Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны, присоединение карбоновых кислот

    Многие способы получения сложных эфиров описаны ранее присоединение карбоновых кислот к ацетилену (см. разд. 1.4.3), реакция Тищенко (см. разд. 4.2.4), этерификация (см. разд. 6.1.2), ацилирование спиртов ангидридами и галогенангидридами карбоновых кислот и кетенами (см. разд. 6.1.3.2), ацилирование енольных форм кетонов кетеном (см. разд. 6.1.3.2). Сравнительно недавно предложен интересный промышленный синтез винил-ацетата из этилена  [c.372]


    Карбонильную группу содержат кетоны, альдегиды, карбоновые кислоты, сложные эфиры, амиды, ангидриды кислот и другие соединения. Она характеризуется интенсивной полосой поглощения валентного колебания связи С=0 с частотой, лежащей в довольно широком интервале 1850-1550 см . Точное значение частоты колебания определяется атомами, присоединенными к группе С=0. Электронодонорные заместители уменьшают степень двоесвязности карбонильной связи, что приводит к уменьшению частоты (I), электроноакцепторные, напротив, увеличивают ее (П) [c.447]

    К особому случаю электростатических сил направленного действия относится водородная связь [3]. Она возникает между двумя партнерами, один из которых содержит атом водорода, присоединенный к электроотрицательному атому, а другой— свободную пару электронов X—Н---У (здесь X — атом с высокой электроотрицательностью, т. е. Р, О, Ы Н — атом водорода, У—атом с неподеленной парой электронов, Н---У — водородная связь). Чем сильнее электроотрицательность X, тем более положителен водород в связи X—Н. При этом кислород имеет в газовой хроматографии наибольшее значение для высших аналогов этих трех элементов энергии водородных связей имеют тот же порядок, что и обычные силы притяжения [4]. В соединениях с гидроксильной группой атом водорода приобретает положительный заряд благодаря перемещению электронов к электроотрицательному атому кислорода (например, в карбоновых кислотах, спиртах, фенолах, воде) и смещается к атомам, обладающим неподеленной парой электронов, т. е. к атомам фтора, кислорода, азота (во фторсодержащих соединениях, простых и сложных эфирах, кетонах, альдегидах, карбоновых кислотах, спиртах, фенолах, аминах и т. п.). Сходным образом ведет себя атом водорода в ЫН- и СН-группах, если азот (например, в пирроле, имидазоле и т. д.) или углерод (в ацетилене, хлороформе, органических нитро- и цианистых соединениях с а-атомами водорода) становятся отрицательными благодаря особенностям химической структуры соединения. Энергия образования водородной связи примерно на порядок больше, чем энергия обычного межмолекулярного взаимодействия, однако она гораздо меньше энергии образования химической связи. Вследствие этого энергию образования водородной связи можно объяснить не только электростатическим взаимодействием ХН и V. Второе взаимодействие можно приписать [c.71]


    Однако опять-таки в противоположность кетонам бромирование карбоновых кислот является реакцией первого порядка по брому, а поэтому если енол (XI) образуется, то он должен реагировать с молекулой галогена с измеримо медленной скоростью. Хотя и в этом случае бромирование можно представить как согласованный процесс (сравните формулу И на стр. ПО), индуктивный эффект заместителя брома сильно уменьшает электрофильный характер С = С-связи енола и таким образом замедляет процесс присоединения. [c.120]

    SOf ). с ней также связано сильное уменьшение скорости кислородного обмена при переходе от карбонильных соединений (альдегидов и кетонов) к карбоновым кислотам. Третья закономерность — увеличение способности к обмену с ростом порядкового номера в подгруппе, связана с идущим в том же направлении увеличением поляризуемости и способности к координационному присоединению. [c.110]

    Присоединение родана к непредельным спиртам, альдегидам, кетонам и карбоновым кислотам [c.759]

    Было установлено, что присутствие функциональных групп в парафиновых углеводородах нормального строения не препятствует образованию продуктов присоединения при этом важно лишь, чтобы алкильный остаток, связанный с функциональной группой, имел нормальное строение. Поэтому способность образовывать комплексные продукты присоединения обнаруживают также карбоновые кислоты, сложные эфиры, галоидные соединения, кетоны, спирты, амины и т. д. [c.55]

    Присоединением к нитропарафинам минеральных кислот получают карбоновые кислоты и соли гидроксил амина, альдегиды, кетоны и др. Таким способом из 1-нитропропана можно получить пропионовую кислоту, а из 1-нитробутана масляную кислоту. [c.131]

    Реакцию проводят в жестких условиях, что исключает возможность выделения продуктов альдольного присоединения. В данном случае метиленовым компонентом является ангидрид карбоновой кислоты. Его СН-кислотность несколько выше кислотности самой кислоты и сложного эфира, однако уступает кетону, а тем более альдегиду. Карбонильным компонентом в реакции Перкина могут быть бензальдегид и его производные, имеющие различные заместители в ароматическом кольце. Электроноакцепторные группы благоприятствуют протеканию реакции, а электронодонорные — замедляют диметиламинобензальдегид вообще не вступает в реакцию Перкина. [c.225]

    При взаимодействии Л. Л -диалкиламидов или солей карбоновых кислот с реактивами Гриньяра реакция останавливается на стадии нуклеофильного присоединения с образованием аддукта (51). Это объясняется тем, что вытеснение реактивом Гриньяра на второй стадии реакции такого аниона, как, например, М(СНз)2. чрезвычайно энергетически невыгодно. Вследствие этого диалкиламиды и соли карбоновых кислот иногда используют как исходные вещества при синтезе альдегидов и кетонов  [c.296]

    Аналогичные реакции присоединения с успехом проведены и для карбоновых кислот, ангидридов [423], циклических кетонов [424], ацилгалогенидов, сложных эфиров, нитрилов и соединений других типов [425]. [c.208]

    Все перечисленные превращения формально затрагивают только гидроксильную группу. Карбоновые кислоты не вступают в реакции присоединения и конденсации по карбонильной группе, столь характерные для альдегидов и кетонов кроме того, образование енолят-аниона аналогично альдегидам и кетонам для карбоновых мислот не происходит. Добавление основания, необходимого для превращения кетона или альдегида в енолят-анион, переводит карбоновую кислоту в карбоксилат-анион, удаление же еще одного протона для образования второго отрицательного заряда на карбоксилат-анионе по соседству с уже присутствующим — действительно очень трудный процесс. [c.146]

    Это нуклеофильное присоединение к сг,р-ненасыщенным карбонильным соединениям (называемое реакция Михаэля ) не ограничивается кислотами, оно вообще характерно для а, 1-не-насыщенных сложных эфиров, кетонов, альдегидов, а также нитрилов. На самом деле а,р-ненасыщенные кислоты реагируют труднее, чем их эфиры или нитрилы, поскольку в используемых условиях карбоксильная группа обычно превращается в анион (наиболее сильные нуклеофилы являются также основаниями), который, будучи отрицательно заряженным, менее чувствителен к нуклеофильной атаке, чем незаряженная частица. Однако производные карбоновых кислот реагируют легко, например  [c.256]

    В состав молекул карбоновых кислот, их хлорангидридов, амидов, сложных эфиров, кетонов и альдегидов входит карбонильная группа С=0. В чем сходство свойств этих классов соединений Почему карбоновые кислоты и их производные не вступают в реакции присоединения, которые характерны для альдегидов и кетонов  [c.764]

    Мы уже отмечали сходство в химическом поведении альдегидов, кетонов и производных карбоновых кислот. Так, например, двойная связь углерод — кислород во всех трех случаях легко атакуется нуклеофилами. Различия между тремя перечисленными выше классами соединений вызваны тем, что в производных карбоновых кислот отщепляемые группы связаны с ацильным атомом углерода, в то время как в альдегидах и кетонах нет таких групп, присоединенных к карбонильному атому углерода. [c.165]


    В большинстве случаев в таких соединениях очень легко идет замещение по р-положению. Но иногда наблюдается электрофильное замещение одного из а-заместителей. Легче всего такие реакции осуществляются с а-карбоновыми кислотами (стр. 235, 269), но они могут идти и с другими соединениями, например с галоген-производными (стр. 251) и кетонами (стр. 275). Такой тип замещения является результатом возможности электрофильного присоединения по любому реакционноспособному положению кольца независимо от того, замещено ли это положение водородом или Другой группировкой. [c.211]

    Реакция эфиров карбоновых кислот с реактивами Гриньяра — прекрасный метод получения третичных спиртов. Как и в реакции с альдегидами и кетонами (разд. 15.14), нуклеофильная (основная) алкильная или арильная группа реактива Гриньяра присоединяется к электронодефицитному атому углерода карбонильной группы. Дальнейшее элиминирование алкок-сигруппы привело бы к образованию кетона, и в некоторых особых случаях кетоны действительно образуются в этой реакции. Однако, как мы уже знаем, кетоны сами очень легко реагируют с реактивом Гриньяра, давая третичные спирты (разд. 15.15) в рассматриваемом случае также получаются продукты, соответствующие присоединению реактива Гриньяра к таким кетонам [c.649]

    Присоединение воды к ацетилену в присутствии в качестве катализатора солей ртути приводит к ацетальдегиду — промышленно важному полупродукту гидратация моно- и дизамещенных ацетиленов дает кетоны. Карбоновые кислоты также присоединяются к ацетиленам в условиях катализа ионами ртути, а образующиеся ацетаты енолов легко гидролизуются в соответствующие кетоны [187]. [c.263]

    Из сравнительно простых интермолекулярных перегруппировок или конденсаций с присоединением, производимых в присутствии хлористого алюминия в реакционной среде, необходимо отметить прежде всего синтезы ароматических карбоновых кислот из углеводородов и их замещенных, с одной стороны, и из углекислого газа — с другой. Они проводятся при высоких давлениях в несколько десятков атмосфер и при повышенной температуре. Наряду с карбоновыми кислотами получаются и ароматические кетоны. Таким образом возможны превращения, например [c.428]

    Относительно синтеза углеводородов по Кольбе путем электролиза солей жирных кислот см. главу о парафиновых углеводородах. Присоединение алкилмагниевых соле11 к эфирам карбоновых кислот, приводящее к образованию третичных спиртов, обсуждено при описании последних. О синтезах альдегидов и кетонов из карбоновых кислот говори. юсь при описании этих соединений. [c.244]

    Присоединение карбоновых кислот к алкинам 16-57. Ацилирование альдегидов или кетонов 19-14. Бисдекарбоксилирование малоновых кислот 19-17. Окисление арилметанов СгОз и АсгО [c.419]

    В качестве веществ с подвижным водородным атомом были использованы жирные, жирноароматические, гвдроароматические гетероциклические кетоны, альдегиды, карбоновые кислоты, их эфиры и нитрилы. Во всех этих случаях в реакцию вступает подвижный а-водородный атом. Фенолы образуют продукты присоединения двух типов  [c.523]

    Если облучение происходит в условиях контакта с воздухом, то органические соединения заметно окисляются, так как кислород в этих условиях образует активный бирадикал 0—О . В результате его присоединения к углеводородным и другим радикалам R или к молекулам образуются радикалы перекисей, общая формула которых R—О—О . Такие радикалы называются перекисными они нестойки и в дальнейшем превращаются в органические перекиси ROOH или ROOR, которые в соответствии с теорией окисления, развивавшейся еще Н. А. Бахом, переходят в еще более устойчивые органические кислородсодерн<ащие соединения альдегиды, кетоны и карбоновые кислоты. [c.429]

    Реакции присоединения тригалогенидов фосфора и галоидангидридов кислот трехвалентного фссфсра к ненасыщенным соединениям (этиленовые углеводороды, углеводороды с сопряженными двойными связями, а, р-непредельные альдегиды, кетоны и карбоновые кислоты) . [c.208]

    Для получения спиртов очень часто используют реакцию взаимодействия алкилмагниевых солей (раньше применяли также цинкдиалкилы) с альдегидами, кетонами или эфирами кислот. При этом из алкилмагниевых солей и указанных соединений образуются сначала продукты присоединения, которые затем при действии воды распадаются на спирт и основную соль магния. Из альдегидов и эфиров муравьиной кислоты образуются вторичные спирты, а из кетонов и эфиров всех других карбоновых кислот — третичные  [c.111]

    Реакции с производными карбоновых кислот. Аналогично карбонильной группе в альдегидах и кетонах, в производных карбоновых кислот R OY группа OY (Y = Hal, O OR, OR, NR2. ОМ) способна к присоединению реактивов Гриньяра, Реакционная способность производных карбоновых кислот зависит от величины частичного положительного заряда на атоме углерода карбонильной группы (которая в свою очередь зависит от М- и /-эффектов группы У) и уменьшается в ряду  [c.293]

    А. И кетоны называют также оксосо-единениями. По старой (тривиальной) номенклатуре названия А. производят от названий соответствующих карбоновых кислот, которые могут образоваться в результате окисления А муравьиный А., или формальдегид,— простейший член ряда жирных А.— соответствует муравьиной кислоте, уксусный А., или ацетальдегид,— уксусной кислоте и т. д. По современной научной международной номенклатуре названия производят от названий предельных углеводородов с тем же строением углеродного скелета и окончанием -ал(-аль) Н—СНО — метаналь, СНд—СНО — эта-наль и т. д. Наиболее распространенные методы получения А.— окисление первичных спиртов или восстановление производных кислот. Промышленное значение имеет синтез ацетальдегида, в основе которого лежит реакция Кучеро-ва — присоединение воды к ацетилену в присутствии солей ртути (И)  [c.20]

    Под названием реакция Шмидта объединяются три реакции, включающие присоединение азотистоводородной кислоты к карбоновым кислотам, альдегидам и кетонам, а также к спиртам й олефинам [230]. Самая типичная из них — реакция с карбоновыми кислотами — представлена на схеме выше [231]. Универсальным катализатором является серная кислота, используются также кислоты Льюиса. Хорошие результаты получаются в том случае, когда К — алифатическая группа, особенно с длинной цепью. Если К = арил, выходы продукта могут быть любыми, причем для стерически затрудненных соединений типа мезитойной кислоты они наиболее высоки. Преимущество этого [c.159]

    Присоединение к л, -непредельным соединениям веществ, обладающих подвижным атомом водорода, находящимся у атома углерода (например, малонового эфира, ацетоуксусного эфира) изучал в последнее время Майкл, что дало повод некоторым американским авторам называть все реакции описываемого типа реакциями Майкла. Однако для такого наименования нет достаточных оснований, так как эта реакция изучалась еще задолго до Майкла, в частности, нашими соотечественниками П. Мели-кишвили (Меликовым), К. Красусским, Н. Вильямсом и многими другими. Цианэтилирование является безусловно одной из самых характерных реакций этого типа. Именно при помощи акрило-иитрила осуществлено большое число различных реакций присоединения к самым разнообразным соедниеииям. Акрилонитрил оказался наиболее активным из всех до сих пор изученных f, -ненасыщенных соединений он доступен, удобен в обращении нитрильная группа предоставляет широкие возможности для дальнейшего синтеза различных производных карбоновых кислот, кетонов, альдегидов, аминов и других соединений. [c.49]

    Электрофильными ацилирующими агентами являются имидазолиды Ж-126 и хлорангидриды карбоновых кислот Ж-13, сложные эфиры К-19, К-20, К-21, К-22, ацетали амидов [43а] К-23, Р-14а и ортоэфиры [436] К-24а. Реакция с ортоэфирами и ацеталями амидов протекает через мезомерно-стабилизированный ион карбения (ср. с реакцией Манниха, с. 212 и сл.). Взаимодействие с имидазолидами, хлорангидридами и сложными эфирами протекает по механизму присоединения-отщепления. В качестве молекул-акцепторов служат такие СН-кислоты, как эфиры, ангидриды и кетоны или эфиры енолов [8] и енамины [44]. [c.216]

    Bo всех карбоновых кислотах и их производных в зависимости от степени выровненности их структур более или мепее полно погашен положительный заряд на карбонильном углероде и вследствие этого сведена к минимуму свойственная альдегидам и кетонам способность к присоединению и замещению по карбонильному кислороду. Оба обстоятельства делают карбоксил — комбинацию карбонила с гидроксилом — совершенно новой функциональной группой. [c.188]

    ОС—ОН легко разрывается (обычно по ионному типу) и образуется R— =0, так называемый ацил-катион. Группа с=0 оказывает сильное влияние на связь 0-Н, вследствие чего эта связь поляризуется и получает способность к кислотной диссоциации в полярных протоноакцепторных растворителях. Константа кислотной диссоциации карбоновых кислот в Ю" раз больше, чем у спиртов. Наиболее сильной из монокарбоновых кислот является муравьиная К = 2Л(Г ). Для остальных ее гомологов константа имеет порядок 10 (от 1,8-10" для уксусной кислоты до 1,4-10" для капроновой кислоты СНз(СНз)4С00Н). И наоборот, карбонильная группа в составе -СООН и -СОО" изменяет свои свойства, присущие ей в составе альдегидов и кетонов, почти целиком теряя способность к реакциям присоединения нуклеофилов (В", В) или их протонированных форм (ВН, ВН . Все же протекание данных реакций возможно, но с малой константой равновесия. Эта особенность карбоксильной группы может быть обусловлена быстрыми внутримолекулярными процессами обмена протоном между -ОН и С=0. [c.482]


Смотреть страницы где упоминается термин Кетоны, присоединение карбоновых кислот: [c.161]    [c.487]    [c.300]    [c.496]    [c.496]    [c.312]    [c.300]    [c.259]    [c.50]    [c.51]    [c.193]    [c.423]    [c.379]    [c.462]    [c.247]   
Методы эксперимента в органической химии Часть 2 (1950) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Кетоны, присоединение карбоновых

Кислоты при присоединении карбоновых кислот



© 2024 chem21.info Реклама на сайте