концентраций разделенных компонентов и 6) автоматизация не только разделения и регистрации данных, но и последовательной загрузки ряда проб после каждого законченного aнaJ изa. Ниже описываются примеры автоматического оборудования для ионообменной хроматографии обоих типов с указанием классов анализируемых соединений. [c.285]

    Новый способ программирования реализован в аминокислотном анализаторе фирмы "Te hni on", модель TSM, предназначенном для последовательного анализа большого количества проб. В этом приборе для автоматического ионообменного разделения и последующего аналитического определения фактически используется принцип Автоанализатора. Анализатор управляется программируемым перистальтическим затвором, действующим подобно кулачковому затвору Автоанализатора. Принцип работы перистальтического затвора иллюстрируется рис. 9.2. [c.291]

    Имеется, естественно, много методов хроматографического разделения, принципы которых будут рассмотрены в разделе, посвященном пептидам (стр. 151). Здесь же, чтобы не перегружать изложения, мы обсудим только вопрое о распределительной хроматографии, значение которой все еще возрастает. Мур и Штейн недавно описали обший метод разделения аминокислот, пептидов и белков посредством их элюирования из колонки, заполненной ионообменной смолой дауэкс-50 (сульфированной полкстирольной смолой) [2656, 268]. [c.138]

    В принципе в данном разделе следовало бы привести только примеры разделения, проведенного на специально полученных, устойчивых к давлению, ненабухающих ионообменниках. Однако, применяя жидкостную хроматографию при высоких давлениях, удается значительно сократить длительность классических ионообменных разделений, например анализа аминокислот [16, 17], проводя разделение на более мелких ситовых фракциях обменных смол при незначительном увеличении давления. Еще больше сократить длительность анализа можно, заменив медленную реакцию с нингидрином, например, на реакцию с флурамом (Гофман — Ля Рош), который с первичными аминогруппами дает сильную флуоресцен- [c.197]

    Тонкослойная хроматография АК на тонком слое катионообменни-ка, позволяет разделить АК в буфере pH 3,3 по величине заряда АК. В этом случае принцип разделения - ионообменная хроматография (ИОХ). Разделение АК методом ИОХ осуществляют на колонках, а анализ смеси АК проводят в специальных приборах - анализаторах АК. [c.18]

    Ионообменная хроматография удобна для отделения кислых полисахаридов от нейтральных. Принцип разделения основан на наличии в полисахаридах группировок, способных к ионизации и обусловливающих заряд соединения в целом. В качестве носителей (ионитов) применяют синтетические смолы, целлюлозы, дек-стран или агарозу, в которые введены катионные или анионные группы, дпэтил (2-оксниропил) аминоэтилдекстран, амберлит, дау-экс, ДЭАЭ-целлюлозу и др., последнюю — наиболее часто. Кислые полисахариды легко адсорбируются на колонках с ДЭЛЭ-цел-люлозой при pH около 6 и вымываются в зависимости от содер- [c.48]

    Применяемые в аналитической хнмнн методы разделения и концентрирования веществ весьма разнообразны и основываются на различных принципах и различных свойствах веществ (размер частиц, летучесть, растворимость, скорость движения в электрическом поле, адсорбционные и ионообменные свойства, комплексообразующая способность). Однако общим для большинства методов является избирательное распределение компонентов анализируемой смеси между двумз фазами нлн избирательный перенос вещества нз одной фазы в другую. [c.68]

    Сотрудники фирмы Дау кемикл компани (г. Мид-ленд, США) разработали новый метод применения ионообменных смол, опубликовав данные по нему в фирменной брошюре. Этот метод, названный ими исключением ионов (способ опережаюш,его электролита), использует совершенно новый принцип разделения. С его помош ью электролиты могут быть полностью отделены от водорастворимых неэлектролитов без затраты тепла или химических реактивов. В брошюре приведены два примера такого разделения отделение хлористого натрия от этилового спирта и отделение хлористого натрия от формальдегида. [c.116]

    В методах второй категории сложности, когда одноступенчатое разделение оказывается недостаточно селективным или неколичественным, первую фазу повторно контактируют со свежей порцией второй фазы. Такая повторная обработка применяется в тех случаях, когда один из разделяемых компонентов количественно остается в одной фазе, в то время как другой компонент распределяется между обеими фазами. Так, при реакции осаждения степень соосаждения обычно можно умень-щить путем растворения осадка в чистом растворителе и повторения процесса. Аналогичным образом если при экстракционном разделении один из компонентов количественно остается в одной из фаз, например водной, а второй распределяется между обеими фазами, то целесообразно повторение экстракционного процесса. Обычным примером тому является хорошо известный экстрактор Сокслета. Другой иллюстрацией того же принципа может служить использование в качестве катода свежей порции ртути при электролитическом разделении металлов при контролируемом потенциале и использование ионообменной колонки для количественного извлечения ионов из раствора. В разделе 25-2 при описании исчерпывающей экстракции изла-гается теория многоступенчатой экстракции с конечным числом порций свежего растворителя. Та же самая концепция применима и к другим примерам разделения этого типа, если предположить, что на каждой ступени устанавливается равновесие с постоянным значением коэффициента распределения. [c.515]

    Зная размеры молекул компонентов смеси, подбирают необходимый тип и ионообменную форму цеолита для выделения из нее того или иного компонента. Цеолиты термостойки до т-ры 800—900° С, не взрывоопасны, не корродируют аппаратуру. Общий принцип синтеза цеолитов заключается в гидротермальной кристаллизации геля соответствующего состава. Разделительную способность цеолита улучшают заменой обменного катиона одного размера на катион другого размера или предварительной адсорбцией (нредсорбцией) на цеолите небольшого количества полярных молекул, изменяющих размеры окон. Цеолиты применяют для глубокой осушки и тонкой очистки газов и жидкостей, разделения смесей, получения мономеров высокой чистоты. Кроме того, их исполь.зуют для получения высококачественных бензинов, осушения холодильных смесей (фреонов), в качестве геттеров (для создания высокого вакуума), катализаторов и катализаторов носителей (см. также Цеолиты). Кроме цеолитов, к М. с. м. относятся пористые стекла, мелкопористые угли и некоторые металлы (палладий, тантал). Пористые стекла образуются при травлении спец. стекол к-тами, мелкопористые угли получают из пром. формальдегидных смол. Материалы такого типа имеют вид зерен, порошков, гранул, мембран или пленок. Пленки изготовляют из пористого стекла, кварца или металла [c.838]

    Адсорбция на поверхности зерен ионита некоторых высокомолекулярных веществ, например протеинов, может быть использована для целей хроматографического разделения. Чтобы увеличить поверхностную адсорбцию, следует применять ионит в тонко измельченном виде. Наилучшие результаты, достигнутые в экспериментах с товарными ионитами, получены на слабоосновном катионите марки амберлит ШС-50. Целый ряд ионообменных сорбентов для протеинов может быть получен из целлюлозы [117]. Эти сорбенты имеют большую емкость. Иониты с такими же свойствами получены путем покрытия смолой частиц инфузорной земли (целит 545). Бордман [8] описал получение катионита с карбоксильными группами (стирол—дивинилбензол — метакриловая кислота) и сульфированного стирол-дивинилбензольного катионита, относящихся к тому н<е типу. На основании тех же принципов могут быть получены и анионообменные смолы. [c.41]

    К методам вытеснительной хроматографии примыкает основанная на том же принципе вытеснительная хроматография с носителем, предложенная Тизелиусом и Хегдалом [39]. Различие заключается в том, что во избешание перекрывания зон применяют так называемые носители, т. е. вещества с промежуточным сродством к иониту. Носители образуют свои полосы между полосами, соответствующими разделяемым веществам. В качестве носителей следует выбирать такие вещества, которые либо не влияют на определение разделяемых веществ, либо могут быть легко удалены после разделения, например, посредством выпаривания или экстракции. Главное ограничение этого метода заключается в том, что подобрать подходящие носители трудно, а для многих систем даже невозможно. Иногда выбор носителей облегчается тем, что более сильные органические основания вытесняют из ионообменных колонок более слабые это же замечание относится и к органическим кислотам. [c.111]

    Классическая схема группового отделения редкоземельных элементов от других продуктов ядерного расщепления была разработана с связи с так называемым Плутониевым проектом . Эта схема была разработана для препаративных целей, но она представляет интерес и с аналитической точки зрения. Следует отметить, что для препаративных целей предложена новая схема, основанная на сочетании ионообменного и других способов разделения (см., например, [77]). Применяемые аналитические методы основаны на том, что редкоземельные элементы хорошо поглощаются катионитами из солянокислого раствора. Шуберт, Рассел и Фароби [78, 79 ] вы -делили иттрий из мочи, подкисленной до 0,1М НС1. Подкисление препятствует выпадению осадка и разрушает комплексы иттрия с компонентами мочи. В начале одно- и двухзарядные катионы элюируют соляной кислотой (например, 0,8М [27]). Иттрий элюируется последним 6Ж соляной кислотой. Определение иттрия в костях п в яичной скорлупе основано на том же принципе [27]. [c.326]


Смотреть страницы где упоминается термин Ионообменные разделения принципы: [c.531]    [c.531]    [c.182]    [c.81]    [c.12]    [c.258]    [c.44]    [c.113]    [c.183]    [c.40]    [c.22]   
Радиохимия и химия ядерных процессов (1960) -- [ c.385 , c.386 ]




ПОИСК





Смотрите так же термины и статьи:

Принципы разделения



© 2025 chem21.info Реклама на сайте