Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительно-восстановительный кислорода

    Восстановление простого вещества водой, сопровождающееся выделением кислорода и образованием гидратированного аниона. Окислительно-восстановительный потенциал системы [c.239]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Таким образом, термические эффекты в первой серии определяются в основном окислительно-восстановительными процессами, протекающими в массе отложений практически без доступа кислорода. Результаты второй серии эксперимептов представлены на рис. 14. [c.24]

    Как уже было сказано, образованием радикалов Н, ОН и НОг- можно объяснить окислительно-восстановительные реакции, происходящие в водных растворах многих веществ под действием излучений. Например, при облучении кислых растворов сульфата двухвалентного железа в кислом растворе в отсутствие кислорода воздуха осуществляется реакция Ре2+4-ОН. -> Рез+ + ОН  [c.267]

    Таким образом, при неравномерной аэрации металла осуществляется пространственное разделение окислительно-восстановительной реакции восстановление кислорода протекает на более аэрируемых участках, а окисление металла — на менее аэрируемых участках поверхности. Локализация процесса окисления приводит к м е с т н ой коррозии — интенсивному разрушению металла на отдельных участках. Местная коррозия приводит к появлению на поверхности металла углублений ( язв ), которые со временем могут превращаться в сквозные отверстия. Иногда развитие язв трудно обнаружить, например, из-за остатков окалины на поверхности металла. Этот вид коррозии особенно опасен для обшивки судов, для промышленной химической аппаратуры и в ряде других случаев. [c.558]

    Это — тоже окислительно-восстановительная реакция. При образовании NO2 атомы азота окисляются (в реакции они в некоторой степени утрачивают контроль над электронами, так как кислород в NO2 притягивает их намного [c.517]

    Так как атомы азота в аммиаке сильнее притягивают электроны, чем в элементном азоте, говорят, что у них отрицательная степень окисления. В диоксиде азота, где атомы азота слабее притягивают электроны, чем в элементном азоте, он имеет положительную степень окисления. В элементном азоте или элементном кислороде каждый атом имеет нулевую степень окисления. (Нулевая степень окисления приписывается всем элементам в несвязанном состоянии.) Степень окисления — полезное понятие для понимания окислительно-восстановительных реакций. [c.518]

    Коррозия металлов представляет собой окислительно-восстановительный процесс. Например, железо может окисляться молекулярным кислородом или кислотами, если имеется достаточно влаги, чтобы химические реакции протекали с достаточной скоростью. Этот процесс включает [c.190]


    Так, Г. В. Акимовым и В. П. Батраковым была предложена гипотеза (1956 г.) относительно пленочно-адсорбционной природы пассивности нержавеющих сталей (рис. 214). Согласно этой гипотезе, на поверхности нержавеющих сталей имеется тонкая, эластичная и плотная защитная пленка. Под пленкой и в порах пленки находятся атомы или ионы кислорода (или более сложные комплексы окислителя), хемосорбированные металлом. Поверхность, имеющая защитную пленку, приобретает потенциал, близкий к окислительно-восстановительному потенциалу коррозионной [c.312]

    Окислитель — в узком смысле — вещество, отдающее кислород, в более широком понимании — реагирующее вещество, степень окисления которого в процессе реакции уменьшается, В окислительно-восстановительных реакциях окислитель восстанавливается. Восстановитель — в узком смысле — вещество, принимающее кислород, в более широком понимании - реагирующее вещество, степень [c.76]

    В окислительно-восстановительных реакциях важная роль принадлежит некоторым катализаторам, являющимся полупроводниками ( 55 ), причем между их каталитическим действием и электронно-физическими свойствами (энергетическими уровнями и работой выхода электрона) существует связь. Так, С. Я. Пшежецкий и И. А. Мясников показали, что существует отчетливая связь между электропроводностью окиси цинка и ее каталитической активностью в реакции дегидрогенизации изопропилового спирта с образованием ацетона. Это наблюдается и между каталитической активностью и температурой, и при сопоставлении результатов, полученных в атмосфере чистого азота, с результатами, получаемыми при добавлении к азоту 0,4% кислорода, сильно снижающего и электропроводность, и каталитическую активность окиси цинка в данном процессе. [c.498]

    Если применять лучи, более богатые энергией, стационарная концентрация водорода повысится и может выделиться свободный водород, а также разложиться перекись водорода с выделением кислорода (это зависит от окислительно-восстановительного потенциала среды). Этот пример показывает, что даже в такой простой системе, как вода и водные растворы бромистого калия, под действием рентгеновских лучей происходит весьма сложный комплекс процессов. В других случаях в реакциях нередко принимают участие и атомы кислорода. Кинетика такого сложного сочетания взаимодействий еще мало изучена. [c.553]

    Ион металла при этом восстанавливается в одну из низших валентных форм. В результате совместного действия кислорода и углеводорода ионы металлов часто находятся в разных валентных состояниях, что в среднем соответствует некоторой дробной величине. Так, ион ванадия при окислении нафталина воздухом имеет среднюю валентность 4,3 вместо 5 в УгОб. Очевидно, что состояние иона металла определяется окислительно-восстановительными свойствами среды и зависит от соотношения кислорода и углеводорода, от наличия водяных паров и т. д. При этом в начальный период работы катализатор постепенно формируется в состояние, стабильное для данных условий синтеза, а варьирование условий может изменить его активность и селективность. [c.412]

    Из рассмотренных примеров видно, что общим в кинетике окисления является тормозящее влияние продуктов окисления, адсорбирующихся на поверхности сильнее, чем исходные углеводороды. Для кислорода не наблюдается такого влияния, что подтверждает механизм хемосорбции углеводорода не на активных центрах, а на центрах, уже сорбировавших кислород. В то же время порядок реакции по кислороду и углеводороду может быть разным и зависящим от соотношения реагентов, окислительно-восстановительных свойств среды, а, значит, и от степени окисленности металла или оксида в приповерхностном слое. Энергия активации при гетерогенном окислении олефинов составляет 63—84 кДж/моль (15— 20 ккал/моль), а для ароматических соединений около 105 кДж/моль ( 25 ккал/моль). [c.415]

    Важно, чтобы в отходящей из реактора смеси находился непревращенный аммиак, так как в противном случае растет выход альдегидов и СОо. Необходим и некоторый избыток кислорода, который вместе с пропиленом и аммиаком обеспечивает окислительно-восстановительные свойства среды, благоприятные для повь[шения активности и селективности катализатора. [c.425]

    Если в реакционную массу вместе с олефинами вводить кислород, происходит окисление палладия, но реакция идет слишком медленно. Заслуга разработчиков процесса состояла главным образом в создании окислительно-восстановительной системы, в которой палладий быстро окисляется, т. е. непрерывно регенерируется в активной форме. Оказалось, что, если в раствор добавить соль двухвалентной меди, она окисляет палладий, переходя н одновалентную медь, легко окисляемую кислородом. Иными словами, соли меди служат переносчиками кислорода  [c.447]


    Реакции окисления часто идут по окислительно-восстановительным механизмам, так что катализатор постоянно восстанавливается молекулами углеводорода на активных центрах одного типа и вновь окисляется молекулярным кислородом на актив- [c.13]

    Однако все разновидности нитрата целлюлозы обладают способностью к "горению". Этот процесс можно представить в виде "внутренней" окислительно-восстановительной реакции в молекуле, содержащей атомы кислорода, которые могут реагировать с углеродом и водородом целлюлозного звена. В гл. 9 дается краткое описание пожаров нитрата целлюлозы. [c.165]

    Окислительно-восстановительные реакции, в которых воздух или кислород [c.247]

    Параметры окисления кокса на одной из установок риформинга следующие [178]. Окислительно-восстановительную регенерацию алюмоплатинового катализатора проводили в течение 6 сут при давлении в системе 0,5 МПа. Циркуляция инертного газа составляла 40-50 тыс. м /ч содержание кислорода в инертном газе изменяли в пределах [c.99]

    В данном процессе имеет место, очевидно, окислительно-восстановительный механизм, согласно которому адсорбированные на катализаторе -бутилены взаимодействуют с поверхностным кислородом катализатора. В отсутствие кислорода в газовой фазе последний за счет диффузии подводится к поверхности из объема катализатора. Скорость этого подвода достаточно высока при количестве подведенного кислорода, меньшем чем величина, эквивалентная - 15 монослойным покрытиям. После этого скорость подвода начинает лимитировать дегидрирование, и наблюдаемая ско- [c.39]

    Изменения эффективности каталитических процессов, осуществляемых при искусственно создаваемом нестационарном состоянии катализатора, можно, по-видимому, ожидать всегда, если эти процессы протекают по раздельному механизму. В частности, по такому пути протекают такие окислительно-восстановительные реакции, как полное окисление водорода, СО, углеводородов и многих других органических веществ при повышенных температурах, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя каким-либо образом взаимодействие окислителя с восстановленным катализатором й затем — взаимодействие исходного вещества (в присутствии окислителя или без него) с вводимым в зону реакции окисленным катализатором, можно часто увеличить активность и (или) избирательность за счет того, что в нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. Примером этого, кроме уже названных процессов, может служить окисление нафталина во фталевый ангидрид на ванадиевом катализаторе [30]. Для этого процесса активность катализатора становится тем большей, чем больше степень окисленности 0, а избирательность процесса практически не зависит от величины 0 нри [c.40]

    Об эффективности антиокислителя можно судить по его окислительно-восстановительному потенциалу, который отражает энергию диссоциации связи А—Н [4, V. 1, сЬ. 4]. Чем слабее эта связь, тем лучше действует антиокислитель, но до известного предела, так как при очень слабой связи появляется возможность взаимодействия антиокислителя не только с перекисными радикалами, но и с кислородом, что ведет к быстрому израсходованию антиокислителя на побочные реакции  [c.71]

    Известно также предложение В. Э. Левенсона измерять окислительно-восстановительный потенциал горных пород как показатель нефтегазоносности, поскольку образование нефтяных углеводородов связано с восстановительной обстановкой. В окислительной же обстановке, т. е. в присутствии кислорода или веществ-окислителей, образования углеводородов не происходит, они подвергаются окислению. [c.94]

    Карбонизация может проводиться в окислительной, восстановительной и нейтральной средах. Окислительной средой слу жит кислород возду- [c.61]

    Ионы металлов переменной валентности как восстанавливающие и окисляющие агенты. Три )ассмотреиных варианта не исчерпывают всех во Можных иутсЙ нротекания окислительно-восстановительных реакций. В роди восстановительных (или окислительных) агентов могут выступать также находящиеся в растворе коны металлов. В этом с.лучае электродный процесс сводится к окислению (или восстановлению) ионов металлов переменной валентности, которые затем восстанавливают (или окисляют) органическое соединение. В качестве при у1сра можно указать на электроокисление суспензии антрацена. При проведении электролиза такой суспензии иочти весь ток на аноде расходуется на выделение кислорода. Если, однако, добавить к ней немного солен церия, хрома или марганца, то на аноде наряду с кислородом появится также антрахинон. Реакция идет, по-видимому, следующим образом ионы металла, наиример церия, окисляются на аноде [c.443]

    Другие исследователи (Г.К. Боресков, Марс —Ван Кревелен) б(1лее доказательно утверждали, что окислительно —восстановительный каталитический процесс протекает стадийно посредством в аимодействия восстановителя с кислородом поверхности окисла металла и реокислении восстановленного катализатора окислите — Л5 ми, то есть каталитическая поверхность рассматривается как химический реагент (как это представлено выше в виде реакций 1.1 — [c.160]

Рис. 13. Дернватограмма окислительно-восстановительных процессов в массе нагаромасляных отложений при недостатке кислорода- Рис. 13. Дернватограмма <a href="/info/587548">окислительно-восстановительных процессов</a> в массе <a href="/info/1457959">нагаромасляных отложений</a> при недостатке кислорода-
    В химической промышленности платина применяется для изго-топления коррозиониостойких детален аппаратуры. Платиновые аноды используются в ряде электрохимических производств (производство надсерной кислоты, перхлоратов, перборатов). Широко применяется платина как катализатор, особенно при проведении окислительно-восстановительных реакций. Она представляет собой первый, известный еще с начала XIX века гетерогенный катализатор. В настоящее время платиновые катализаторы применяются в производстве серной и азотной кислот, при очистке водорода от нрнмссей кислорода и в ряде других процессов. Из платины изготовляют нагревательные элементы электрических печей и приборы для измерения температуры (термометры сопротивления и термопары). В высокодисперспом состоянии платина растворяет значительные количества водорода и кислорода. На ее способности растворять водород основано применение платины для изготовления водородного электрода (см. стр. 281). [c.698]

    Все белки являются полимерами аминокислот. Общая формула такого полимера показана в нижней части рис. 21-1, а модель отдельной аминокислоты-на рис. 21-12. Ферменты представляют собой один из классов белков, причем, видимо, наиболее важный. Ферменты имеют компактные молекулы с молекулярной массой от 10000 до нескольких миллионов и диаметром от 20 А и выше. Они выполняют роль катализаторов, регули-руюидах биохимические реакции. Другие компактные молекулы белков, например миоглобин и гемоглобин, выполняют роль переносчиков и накопителей молекулярного кислорода (см. рис. 20-25, 20-26). Цитохромы-это белки, способные к окислительно-восстановительным реакциям и играющие роль промежуточных звеньев при извлечении энергии из пищевых продуктов (см. рис. 20-23). Молекулы гамма-глобулинов с молекулярной массой порядка 160000 представляют собой так называемые антитела, защитное действие которых заключается в том, что они присоединяются к вирусам, бактериям и другим чужеродным телам в живом организме и осаждают их из жидких сред. Все перечисленные белки относятся к глобулярным белкам. [c.313]

    В переносе энергии принимают участие еще две другие молекулы, с которыми следует познакомиться, прежде чем перейти к рассмотрению цикла лимонной кислоты. Одной из них является никотинамидадениндину-клеотид (НАД), структура которого показана на рис. 21-22. Эла молекула напоминает АТФ, так как тоже содержит адениновую группу, рибозу и фосфатную группу. Однако важнейшей частью НАД является никотиновое кольцо, которое может попеременно восстанавливаться и окисляться. Эта молекула является окислительно-восстановительным переносчиком энергии. Когда какой-либо метаболит окисляется на одной из стадий цикла лимонной кислоты, окисленная форма никотинамидадениндннуклеоти-да, НАД , может присоединить два атома Н и восстановиться с образованием НАД Н и Н . Другим важным переносчиком энергии является флавинадениндинуклеотид (ФАД). который восстанавливается в ФАД Н2. Оба этих переносчика энергии питают последнюю производственную линию биохимической фабрики запасания энергии, завершающ ю окислительный цикл дыхательной цепи. Она представляет собой четырехстадийный процесс, в котором принимают участие ферменты-цитохромы и происходит повторное окисление восстановленных переносчиков энергии НАД Н и ФАД Н2. В этом процессе кислород восстанавливается до воды, а выделяющаяся энергия запасается в молекулах АТФ. Каждый раз, когда происходит повторное окисление восстановленной молекулы-переносчика энергии, выделяемая при этом окислении энергия запасается путем синтеза нескольких молекул АТФ. [c.328]

    Гидрирование проводят примерно до 50%-ной степени конверсии хинона, что соответствует образованию более растворимого хин-гндрона, после чего раствор снова поступает на окисление. Этим путем осуществляется окислительно-восстановительный цикл, приводящий к образованию пероксида водорода из молекулярного кислорода и водорода. По сравнению с электрохимическим синтезом пероксида водорода, при органических методах его производства расходуется гораздо меньше электроэнергии. [c.410]

    Друюй распространенный механизм гетерогеннокаталитического окис ения называют окислительно-восстановительным. Он состоит в то л, что сорбированный на ионе металла углеводород окисляется кислородом решетки катализатора металл при этом восстанавливается в низшее валентное состояние и затем, вновь взаимодействуя с кислородом, переходит в первоначальную форму  [c.413]

    Ему же соответствует кинетика окислительного аммонолиза пропилена, скорость которого в определенных пределах не зависит от парциальных давлений кислорода и аммиака. Два последних кинетических уравнения близки окислительно-восстановительному механизму, когда окисление восстановленных активных центров катализатора протекает быстро и не лимитирует общей скорости процесса. В этом случае наблюдается первый порядок окисления и окислительного аммонолиза по пропилену (г = кРСзНз)- [c.414]

    Все эти катализаторы работают по рассмотренному ранее окислительно-восстановительному механизму, и скорость реакции зависит только от парциального давления пропилена (г = йЯсзНб )> свидетельствуя о лимитирующей стадии взаимодействия пропилена с окисленным активным центром катализатора, где образуется хе-мосорбированный аллильный радикал. В свою очередь, на другом активном центре сорбируется аммиак, вероятно, в виде иминного радикала NH. Взаимодействие их друг с другом с участием кислорода решетки и дает акрилонитрил. [c.424]

    Катализаторами окислительного дегидрирования олефинов оказались оксидные композиции В1 + Мо, Bi-fMo-f Р, В1+ , Ре+5Ь и др. Все они активны при 400—600 °С и работают по уже встречавшемуся окислительно-восстановительному механизму (стр. 413) с участием кислорода кристаллической рещетки  [c.488]

    При регенерации зауглероженных железооксидных катализаторов в среде водяного пара происходит лишь выгорание углерода, катализатор же остается в виде фазы магнетита (рис. 2.22, кривая I). При добавлении к водяному пару кислорода выгорание углерода происходит в основном после окисления катализатора (рис. 2.22, крив ая 2). В работе [104] показано, что выгорание углерода при регенерации в паросодержащей среде также протекает каталитически по стадийному окислительно-восстановительному механизму. Лимитирующим этапом в среде водяного пара будет окисление катализатора. Добавление к водяному пару кислорода приводит к окислению магнетита, и лимитирующим этапом регенерации становится окисление кокса, при этом скорость окисления кокса существенно выще, чем в среде водяного пара. [c.42]

    По-видимому, среди большого количества гетерогенных каталитических процессов изменения свойств оксидных катализаторов под воздействием реакционной среды изучены наиболее подробно. Это относится прежде всего к катализаторам окислительно-восстановительных реакций при вариации соотношения концентраций окисляющего и восстанавливающего компонентов в реакционной смеси. С уменьшением этого отношения снижается окисленность катализатора, и в результате наблюдается резкое уменьшение общей скорости реакции при одновременном увеличении селективности в отношении продуктов неполного окисления. Изменение этих параметров на примере реакции окисления акролеина в акриловую кислоту на оксидном ванадиймолибденовом катализаторе [11] представлено на рис. 1.4. Кривая 3 показывает, как меняется с изменением состава реакционной смеси энергия связи кислорода на поверхности катализатора, определяющая каталитические свойства. [c.12]

    Сырьем для производства минеральных солей и удобрений служат природные минералы, полупродукты химической промышленности и промышленные отходы. Природное минеральное сырье — основная сырьевая база солевой технологии. При переработке природных фосфатов, баритовых руд, боратов, хромитов, нефелииа, природных солей калия, магния и натрия получают фосфорные, калийные и борные удобрения, а также сульфид натрия, дихроматы натрия и калия, сульфат аммония и другие соли. При переработке природного сырья наряду с физическими методами выщелачивания, выпаривания, кристаллизации используют реакции обменного разложения и окисления — восстановления. Одним из методов вскрытия руд (т. е. переведения их ценных компонентов в растворимое или реакционноспособное состояние) служит разложение их кислотами или щелочами или спекание с последними. Этот метод основан на реакциях обменного разложения разделение полученных продуктов производят, пользуясь их различной растворимостью, летучестью одного из компонентов и т. п. Примером может служить обработка природных фосфатов кислотами, при которой нерастворимые фосфорнокислые соли переходят в водорастворимую форму. Многие методы вскрытия природного сырья основаны на - окислительно-восстановительных реакциях к ним принадлежат некоторые виды обжига окислительный, восстановительный, хлорирующий примерами служат производства сульфида натрия и бария восстановительным обжигом, сульфата натрия и барита, производство хроматов окислительным обжигом хромитовых руд и т. п. Для производства солей используют атмосферный воздух — неисчерпаемый источник кислорода для окислительного обжига и азота для получения азотных удобрений. [c.142]

    Чтобы осуществить противоположное действие (окисление спирта в кетон) система должна быть дополнена флавиновым кофактором (РМЫНг-> РМЫ), где кислород восстанавливается до Н2О2. Целесообразность использования НЬ.А.ОН в качестве хирального окислительно-восстановительного катализатора была [c.407]


Смотреть страницы где упоминается термин Окислительно-восстановительный кислорода: [c.96]    [c.160]    [c.177]    [c.423]    [c.204]    [c.176]    [c.477]    [c.241]    [c.155]    [c.196]    [c.207]   
Фотосинтез 1951 (1951) -- [ c.293 ]




ПОИСК







© 2024 chem21.info Реклама на сайте