Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронный парамагнитный резонанс ЭПР сверхтонкое расщепление

    Именно орбитальный вклад в магнитный момент частицы меняет условия резонанса, что проявляется в значении -фактора (Ланде), и это первая характеристика спектра ЭПР. Второй важнейшей чертой, содержащей большую информацию, является сверхтонкая структура спектра, обусловленная электрон-ядерным спин-спиновым взаимодействием. В спектрах ЭПР анизотропных образцов, содержащих парамагнитные центры с 5 1, может наблюдаться также тонкая структура, связанная с расщеплением спиновых уровней энергии в нулевом поле, т. е. без наложения внешнего магнитного поля. Определенную информацию несет ширина сигналов ЭПР. Сам факт наблюдения спектра говорит прежде всего о том, что хотя бы какая-то часть образца содержит парамагнитные частицы или центры, т. е. имеет неспаренные электроны. [c.55]


    При высоком разрешении у пиков электронного парамагнитного резонанса обнаруживается сверхтонкая структура, обусловленная влиянием ядерных магнитных моментов. Они либо ослабляют, либо усиливают внешнее поле, что приводит к появлению резонанса при других значениях поля, аналогично тому как это имеет место в случае ЯМР. По характеру расщепления можно судить [c.362]

    Упитывая сверхтонкое расщепление в спектре электронного парамагнитного резонанса ( горбы на рис. 6.23), которое объясняется изменением поля, действующего на электроны от окружающих ядер (разд. 6.10), можно точно определить положение неспаренного электрона в молекуле. Так, при концентрации [c.229]

    Ливингстона и др., ни при последующем изучении не удалось обнаружить сверхтонкое расщепление на протоне у парамагнитной частицы, которая, как предполагалось [64], является радикало.лг НО2 и представляет вторичный продукт фотолиза растворов перекиси водорода при 77° К в различных органических растворителях. Возникающие первоначально гидроксильные радикалы взаимодействуют с растворителем, в результате чего образуются органические радикалы. Последние захватываются матрицей, и их легко обнаруживают посредством электронного парамагнитного резонанса. Если в системе присутствует в сравнительно большой концентрации перекись водорода, то при постепенном повышении телшературы возникает широкий асимметричный триплет, весьма напоминающий спектр Ливингстона и др. (табл. VII. 16). [c.173]

    Первый член описывает расщепление в нулевом поле, следующие два члена—влияние магнитного поля на спиновую мультиплетность, остающуюся после расщепления в нулевом поле члены с Ац и являются мерой сверхтонкого расщепления параллельно и перпендикулярно главной оси, а Q —мерой небольших изменений в спектре, вызванных ядерным квадрупольным взаимодействием. Все эти эффекты обсуждались в гл. 9. Последний член учитывает тот факт, что ядерный магнитный момент может непосредственно взаимодействовать с внешним полем Яд = Нц /, где у — гиромагнитное отношение ядра, а Р — ядерный магнетон Бора. Он описывает ядерный эффект Зеемана, который вызывает переходы в ЯМР. Зеемановское ядерное взаимодействие может влиять на спектр парамагнитного резонанса только в том случае, когда неспаренные электроны взаимодействуют с ядром в ядерном сверхтонком или квадрупольном взаимодействиях. Если даже такое взаимодействие и реализуется, то его величина пренебрежимо мала по сравнению с величинами других эффектов. [c.219]


    Анализируется зависимость параметров электронного парамагнитного резонанса (э. п. р.) Мп + и Ре + в -состоянии от степени ионности соединения. Показано, что с уменьшением ионности наблюдается рост сдвига -фактора (относительно -фактора свободного иона) и фактора кубического расщепления и уменьшение постоянной сверхтонкого взаимодействия. Поскольку ионность связана с величиной эффективного заряда, который определяет положение глубоких локализованных уровней в запрещенной зоне, то эта зависимость позволяет быстро (но грубо) оценить ковалентность в бинарных полупроводниках и, следовательно, предсказать их электрофизические свойства. [c.352]

    Метод электронного парамагнитного резонанса (ЭПР) позволяет обнаруживать магнитные моменты неспаренных электронов, а также изучать взаимодействие этих электронов с окружающей средой. Чувствительность этого метода на много порядков выше чувствительности статических измерений магнитной восприимчивости, поэтому его широко применяют при исследовании твердых тел, в том числе и катализаторов. Метод ЭПР, в частности, позволяет изучать расщепление вырожденных электронных уровней в кристаллической решетке (тонкая структура) и расщепление этих уровней вследствие взаимодействий с магнитным моментом ядра (сверхтонкая структура). [c.136]

    В спектре электронного парамагнитного резонанса наблюдалась плохо разрешенная тонкая структура, отнесенная к взаимодействию с четырьмя эквивалентными протонами [59]. Сверхтонкое расщепление порядка 5,6 гс не зависело от природы щелочного металла оно исчезало, если использовалась тяжелая вода. Попытки расчета величины сверхтонкого расщепления пока не предпринимались. Но если основываться на данных по ядерному магнитному резонансу на протонах в растворах металлов в аммиаке, сверхтонкое взаимодействие кажется очень большим. Линии были широкие и такое уширение могло вполне быть вызвано дипольным взаимодействием. [c.92]

    Эти выводы хорошо подтверждаются для захваченных атомов азота в матрицах аргона, водорода, азота и метана при 4° К [251 и в у-облученном азиде калия при 77° К [26]. Во всех неполярных, матрицах сверхтонкое расщепление на 10—30% больше значения 3,7 гс [27] для свободного атома. Облучение азида калия при 77° К [26] приводило к образованию двух типов частиц, в состав которых входили атомы азота. Одна из них была идентифицирована как захваченный атом азота, другая как Nj об этой последней частице сказано в разд. VI.2, б. Атомы азота захватывались в два. магнитно-эквивалентных положения, для каждого из которых наблюдались три легко насыщавшиеся линии тонкой структуры. Соответствующий спектр электронного парамагнитного резонанса описывается спиновым гамильтонианом [c.110]

    Парамагнитные системы можно исследовать не только методом электронного парамагнитного резонанса [1—3], но и методом ядерного магнитного резонанса. Поскольку каждая группа эквивалентных ядер в ион-радикальной паре характеризуется лишь единственной синглетной линией ЯМР, спектр ЯМР такой пары в большинстве случаев легче интерпретировать, чем соответствующий спектр ЭПР. Специфическим преимуществом метода ЯМР является возможность определения по знаку и величине контактного сдвига в спектре непосредственно знака и величины константы сверхтонкого взаимодействия (СТВ), в то время как спектр ЭПР дает только абсолютную величину константы СТВ. Наряду с возможностью определять большие значения констант СТВ, вплоть до 5,0 Гс, метод ЯМР позволяет измерять незначительные расщепления, что лежит уже за пределами разрешающей способности спектрометров ЭПР. Поскольку методом ЯМР можно исследовать любые ядра с магнитным моментом, отличным от нуля, этот метод можно применять непосредственно для исследования состояния ядер щелочных металлов в ион-радикальных парах наблюдения можно вести как за ароматической частью ионной пары, так и за катионом. Изучение ширины резонансных линий дает сведения о внутримолекулярных релаксационных процессах, а это в свою очередь позволяет получить данные о строении ионной пары. [c.318]

    Парамагнитные соединения с неспаренными электронами (свободные радикалы), когда они находятся в сильном внешнем магнитном поле, способны к резонансному поглощению энергии В микроволновой области за счет переориентации электронного спина (электронный парамагнитный резонанс, ЭПР) [4,51—53]. Спектры ЭПР растворов таких радикалов могут содержать большое количество линий вследствие взаимодействия неспаренного электрона с магнитными моментами соседних атомных ядер. Это расщепление резонансного сигнала на множество линий называется изотропным сверхтонким расщеплением (сверхтонкая структура, СТС). [c.108]

    Электронная структура и физические свойства ряда стабильных алифатических нитроксильных радикалов исследованы главным образом американскими [34, 35], советскими [41] и французскими [36, 42, 44] исследователями. Как и все радикалы, нитроксильные радикалы можно изучать методом электронного парамагнитного резонанса [45]. Наибольший интерес представляет сверхтонкое расщепление на ядре (рис. 5). Это ядро имеет спин, равный 1, поэтому оно может взаимодействовать со спином электрона, расщепляя сигнал в ЭПР-спектре на три отдельные линии равной интенсивности соответственно трем значениям проекции ядерного спина на направление магнитного поля +1, 0,-1. Каждая линия этого триплета может далее расщепляться из-за слабого взаимодействия с ядром (спин /г) соседней метильной группы [36, 46], а в отдельных случаях даже может наблюдаться слабое расщепление на протонах [35, 42]. Кроме того, в спектре может наблюдаться слабый дублет, разделенный приблизительно на 21 Гс, возникающий из-за взаимодействия с ядром (спин Чг), природное содержание которого, равно 0,36% [42]. [c.18]


    Теория электронного парамагнитного резонанса (ЭПР) в принципе аналогична теории ЯМР. Дополнительными величинами здесь являются ядерное сверхтонкое взаимодействие и -фактор. Сверхтонкое взаимодействие неспаренного электрона с ядром, обладающим спином /, приводит к расщеплению каждой линии в спектре ЭПР на 2/ + 1 линию. Это значит, что, например, неспаренному электрону, локализованному у атома азота (/ = 1), соответствует спектр, состоящий из трех линий. Как сверхтонкое расщепление, так и -фактор оказываются чувствительными к ориентации радикала во внешнем поле, к молекулярному движению и полярности локального окружения. Эти факторы в свою очередь влияют на характеристики сигналов ЭПР, что позволяет исследовать структуру, динамические свойства и полярность системы. [c.176]

    В спектрах многоатомных молекул сверхтонкая структура не м. б. разрешена из-за сложности этих спектров и ушире-ния линий, к-рые налагаются одна на другую. Существ, влияние оказывают С. в. на спектры электронного парамагнитного резонанса. Они приводят к сверхтонкому расщеплению сигнала ЭПР это позволяет получать информацию об эквивалентности положений отдельных ядер, напр, протонов, в молекуле, на основе чего можно судить о строении и симметрии молекул. [c.298]

    Спектральные методы весьма эффективны для определения структуры координационного центра. По ИК-спектрам во многих случаях можно сделать достаточно надежный вывод о способе локализации координационной связи. Структура координационного центра может быть определена методом электронного парамагнитного резонанса — ЭПР [103—105]. Снятие спектров ЭПР модельных комплексов и сопоставление их с аналогичными спектрами комплексов с макромолекулярными, в том числе и трехмерными, лигандами, определение -факто-ров и констант сверхтонкого расщепления дает возможность установить состав и стереохимию комплекса. Метод ЭПР был успешно применен для определения структуры комплексов меди с линейными полилигандами [106, 107], окружения парамагнитных ионов в фазе комплекситов [108—112]. [c.150]

    В качестве простого примера сверхтонкого расщепления рассмотрим свободный радикал с двумя протонами, в различной степени влияющими на электронные уровни энергии в магнитном поле. На рис. 16.9 показано влияние двух протонов на возможные уровни энергии электрона. В присутствии магнитного поля неспаренный электрон имеет два уровня энергии с/Пй== + 72 и /Из=— /г- Два протона расщепляют эти уровни так, что в результате неспаренный электрон имеет восемь уровней энергии. В электронном парамагнитном резонансе происходит переворачивание электронного спина, однако направление ядреных спинов не изменяется. Таким образом, в ЭПР электрон, поглощая энергию, переходит с энергетического состояния в нижней группе гпе= 42) на соответствующий уровень в верхней группе (тз= + 7г)- При увеличении напряженности магнитного поля последовательно выполняются условия резонанса для четырех переходов. Соответственно наблюдаются четыре линии в ЭПР-спектре. Поскольку четыре ядерно-спиновых состояния (а а2, Рг, 1З1С12 и Р1Р2) равновероятны, эти четыре линии имеют одинаковую интенсивность. Сверхтонкие расщепления а и Сг могут быть определены из спектра, как это показано на рисунке. [c.512]

    С точки зрения влияния растворителей наибольший интерес представляют три параметра спектра электронного парамагнитного резонанса (ЭПР) органического радикала — gf-фактор радикала, константа изотропного сверхтонкого расщепления (КСТР) от любого ядра в изучаемом радикале с отличным от нуля спином, ширина различных линий в спектре [2, 183—186, 390]. Величина g -фактора определяется напряженностью магнитного поля, при которой неспаренный электрон свободного радикала вступает в резонанс с постоянной частотой спектрометра ЭПР (обычно равной 9,5 ГГц). Константа изотропного СТР связана с распределением спиновой плотности я-электро-на (называемой также населенностью спина) в я-радикалах. Ширина линий связана с зависящими от температуры динамическими процессами, например с внутримолекулярным вращением или переносом электрона. Несколько вполне современных обзоров, посвященных изучению органических радикалов в растворах, опубликовано в сборнике [390]. [c.457]

    В ыключение следует отметить, что ВЗМО- и НСМО-электронные плотности ароматических молекул мотут быть оцецены-jaa., констант сверхтонкого расщепления водорода соответствующих, катион- и анион-радикалов соответственно. Таким образом, спектроскопия электронного парамагнитного резонанса (ЭПР) можег служить инструментом исследования химической реакционной-способности. Эта процедура и связанные с ней применения обсуждаются в статье [112]. [c.221]

    Спектры электронного парамагнитного резонанса (ЭПР).Спектры электронного парамагнитного резонанса позволяют получить, пожалуй, самые непосредственные доказательства перекрывания орбиталей металла и лигандов. Природа электронного парамагнитного резонанса кратко описана в предыдущей главе (см. стр. 29). При изучении спектров ЭПР было обнаружено, что во многих случаях вместо единственного сигнала, который должна была дать группа d-электронов, локализованных на атоме металла, наблюдается сложная совокупность многих линий, приведенная на рис. 26.22 для ставшего уже классическим случая иона [Ir lgl . Такую совокупность линий, называемую сверхтонкой структурой, удается удачно объяснить, предположив, что некоторые орбитали иридия и некоторые орбитали координированных с ним ионов хлора перекрываются так, что единственный неспаренный электрон иридия не локализуется на этом ионе, а делокализуется приблизительно по 5% на каждый ион хлора. Сверхтонкая структура спектра ЭПР обусловлена магнитным моментом ядер ионов хлора, а величина сверхтонкого расщепления пропорциональна степени делокалнза- [c.86]

    Возможно, наилучшее прямое экспериментальное доказательство распределения электронов между ионом металла и лигандом дают результаты метода электронного парамагнитного резонанса. Неспаренные электроны ведут себя как магниты и выстраиваются параллельно или антипара,плельно относительно направления приложенного магнитного поля. При этих двух расположениях электроны будут немного различаться по энергии и переходы из одного состояния в другое могут быть обнаружены по энергии перехода как энергии радиочастотного электромагнитного излучения. В спектре ЭПР изолированного иона металла одному переходу электрона соответствует единственный пик поглощения. Однако комплексы имеют более сложные спектры ЭПР (рис. 10.34). Сверхтонкое расщепление происходит в результате воздействия магнитных моментов ядер частиц лиганда на неспаренный электрон центрального атома. По крайней мере какой-то промежуток времени неспаренный электрон занимает орбиталь лиганда, и ее можно рассматривать как моле- кулярную, образованную из атомных орбиталей металла и лиганда [57]. [c.283]

    Свободные радикалы имеют неспаренпые электроны, поэтому они парамагнитны. Лучший метод их обнаружения—электронный парамагнитный резонанс (ЭПР). Пробу помещают в сильное магнитное поле, в котором возможны лишь немногие ориентации спинового момента (уровни Зеемана). С помощью подходящего электромагнитного излучения индуцируют переходы между этими уровнями потеря энергии излучения регистрируется как поглощение. Зависимость поглощения от магнитного поля дает спектр ЭПР [32]. Метод очень чувствителен он позволяет обнаруживать радикалы в концентрации до 10 моль [33]. Радикалы можно создать фотолизом или радиолизом соединений, замороженных в стекловидной матрице. Поскольку при низких температурах скорости диффузии в таких матрицах очень малы, образовавшиеся при облучении радикалы рекомбинируются медленно и можно добиться длительного существования даже обычно очень быстро исчезающих радикалов и, следовательно, провести их спектроскопическое исследование [34]. Сигналы ЭПР подвергаются дальнейшему расщеплению (сверхтонкое расщепление), если радикальный электрон находится в сфере действия магнитных ядер, например атомов водорода. Анализируя эти сигналы, можно определить распределение спиновой плотности внутри молекулы. [c.593]

    В книге представлены основные аспекты применения метода электронного парамагнитного резонанса (ЭПР) в химии комплексных ионов переходных металлов. Включен огромный справочный материал о величинах g-факторов и константах сверхтонкого расщепления спектров ЭПР ва-надила, титана, двухвалентных марганца, кобальта, никеля, одновалентного железа и др. В обширной библиографии (1057 ссылок) хорошо отражены работы советских авторов. [c.4]

    Мы объяснили некоторые из особенностей спектров электронного парамагнитного резонанса. Целесообразно еще раз перечислить те сведения, которые можно при этом получить. Во-первых, измерения -факторов позволяют судить о симметрии молекул. Кроме того, используя значения --факторов и некоторые правдоподобные соображения, можно получить информацию об относительных энергиях орбиталей в молекулах. Особенно полезным применением -факторов является идентификация радикалов по аналогии с изо-электронными системами, для которых значения -факторов известны. Важные сведения дает изучение сверхтонкого расщепления, поскольку при этом можно оценить заселенность 5- и р-орбиталей атома с магнитным ядром, что в свою очередь позволяет определить электронное распределение и (часто) валентный угол. Выявление сверхтонкой структуры также полезно для идентификации систем, ибо часто можно расшифровать наблюдающееся характерное мультиплетное расщепление вследствие взаимодействия с магнитным ядром. [c.34]

    Радикал формил НСО. Радикал формил надежно идентифицирован в газовой фазе. Он получается, например, при импульсном фотолизе ацетальдегида [25]. Ультрафиолетовый спектр поглощения НСО был интерпретирован как спектр радикала с угловой конфигурацией (с валентным углом 120") и основным состоянием Л. В первых экспериментах по изучению спектров электронного парамагнитного резонанса облученных органических соединений часто обнаруживали радикал, дающий асимметричный дублетный спектр с очень большим сверхтонким расщеплением около 180 гс. Этот радикал надежно идентифицирован как радикал НСО Бриватой и др. [26] и одновременно Адрианом и др. [27]. Последние авторы получили спектр с значительно лучшим разрешением и также исследовали спектр D O, что дало дополнительную информацию. О результатах Адриана и др., приведенных в табл. VII.4, будет сказано в ходе последующего изложения. [c.153]

    Л ы начнем со спектров радикалов НгС = СН и НгС = N. Радикал НгС = СН был получен в результате присоединения атома водорода к ацетилену в матрице из инертного газа [29], а радикал НгС = N аналогичным способом был приготовлен из H N. Интерпретация спектров электронного парамагнитного резонанса радикала НдС = СН оказалась довольно трудной, так как линии спектра были широкими [29]. Однако при фотолизе иодистого водорода -В присутствии дейтерированного ацетилена удалось получить радикал НЬС = СО, и в его спектре наблюдалось расщепление около 68 гс, которое отнесено к сверхтонкому взаилгодействию с одним из Р-протонов. Два других измеренных расщепления (34 и 16 гс) были отнесены соответственно к взаимодействию с вторым Р-прото-ном и с а-протоном. [c.155]

    Третий метод основан на измерении магнитных свойств песпаренных электронов в радикале. Более старое приближение к этому методу, например определение парамагнитной восприимчивости радикала в целом, является неудовлетворительным, так как в настоящее время невозможно с достаточной надежностью вычислить диамагнетизм магнитных орбит радикала, на который накладывается парамагнетизм неснаренного электрона. Однако измерения методом снектросконии электронного парамагнитного резонанса являются надежными, так как они позволяют непосредственно определять спиновые переходы неспаренных спинов в магнитном поле, накладываемом извне, и, следовательно, не зависят от магнитных свойств орбитального движения электронов в целом. Положение линии в спектре ЭПР дает разность энергии, обусловленную спиновой инверсией в магнитном поле, а соответствующая калибровочная кривая интенсивности позволяет определить плотность неспаренных спинов и, следовательно, концентрацию радикалов. Этим методом можно измерить как очень низкие концентрации радикалов порядка 10 М или менее, так и более высокие концентрации. При этом часто мон ю получить дополнительную информацию. Магнитное взаимодействие между неснаренным электроном и не слишком отдаленным ядром, особенно протонами связанных атомов водорода, проявляется в виде сверхтонкого расщепления линии в спектре ЭПР. Оно помогает определить местонахождение неспаренного электрона в радикале. Распределение неснаренного электрона за счет мезомерии по нескольким атомам может привести к появлению нескольких линий электронного парамагнитного резонанса, каждая из которых имеет свое характерное сверхтонкое расщепление. Из относительных интенсивностей моншо количественно определить распределение неспаренного электрона среди возможных его положений. [c.1020]

    Радикалы очень быстро гибнут в результате реком бийации, поэтому концентрация этих интермедиатов редко достигает величины выше примерно 10 М. Это обстоятельство в большинстве случаев исключает использование ультрафиолетовой, инфракрасной и ЯМР спектроскопии для их обнаружения. Однако спектроскопия электронного парамагнитного резонанса, коюряя очень чувствительна к парамагнитным частицам и позволяет регистрировать концентрации радикалов вплоть до 10 Л1, представляет собой чрезвычайно полезный метод обнаружения частиц с неспаренным электроном (молекулы, в которых отсутствуют неспаренные электроны, не регистрируются в этом виде спектроскопии). Сигнал электронного парамагнитного резонанса является убедительным доказательством присутствия в системе свободного радикала, хотя и ничего не говорит об источнике образования радикала (каким путем, в какой реакции он возник). В случае простых органических радикалов однозначное структурное отнесение часто можно провести на осноВе анализа сверхтонкого расщепления или путем сравнения спектра с известным ЭПР-спектром радикала, который был получен другим путем. . [c.94]

    Первый член описывает расшепление в нулевом поле, следующие два члена — влияние магнитного поля на спиновую мультиплетность, остаюшуюся после расшепления в нулевом поле члены А и являются мерой сверхтонкого расщепления соответственно параллельно и перпендикулярно главной оси, Q — мерой небольших изменений в спектре, обусловленных квадрупольным взаимодействием. Все эти эффекты были обсуждены выше. Последний член учитывает тот факт, что ядерный магнитный момент может взаимодействовать непосредственно с внешним полем livЯo=YPlvЯo /, где V — ядерное гиромагнитное отношение и p v — ядерный магнетон Бора. Это взаимодействие сказывается на парамагнитном резонансе только в том случае, когда неспаренные электроны связаны с ядром ядерным сверхтонким или квадрупольным взаимодействием. Но даже при наличии такого взаимодействия эффект обычно пренебрежимо мал по сравнению с другими членами. [c.376]

    Информация об электронном строении соединения, имеющего неспаренные электроны, содержится в положении линий ЭПР, тонкой, сверхтонкой и супер-сверхтонкой структуре, ширине линий и др. По отличию g -фактора от 2 можно судить об орбитальном вкладе в магнитный момент, о характере спин-орбитального взаимодействия, знаке (и величине) константы Я, расщеплении в кристаллическом поле Л, а по анизотропии г-фактора — о строении окружения парамагнитного центра и прежде всего о его симметрии. Сверхтонкая и супер-сверхтонкая структуры спектров ЭПР представляют труднопереоценимую информацию о химическом строении соединения, о локализации неспаренных электронов, о ковалентности связей, о характере участия лигандов дифференцированно в а- и я-связях [305—307]. Дополнительные данные удается получить при исследовании так называемого двойного электронно-ядерного резонанса [308] и влияния электрического поля на спектры ЭПР [309]. [c.172]

    Сверхтонкая структура обычно возникает, по-впдимому, в результате взаимодействия между неспаренным электроном радикала и расположенными по соседству атомами, обладающими ядерными магнитными моментами. Таким образом, можно получить сведения относительно степепи делокализа-цни неспаронного электрона, а также об электронной структуре радикала. Поскольку протон имеет ядерпый спин то можно обнаружить взаимодействие электронов на орбите с соседними атомами водорода для отдельного водородного атома это взаимодействие приводит к расщеплению каждого электронно-спинового уровня на два симметрично расположенных уровня. Переходы, наблюдаемые в опытах парамагнитного резонанса, обусловливают переориентацию электрона без изменения в ориентации ядра (показано на рис. 4 сплошными стрелками) пунктирной линией показаны уровни энергии и поглощение в отсутствие протона. 13 растворе ширина расщепления пропорциональна средней плотности песпаренных электронов у ядер водорода и, таким образом, показывает интепсивность взаимодействия. [c.20]


Смотреть страницы где упоминается термин Электронный парамагнитный резонанс ЭПР сверхтонкое расщепление: [c.169]    [c.403]    [c.521]    [c.283]    [c.230]    [c.69]    [c.116]    [c.71]    [c.260]    [c.309]    [c.124]   
Физические методы в неорганической химии (1967) -- [ c.365 ]




ПОИСК





Смотрите так же термины и статьи:

Резонанс парамагнитный

Сверхтонкое расщепление

Электронного расщепление

Электронный парамагнитный

Электронный парамагнитный резонанс

Электронный резонанс



© 2025 chem21.info Реклама на сайте