Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неводные растворы измерение

    Мы уже говорили о невозможности определения pH в цепях, содержащих водный и неводный растворы. Измерение pH должно производиться в цепи, содержащей только один растворитель стандартный и измеряемый растворы должны быть в одном и том же растворителе. При измерении pH в спирте стандартные растворы должны быть также спиртовыми. [c.410]


    ВОДНЫХ растворов детергентов и электролитов может быть Последнее, однако, очень сильно уменьшается уже при низких концентрациях электролита, и поэтому устойчивость пен, подобно устойчивости лиофобных золей, должна была бы исчезнуть при низких концентрациях электролитов, особенно если они состоят из многовалентных ионов. В действительности же ни малоустойчивые, ни высокоустойчивые пены не проявляют такой чувствительности к электролитам. Что касается возможности появления положительного давления П за счет другого более сложного механизма, например за счет какой-нибудь структуры жидкости вблизи фазовой поверхности, то наши прямые измерения на микроскопических пленках различной устойчивости не дали каких-либо указаний на это. Единственный известный случай, когда положительное П неэлектростатической природы (т. е. не связанное с диффузными электрическими слоями) определенно вызывает небольшое повышение устойчивости пленки (время жизни порядка 1 мин),— это концентрированный раствор масляной кислоты в воде. Не исключено, однако, что механизм, предложенный Дерягиным, окажется более существенным для не слишком устойчивых пен, образующихся из достаточно концентрированных неводных растворов. [c.235]

    Кондуктометр КЭЛ-1М - кондуктометр электродный лабораторный - предназначен для измерения удельной электрической проводимости водных и неводных растворов кислот, щелочей и солей в диапазоне от 10 - 10 до 10 10 См/м. Диапазон измерений разбит на восемь основных поддиапазонов 10 10 7 - 100 1010 10- - 100 ЮЛ 10 10 5 - 100 10 5, [c.222]

    Работы по созданию химических источников тока, использующих неводные растворители, по электросинтезу ряда веществ и электроосаждению металлов в неводных средах вызвали интерес к исследованию структуры двойного слоя и кинетики реакций в неводных растворителях. Измерения в неводных растворах позволяют решить и ряд теоретических проблем, например выяснить роль взаимодействия металл — растворитель, роль адсорбции атомов водорода и кислорода в структуре двойного слоя и др. [c.389]

    Приборы и электроды, применяемые для электрометрических измерений pH в водном и неводном растворах. Потенциометры и pH -метры. Для электрометрических измерений можно использовать любой потенциометр (см. стр. 140) или рН-метр со шкалой для непосредственного отсчета pH. Отечественная про.мышлен-ность выпускает укомплектованные рН-метры ЛПУ-01, ЛПУ-58, рН-262, РН-340, ЛПМ-бОМ и др. с подробными описаниями. Многие рН-метры имеют две шкалы в милливольтах и единицах pH. [c.158]


    Из прямых методов определения коэффициентов активности чаще всего применяют метод измерения электродвижущих сил цепей без переноса. Таким путем определены коэффициенты активности HG1 во многих неводных растворителях и в их смесях с водой (см. Приложение 5), коэффициенты активности многих галогенидов щелочных металлов (см. Приложение 6). Коэффициенты активности хлористого лития в амиловом спирте определены, кроме того, на основании коэффициентов распределения. Криоскопический метод широко применялся для определения коэффициентов активности солей в формамиде и в других растворителях, использовался также и эбулиоскопический метод. Затруднения в применении этих методов в неводных растворах, особенно в растворителях с низкой диэлектрической проницаемостью, связаны обычно с трудностями в экстраполяции свойств, например электродвижущих сил, к бесконечно разбавленному состоянию. Это объ- [c.62]

    Величина электродвижущей силы тесно связана с состоянием электролитов в растворах. Поэтому измерения э. д. с. широко применяются при исследовании многих свойств сильных и особенно слабых электролитов при определении констант диссоциации, констант гидролиза, ионного произведения среды, буферной емкости и т. д. Большое значение имеет измерение э. д. с. для определения pH. В тесной связи с изучением электродвижущих сил находятся вопросы стандартизации pH в водных и особенна в неводных растворах. Широкое применение имеет измерение электродвижущих сил в аналитической химии при потенциометрическом и полярографическом анализе и т. д. [c.378]

    Хотя pH уже давно применяются для оценки кислотности, однако вопросы стандартизации этой величины до сих пор еще не решены. В результате отсутствия единых приемов стандартизации и единого метода расчетов pH стандартных растворов, pH одного и того же водного раствора, измеренные в различных лабораториях, обычно различаются в пределах 0,1 единицы. Еще больше эти расхождения при измерении pH неводных растворов. В то же время требования к точности измерений этой величины непрерывно возрастают. Они становятся особенно высокими, когда pH используется для автоматического регулирования процессов, [c.403]

    Очень часто измерения pH в неводных растворах производят по отношению к водному каломельному электроду, потенциал которого определяется [c.407]

    Стандартизация pH в неводных растворах может быть выполнена так же, как и в водных растворах, т. е. путем изготовления стандартных растворов в том же растворителе, что и исследуемый раствор. Однако в этом случае возникает ряд затруднений. Например, коэффициенты активности сильных кислот значительно больше отличаются от единицы, чем в водных растворах сильные в воде кислоты становятся в неводных растворах слабыми хуже растворимы соли значительно меньше имеется данных о коэффициентах активности. В настояш ее время единственным веш еством, с помощью которого может быть произведена стандартизация pH в неводных растворах, является хлористый водород, так как для него имеются данные о коэффициентах активности в большинстве широко используемых растворителей и в их смесях с водой. В качестве электрода сравнения при измерениях в неводных растворах может быть использован хлорсеребряный электрод в растворе НС1, который вполне пригоден для измерений в ряде чистых неводных растворителей и их смесях с водой. [c.409]

    Для решения ряда практически важных вопросов возникает необходимость сопоставления кислотности растворов в различных растворителях, приведение значений рНр к единому началу отсчета. Можно было бы полагать, что измерения, произведенные на рН-метре, откалиброванном по водным стандартам, должны давать значения pH по отношению к единому стандарту, так как электрод сравнения остается неизменным и измеряемая э. д. с. представляет собой разность потенциалов электродов, обратимых по отношению к ионам водорода, опущенных в стандартный водный и исследуемый неводный растворы. Однако, как уже говорилось, наличие фазового потенциала не позволяет находить значения р Нр, отнесенные к единому водному стандарту. [c.410]

    Электродные потенциалы в неводных растворах 374 Константы ионизации слабых кислот 376 Измерение pH в неводной среде [c.14]

    Определение относительной кислотности раствора электролита в данном неводном растворителе принципиально не отличается от определения ее для водных растворов. Т м не менее при определении pH в неводных растворах допускается большое количество ошибок. Например, при измерении pH неводных растворов по отношению к насыш ен-ному водному каломельному электроду возникают наиболее серьезные ошибки. Величины pH неводных растворов не могут быть правильно измерены, если пользоваться для измерения pH неводных растворов рН-метром, откалиброванным по водным стандартам. [c.415]


    Основной областью применения неводных растворов является анализ органических кислот и оснований в самом широком смысле этого слова. Кислотно-основное титрование в неводных средах имеет ряд важных преимуществ. Органические растворители или их смеси могут улучшить растворимость пробы и позволяют проводить титрование слабых кислот или оснований. Далее, в среде этих растворителей можно проводить анализ соединений, вступающих в химическое взаимодействие с водой. При проведении, измерений в неводных растворителях по сравнению с водными возникает [c.121]

    Весьма большое распространение получил описанный выше хингидронный электрод, потенциал которого также зависит от pH раствора. Однако, как уже указывалось, хингидронный электрод неприменим при pH > 7 вследствие кислотной диссоциации гидрохинона, а также окисления его кислородом воздуха. Хингидронный электрод можно использовать для измерения pH в неводных растворах — в спиртах, бензоле, ацетоне, муравьиной кислоте и др. [c.190]

    Кондуктометрия. Этот термин объединяет методы определения физико-химических величин и методы анализа, основанные на измерении электропроводности (ЭП) электролитов, т. е. ионных проводников, находящихся в виде истинных водных и неводных растворов, коллоидных растворов или расплавов. Таким образом, в отличие от предыдущих методов кондуктометрический анализ основан только на изменении концентрации ионов в межэлектрод- [c.5]

    Особенно сложно производить измерения диэлектрической проницаемости растворов электролитов, у которых молекулярные диполи разрушены электролитической диссоциацией. В водных растворах вследствие гидратации уменьшается подвил<ность молекул воды и поэтому с увеличением концентрации диэлектрическая проницаемость уменьшается. Аналогичные явления наблюдаются и для неводных растворов солей в метиловом спирте. [c.255]

    Измерение рН неводного раствора принципиально не отличается от измерения pH водного раствора. Для этого необходимо иметь вспомогательный электрод, стандартные буферные растворы, приготовленные на неводном растворителе, уметь элиминировать диффузионный потенциал. В случае смешанных растворителей с относительно большим содержанием воды можно применить элемент [c.597]

    В 1886 г. Ф. Рауль перешел к измерениям давления паров неводных растворов. Так как в водных растворах соли и похожие на них соединения вели себя аномально, то ученый стал исследовать подобные им вещества в эфирных и спиртовых растворах. В 1887 г. в работах Об упругости пара эфирных растворов и Общий закон упругости пара растворов оп нашел, что одна молекула какого-нибудь нелетучего вещества, растворенная в 100 моль летучего растворителя, понижает упругость пара на практически постоянную долю 0,0105. [c.307]

    Несмотря на то, что в последнее время в технике все чаще стали применяться неводные растворы, использование водных растворов остается доминирующим. Растворы готовятся растворением определенного количества твердого, жидкого или газообразного веществ в определенном количестве растворителя—воды. Нередко растворы меньшей концентрации готовят разбавлением водой более концентрированных растворов. Концентрацию приготовленного раствора определяют измерением плотности раствора (ареометром, пикнометром) или определяют содержание вещества методом титрования. Чаще всего используются следующие концентрации растворов процентная, молярная, нормальная, модальная и титр. [c.51]

    Особенно широкое распространение получил хлоридсеребряный электрод, который имеет наиболее воспроизводимые после водородного электрода значения потенциала. Поэтому он часто используется в качестве внутреннего вспомогательного электрода при изготовлении других электродов, например стеклянного. Его можно применять для измерений как в водных, так и в неводных растворах, в потоке жидкости, изготовить очень малых размеров. Недостатком электрода является зависимость термодинамических характеристик от физических свойств твердой фазы, таких как механическая деформация, кристаллическая структура, способ приготовления и др. До сих пор нет метода изготовления идеального хлоридсеребряного электрода. На практике применяют три основных метода электролитический, термический и термоэлектрический. [c.123]

    Для кондуктометрического титрования применяют обычные ячейки (рис. 5.3, б). Раствор при титровании перемешивают механической или магнитной мешалкой. Площадь электродов и расстояние между ними выбирают в зависимости от измеряемого сопротивления. При измерениях в неводных растворах, имеющих высокое сопротивление, применяют электроды с площадью 4 см и расстоянием между ними 2 см. [c.154]

    Прямая потенциометрия состоит в измерении точной величины электродного потенциала и нахождении по уравнению Нернста активности потенциалопределяющего иона в растворе. Методом потенциометрии определяют pH водных и неводных растворов, в том числе производственных растворов олигомеров анализируют кислые и основные примеси в диметилформамиде и диметилацетамиде определяют хлорид-ионы и кислотные компоненты в производственных растворах, реакционные концевые группы в олигомерах и т.д. Кроме того, метод широко используют для расчета термодинамических констант электрохимических и химических реакций. [c.300]

    Определение кобальта чаще всего заканчивают при помощи нитрозо-К-соли [184, 403, 491—493, 605, 652, 797, 912, 1015, 1037, 1128, 1185, 1242, 1378, 1389 или измерением оптической плотности неводных растворов комплексов кобальта с нитрозонафтолами [428—430, 575, 1138, 1283]. Полярографические методы определения кобальта применяются реже [214, 1369]. Используются спектральные методы определения кобальта [530, 541, 567, 637, 1365, 1407, 1464]. [c.210]

    Механизмы реакций замещения. Комплексы с координационным числом 6. Среди комплексов этого типа больше всего изучены комплексы Со(1П), а также Сг(1П) и элементов платиновой группы. Трудности измерений в активных комплексах обусловлены тем, что образующиеся комплексы почти все являются аква-комплексами, поэтому был исследован достаточно ограниченный круг систем. К нуклеофильным реакциям замещения относятся мономолекулярные реакции, для которых скорость реакции определяется разрывом связи при отщеплении основания Льюиса (механизм S.nI), а также бимолекулярные реакции, для которых скорость реакции определяется образованием связи координирующимся основанием и наблюдается много промежуточных продуктов с координационным числом 1 (механизм 5n2). Однако, когда координационное число равно 6, механизм реакций нуклеофильного замещения существенно иной, чем в случае тетраэдрического углерода. Этим отличием дело не ограничивается. Поскольку комплекс слабо связывает молекулы растворителя за пределами первой координационной сферы, они образуют вторую координационную сферу, причем это происходит не только в водных, но и в неводных растворах. Кроме того, комплексные ионы часто образуют с ионами-партнерами ионные пары. Обычно при замещении лигандов в комплексах реа ция начинается с обмена лигандами в координационной сфере. Если обозначить [c.247]

    ВОЛЬТ-АМПЕРНЫЕ ИЗМЕРЕНИЯ В НЕВОДНЫХ РАСТВОРАХ [c.71]

    Вольт-амперометрия во всех ее многочисленных разновидностях — основной метод при исследовании электродных процессов. Вольт-амперные методы подробно описаны в литературе, часто применительно к неводным средам [322, 134, 129, 320, 659]. Кратко остановимся лишь на тех методах, какие наиболее часто применяются в неводных растворах, укажем некоторые особенности электрохимических измерений, связанные с низкой электропроводностью неводных сред. [c.71]

    Для прецизионных измерений необходимо использовать трехэлектродную ячейку. Полный литературный обзор по электродам сравнения в неводных средах в целом и в отдельных растворителях составлен в работах [1116, 1224, 949, 807, 1275, 1153]. В качестве электродов сравнения используются различные электроды первого и второго рода как в исследуемом растворе, так и выносные. При исследованиях катодного выделения металлов наибольшее распространение здесь получили электроды — водный насыщенный каломельный и серебряный (первого и второго рода) — выносной, а также в исследуемой среде. Применение выносных электродов особенно целесообразно при сопоставлении поведения различных деполяризаторов в одном растворителе. Возникновение -скачка потенциала в месте соприкосновения водного и неводного растворов препятствует количественному сопоставлению поведения [c.71]

    Нередки случаи, когда специфика исследований требует разработки специальных электродов сравнения [836, 5, 163, 1085, 688]. В целом единый сравнительный электрод для неводных растворов на основе органических растворителей не разработан. Наибольшее число измерений в неводной вольтамперометрии проведено с водным насыщенным каломельным электродом (нкэ). [c.72]

    В качестве фоновых электролитов при электрохимических исследованиях в неводных растворах наиболее часто применяют перхлораты лития, натрия и тетраалкиламмония, йодиды и хлориды лития и тетраалкиламмония [1116, 637, 153], Однако и в присутствии фоновых электролитов сопротивление неводных растворов часто остается достаточно высоким, что вызывает искажение результатов электрохимических измерений. [c.73]

    Теоретические исследования поведения органических веществ в неводных растворах при наложении неоднородного электрического поля [117, 118] позволяют объяснить поведение частиц твердых углеводородов петролатума в таком поле. При сравнительно малых напряженностях электрического поля вследствие поляризации двойного слоя частицы движутся в область большего градиента потенциала. При увеличении напряженности, когда происходит поляризация материала частиц, возникает пондеромотор-наясила, которая изменяет направление частиц в зависимости от диэлектрической проницаемости дисперсной фазы и дисперсионной среды. Измерения при помощи моста переменного тока Р-570 на частоте 1000 Гц показали, что диэлектрическая проницаемость дисперсионной среды больше, чем дисперсной фазы (2,00 и 1,93 [c.189]

    Измерение сопротивления сильно разбавленных растворов проводят в ячейках с гладкими платиновыми электродами или с электродами, предварительно платинированными, а затем отожженными в пламени горелки. Такие электроды называют серыми. Применение платинированных электродов для исследования плохо проводящих растворов (чистых растворителей, растворов труднорастворимых солей, неводных растворов) может привести к большим ошибкам из-за адсорбциоино-десорбционных процессов на электродах. Однако на гладких платиновых электродах в концентрированных и умеренно разбавленных растворах могут идти поляризационные процессы, затрудняющие измерения. При определении х сильно разбавленных растворов необходимо учитывать <н,о так как в этом случае неравенство <р.ра > несправедливо. Пренебрежение ве- [c.70]

    Опыт показывает, что при растворении в данном растворителе какого-нибудь вещества равновесное давление пара растворителя понижается. Количественную связь между понижением давления пара и составом раствора открыл в 1887 г. Ф. Рауль. В отличие от своих предшественников он исследовал не только растворы кислот, щелочей и солей, но также растворы органических соединений, применение которых позволило исключить из рассмотрения усложнение картины, вызываемое диссоциацией солей и кислот. В 1882 г. Рауль определил Тзам около 30 органических веществ в водных растворах. Он показал, что независимо от природы веществ растворение одного моля вещества в 1 кг растворителя (воды) приводит к понижению точки замерзания на одну и ту же величину (1,85°С). Затем Рауль заменил воду бензолом, в котором он растворял целый ряд органических соединений. Оказалось, что все они показывали в бензоле одинаковое молярное понижение Т зам рЗВ-ное 5,2 °С. От измерений точек замерзания Рауль перешел в 1886 г. к определениям давления паров неводных растворов. Это привело его к открытию эмпирического закона, который был впервые опубликован в 1887 г. в работе Об упругости пара эфирных растворов . [c.112]

    К электрохимическим методам исследования физических и химических процессов в различных средах (водных и неводных растворах, солевых расплавах, коллоидных, твердофазных и других системах) относят те, которые основаны на измерении электрической проводимости растворов, определении разностей окислитель-но-восстановителы1ых потенциалов, изучении электрофоретических явлении, построении и анализе полярограмм и т. д. [c.79]

    Есть три метода определения коэффициентов активности метод, основанный на измерении электродвижущих сил цепей без переноса бесконечно разбавленных растворах в различных растворителях метод, основанный ыа определении различия давления нара растворенного электролита метод, основанный на определении растворимости в различных растворителях (см. гл. I). В настоящее время еще мало данных о величинах нормальных потенциалов цепей в неводных растворах. В работах автора совместно с Е. Ф. Ивановой были измерены электродвижущие силы ряда цепей, содержащих галоидные соли щелочных металлов в спиртах. Было показано, что величины Ig 7о исследованных солей линейно зависят от 1/е (рис. 46). Этот результат кажется до некоторой степени неожиданным, так как теоретически выведенное уравнение (IV,60) o toiit из двучлена, первый член которого [c.187]

    Важным вопросом является определение pH в неводных и смешанных растворителях. Этот вопрос имеет практическое значение, так как в пищевой промышленности, промышленности пластмасс, фотокинопромышленности и других отраслях промышленности широко используют измерения pH в неводных растворах. [c.407]

    Измеренная по отношению к стандарту в данном растворителе величина pH не является абсолютной мерой кислотности неводного раствора и может быть использована для характеристики кислотности только в пределах данного растворителя. Это следует ид того, что начало шкалы кислотности РаНр = о не соответствует равенству абсолютных активностей ионов водорода во всех растворителях. Величины р Н нейтральных растворов в разных растворителях не совпадают друг с другом, так как протяженность шкал, зависящая от ионного произведения растворителя, различна. В верхней части рис. 105 в качестве примера приведены шкалы рНр в воде и некоторых неводных средах. В воде шкала pH изменяется от О до 14 нейтральным раствором называется раствор с pH = 7. Если раствор имеет pH = О, это раствор кислоты с активностью ионов №, равной единице если раствор имеет pH = 14, это раствор щелочи с активностью ионов ОН", равной единице, но это не значит, что не может быть растворов в воде с pH меньше нуля и больше 14. [c.409]

    Электролитическая ячейка, показанная на рис. 12,6, позволяет при титровании проводить измерения электропроводности с более высокой точностью. Эта ячейка отличаевся тем, что сосуд для титрования значительно расширен в верхней части. Титруемый раствор (30 мл), помещенный в ячейку, заполняет весь объем до расширения сосуда. При титровании уровень раствора сравнительно мало поднимается, так как заполняется расш1-фенная часть, и константа сосуда мало изменяется. Раствор в этой ячейке перемешивается магнитной мешалкой. Описанная ячейка пригодна для измерения сопротивлений малопроводящих растворов, в том числе некоторых неводных растворов площадь электродов этой ячейки равна 4 см , а расстояние между ними —2 см. При [c.100]

    При определении pH неводных растворов необходимо заменять насыщенный водный раствор КС] в каломельных электродах не метаноло-вым раствором КС1 (как это обычно делают), а соответствующими растворами КС1 в неводных растворителях, в среде которых проводят титрование. Только при, этом условии измеренное значение pH неводного раствора может быть сопоставлено с точно известным значением pH стандартного неводного раствора. [c.415]

    Компенсационный метод с двухэлектродной ячейкой получил достаточно широкое распространение. Он может достаточно успешно применяться для измерения элeктpoпpq-водности разведенных растворов сильных электролитов, неводных растворов, различных растворителей, тонких органических пленок, пластических масс, а также для кондуктометрического титрования. Принципиальная схема изображена на рис. 73. Цепь с источником 1, кроме переменного сопротивления Яи служащего для регулирования тока в цепи, и миллиамперметра М , содержит постоянное сопротивление Яв и двухэлектродную ячейку. При изменениях падения напряжения на электродах ячейки из- [c.123]

    Исследование неводных растворов имеет свои особенности и специфические трудности, исключающие возможность непосредственного использования экспериментальные методов и приемов, разработанных при исследовании водных растворов. Несмотря на это, в отечественной литературе практически отсутствуют монографии, в которых были бы обобщены сведения о химических и физических свойствах современных полярных органических растворителей и об экспериментальной технике проведения электрохимических измерений в этих растворителях, равно как и об успешном изучении электродных процессов, протекающих на границе раздела металл — неводный раствор. В то же время за последние несколько лет в мировой литературе был опубликован ряд обзоров по упомянутым проблемам. Издание сборника таких обзоров должно существенно восполнить указанный пробел и стимулировать интерес к этому новому и перспективному направлению современной химической науки. Обзоры, включенные в настоящий сборник, собраны с таким расчетом, чтобы читатель получил представление о физических и химических свойствах органических растворителей, применяемых в электрохимических исследованиях, о технике проведения соответствующих измерений, а также о наиболее существенных результатах исследований в этих средах. ГЯ. Колотыркии  [c.1]

    Все описанные выше результаты бьши получены с использованием электродов, линейные размеры которых составляют несколько миллиметров. Микроэлектроды размером в несколько микрометров имеют, как известно, ряд гфсимуществ перед макроэлектродами у них меньше влияние омического скачка потенциала в растворе, что позволяет работать с разбавленными и неводными растворами электролитов массоперенос протекает в стационарном режиме благодаря тому, что вместо линейной диффузии, характерной для плоских макроэлектродов, здесь имеет место сферическая диффузия. К тому же алмаз обладает хорошей биосовместимостью [244], так что микроэлектроды из этого материала могут быть использованы для измерений in vivo. [c.70]


Смотреть страницы где упоминается термин Неводные растворы измерение: [c.110]    [c.233]    [c.415]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.543 , c.547 ]




ПОИСК





Смотрите так же термины и статьи:

Вольт-амперные измерения в неводных растворах

Приборы и электроды, применяемые для электрометрических измерений pH и водном и неводном растворах

Растворы неводные



© 2025 chem21.info Реклама на сайте