Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регулярность цепи полимера

    Центральная метиленовая группа при синдиотактическом расположении обозначается как рацемическая метиленовая группа, или г-единица. Последовательность трех следующих друг за другом мономерных звеньев в структурно регулярных цепях полимеров типа (—СНг— RR —) называется тактической триадой. [c.17]

    Регулярность цепи полимера. Кристалл должен иметь дальний порядок в трех измерениях, одно из которых в полимере совпадает с осью макромолекулы. Следовательно, в этом направлении должен существовать дальний порядок, т. е. сама цепь должна быть построена достаточно регулярно. Действительно, полимеры, обладающие регулярно построенными цепями, при определенных условиях кристаллизуются. Иногда даже заметная нерегулярность в цепях может не препятствовать процессу кристаллизации, но атактические полимеры не кристаллизуются ни при каких условиях. сИ ( / > /—  [c.107]


    Свойства ПВХ, как уже отмечалось, тесно связаны с регулярностью цепи полимера. [c.194]

    Свойства ПВХ, в том числе и стабильность макромолекул, связаны с регулярностью цепи полимера. ПВХ, полученный разными способами, обычно неоднороден по содержанию звеньев винилхлорида, заполимеризованных в синдиотактических и изотактических последовательностях, при этом всегда преобладают первые (табл. 8) [c.37]

    Улучшение физико-механических показателей резин, совершенствование их структуры связано с использованием регулярно-построенных полимеров, имеющих низкое значение Гс, состоящих из гибких макромолекул высокой молекулярной массы и имеющих узкое молекулярно-массовое распределение. При этом после вулканизации получаются совершенные сеточные структуры, которые характеризуются также узким распределением длин между узлами сетки и высокой подвижностью сегментов цепи. [c.92]

    Для характеристики закономерности чередования разнородных звеньев в цепи полимера (сополимера) вводится понятие регулярности (правильности) и нерегулярности полимеров. [c.123]

    Регулярными называются полимеры, в основе которых лежит цепь с закономерно чередующимися звеньями типа А—Б—А—Б—А—Б—А... или А—А—Б—Б— —Б-А-А-Б-Б-Б-А-А... [c.123]

    Если в молекуле полимера регулярно чередуются звенья мономера, но отсутствует правильное пространственное расположение заместителей вдоль углеродной цепи, такие полимеры называют атактическими. При правильном чередовании в пространстве заместителей при атомах углерода в насыщенной основной цепи или правильном расположении метиленовых групп относительно плоскости двойной связи в цепи полимеры называют стереорегулярными. [c.56]

    Для полимеров наиболее характерно аморфное состояние, однако в определенных условиях они могут переходить (частично или полностью) в кристаллическое. Необходимое условие кристаллизации— регулярность строения полимера. Процесс кристаллизации совершается при некоторых оптимальных значениях Т и гибкости цепи, ибо слабое тепловое движение не может обеспечить необходимой ориентации звеньев, а слишком интенсивное — ее нарушает. Температуру, выше которой полимер практически не кристаллизуется, называют температурой кристаллизации. При [c.307]

    Для осуществления кристаллизации требуется соблюдение ряда условий. Цепь полимера должна иметь регулярное (стереорегулярное) строение. При температуре кристаллизации цепи полимера должны обладать достаточной гибкостью для обеспечения перемещения, образования складок и укладывания макромолекул в кристаллическую структуру. Кристаллизация жестких цепей затруднена. В кристаллической структуре достигаются максимальные плотность упаковки и энергия межмолекулярного взаимодействия. При кристаллизации возможны различные виды плотной упаковки распрямленных цепей, складчатых цепей, спиралевидных макромолекул. Полярные заместители в цепях оказывают противоположное влияние. Увеличивая межмолекулярное притяжение, они способствуют плотной упаковке и затрудняют ее, уменьшая гибкость цепей. Характер упаковки будет зависеть от преобладания того или иного вида эффекта. [c.138]


    При координационно-ионной полимеризации для образующих- Ся макромолекул характерно не просто химически регулярное соединение мономерных звеньев по типу Г — X (что вообще присуще ионной полимеризации), но и строгое чередование в пространстве заместителей при атомах углерода основной цепи полимера. Стереоспецифичность макромолекул полимеров, синтезированных при координационно-ионной полимеризации обеспечивается природой комплексного катализатора. Соединения алюминия и титана аналогичной структуры, но взятые в отдельности, не являются стереоспецифическими катализаторами. [c.54]

    Говоря о влиянии структуры полимера на его прочность, следует рассмотреть также влияние степени разветвленности и поперечного сшивания. Гибкие неразветвленные молекулярные цепи под влиянием межмолекулярного взаимодействия при охлаждении расплава легко располагаются параллельно друг другу. При достаточной регулярности цепи легко происходит кристаллизация. Если макромолекулы не линейны, а содержат разветвления, то в местах разветвлений плотная упаковка макромолекул затрудняется. [c.204]

    Упорядоченность во взаимном расположении полимерных молекул и высокая степень регулярности построения цепи приводят к ухудшению приспосабливаемости макромолекул к поверхности и взаимодействия с нею. В работе [563] была рассмотрена роль гибкости молекулярных цепей каучука в усилении сажей на основе представлений об изменении конформации цепей при смачивании полимером твердой поверхности. При этом было найдено, что усиление тем более заметно, чем. выше гибкость цепи и чем больше, следовательно, ее контактов с поверхностью может быть реализовано. Проведенные термомеханические исследования свойств наполненных аморфных и кристаллических образцов полистирола также показали, что при введении наполнителя изменения свойств кристаллического полимера менее заметны, чем аморфного того же химического строения. Таким образом, взаимодействие с поверхностью и адгезия зависят не только от химической природы полимера и наполнителя, но и от степени регулярности цепи и молекулярной упорядоченности полимера в надмолекулярных образованиях. Взаимодействие этих образований с поверхностью и их взаимное расположение — весьма важные факторы, определяющие физико-химические и физико-механические свойства наполненного полимера. [c.284]

    Регулярность цепи полимера. Кристалл должен иметь дальн порядок в Трех измерениях, одно из которых о полимере совпала с осью макромолекулы. Следовательно, в этом направлении дп жеи существовать дальний порядок, т. е. сама цепь должна бы построена достаточно регулярно. Иногда даже 3 (ач1(телы(ая Hgf г лярность в цепях может не нарушать процесса кристаллизаар но статистические сополимеры или атактические полимеры пе кр стачлизуются ни при каких условиях. [c.132]

    Для К. в полимерных системах необходимо наличие регулярности в строении макромолекул нарушение регулярности резко снижает способность полимеров ii К. и может подавить ее целиком (напр., изотактич. полимеры кристаллизуются, атактические — нет). Кроме того, для осуществления К. необходимо выполнение неравенства АЯ > ITAiSKAff и Д5 — изменения соответственно энтальпии и энтропии при кристаллизации, Т — абсолютная темп-ра), справедливого для самопроизвольных процессов, к к-рым относится К. Изменение энтальпии при К. определяется изменением плотности упаковки макромолекул. Если звенья макромолекул содержат объемистые заместители, затрудняющие плотную упаковку, то это неравенство может не выполняться т. к. АН мало) даже при условии регулярности цепи. Полимеры а-олефинов при наличии в боковых группах более [c.586]

    Влияние степени стереорегулярности поливинилхлорида на константы /( и а и вообще на молекулярные свойства в растворе специально не исследовалось. Однако подобные исследования, проведенные для некоторых других полимеров, пoкaзaли , что для вычисления молекулярного веса по уравнению Марка — Куна — Хувинка регулярность цепи полимера не играет роли, так как было доказано, что в случае полипропилена и полистирола для атактических и изотактических полимеров эти коэффициенты одинаковы. Из табл. [c.232]

    Полиизобутилены являются третьим примером высокомолекулярного алифатического углеводорода с регулярной структурой. Полимеры эти — некристаллические вещества и в зависимости от молекулярного веса варьируют от масел до полутвердых смол. Однако, если твердые полиизобутилены растянуть, они дают рентгенограмму, ясно указывающую на наличие кристаллизации [4]. Таким образом, регулярное диметилирование каждого второго атома углерода в длинных углеродных цепях вызывает такое разделение цепей, чтобы помешать кристаллизации в нерастянутом образце. Однако ориентация цепи, вызванная растяжением материала, делает кристаллизацию возможной. [c.169]

    Полихлоропрен, образующийся на первой стадии полимеризации, представляет собой пластичный материал, растворимый в галоидопроизводных углеводородов. В цепи нитевидных макромолекул мономерные звенья сочетаются по схеме голова к хво-сту > —4-присоединение). Такое регулярное строение полимера придает ему способность к кристаллизации и облегчает процесс ориентации при растяжении. Структура линейных полимеров хлоропрена была установлена методом озонирования. При озонировании в реакцию вступают двойные связи, которые не принимали участия в первой стадии процесса полимеризации. При увланснении образующегося озонида происходит его разложение по местам присоединения озонидных групп. [c.280]


    Таким образом, несмотря на наличие некоторых общих черт у радикальной н ионной полимеризации как цепных реакций синтеза полимеров, где кинетическая цепь реакций активных расту1цих частиц с молекулами мономера воплощается в материальную цепь макромолекул, между ними имеются существенные различия. Прежде всего в ионной полимеризации в качестве растущей частицы действуют заряженные ионы, а в свободнорадикальной полимеризации— свободные радикалы с неспаренным электроном на атоме углерода. Ионы более активны и реакциоппоспособны. В связи с этим требуются более тщательно контролируемые условия их образования и существования. Инициирующие системы в ионной полимеризации в основном являются каталитическими, т. е. восстанавливают свою исходную структуру, а не расходуются необратимо, как в случае радикальных инициаторов. Во многих случаях катализаторы ионной полимеризации осуществляют не только химическое инициирование полимеризации, но и координируют молекулы мономера около растущих частиц. Это позволяет получать строго регулярное пространственное (стерическое) расположение звеньев мономера в цепи полимера (стереорегулярные полимеры). [c.36]

    Таким образом, на конце растущей цепи всегда находится карбка-тиок с противоанионом. Благодаря поляризации молекулы мономера обеспечивается регулярное присоединение звеньев по типу голова к хвосту , так как другой тип присоединения здесь просто невозможен. Поэтому цепь полимера имеет химически регулярную структуру. Невысокая диэлектрическая постоянная среды (хлорированные углеводороды) способствует сохранению ионной пары в процессе роста цепи. [c.38]

    Зависимость свойств полимеров от строения макромолекулы, ее формы, агрегатного состояния и молекулярной массы. Выше было указано (стр. 442), что молекулы полимеров бывают линейные, разветвленные в одной плоскости, и трехмерные, т. е. разветвленные в трех направлениях. Молекулярные цепи полимеров могут быть построены из регулярно или нерегулярно чередующихся звеньев, как это показано для атактической, изотактичес-кой и синдиотактической структур макромолекул (стр. 453—454). [c.485]

    Процессу кристаллизации способствует механическое растяжение полимера, направляющее ориентацию цепей. Следует отметить, что образование пачек, состоящих из ориентированных цепей, обычно не является фазовым переходом, поскольку при этом не происходит разрыва непрерывности функций и отсутствует скрытая теплота перехода. Пачки не обладают ближним порядком (нет ориентации звеньев) при наличии дальнего (ориентация цепей). В дальнейшем, при регулярном строении полимера, пачки могут сращиваться, образуя плоские ленты. Наслоение лент приводит к образованию трехмерных структур — сферо-литов, превращающихся далее в кристаллы (фазовый переход). [c.308]

    Если в цепи полимера наблюдается монотонное чередование звеньев, т е. собл1одается совершенный, дальний порядок звеньев по цегтн, то полимер построен регулярно. Нарушение этого порядка ведет к нерегулярности строения цепи полимера. Нерегулярность цепи может обусловливаться разными причинами. [c.17]

    Регулярными называются такие полимерные молекулы, в которых соблюдается строгая последовательность чередования химических звеньев и их пространственного расположения. Чем более регулярно строение макромолекулы, тем больше способность полимера к кристаллизации. Любые нарушения регулярности строения цепи снижают эту способность. При очень хаостичном строении цепи полимер не способен кристаллизоваться. [c.258]

    Эти конфигурации можно отчетливо представить себе, если предположить, что углерод-углеродная цепь лежит на плоскости в виде растянутой зигзагообразной конформации. Если заместители в монозамещенном виниль-иом мономере расположены беспорядочно над или под плоскостью углеродной цепи, полимер не имеет стерсо-регулярной структуры и называется атактическим  [c.247]

    Полиэтилен. Строение полиэтилена схематически представлено на рис. 2. Степень кристалличности, зависящая от числа боковых цепей в молекулах полимера, закономерно возрастает от обычного полиэтилена, приготовленного полимеризацией под высоким давлением, к полимеру, получаемому при применении новых твердых катализаторов. Боковые цепи, связанные с главной цепью полимера, создают аморфные зоны, так как нарушают регулярность строения, обусловливающую кристалличность продукта. Кристалличность обычного промышленного полиэтилена вследствие значительной разветвленности его строения, составляет примерно 60—70% [82]. Полиметилен, полученный разложением дпазометана, имеет линейную цепь, состоящую из метиленовых групп кристалличность его превышает 95% [54]. Между обеими этими крайностями находятся новые типы полиэтиленов со степенью кристалличности в пределах 70-95%. [c.290]

    ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ (полимеры), характеризуются мол. массой от неск. тысяч до неск. (иногда многих) миллионов. В состав молекул В. с. (макромолекул) входят тысячи атомов, соединенных хим. связями. Любые атом или группа атомов, входящие в состав цепи полимера или олигомера, наз. составным звеном. Наим, составное звено, повторением к-рого м. б. описано строение регулярного (см. ниже) полимера, наз. составным повторяющимся звеном. Составное звено, к-рое образуется из одной молекулы мономера при полимеризации, наз. мономерным звеном (ранее иногда наз. элементарным звеном). Напр., в полиэтилене [—СН2СН2—] повторяющееся составное звено-СН2, мономерное - СН2СН2. [c.441]

    П. п.-способ хим. и структурного модифицирования полимеров и получения новых полимерных материалов (напр., простых и сложных эфиров целлюлозы, хлорир. полиолефинов и ПВХ), особенно таких, к-рые трудно или невозможно синтезировать др. путем (напр., поливиниловый спирт). Хлорирование полиэтилена приводит к нарушению регулярности цепи, к потере способности кристаллизоваться, а при содержании хлора 30-40% его можно использовать как каучук. Фосфохлорирование полиэтилена придает ему огнестойкость, сульфохлорирование повышает его устойчивость к растрескиванию. П. п. играют важную роль в процессах стабилизации полимеров напр., экранированием концевых групп макромолекул замедляют деструкцию полимеров. [c.636]

    Однако приведенная выше структура деградированной арабовой кислоты не является единственной, которая может объяснить образование указанных продуктов гидролиза. В данном случае, исходят из предположения о максимально упорядоченной регулярной структуре полимера. Однако тот же набор метилированных продуктов после гидролиза получился бы, если 1) разветвления цепи не повторялись бы регулярно через один галактозный остаток, а были бы нерегулярными и 2) если бы остатки галактозы в главной цепи не всегда были связаны 1—6 связью, а имелась бы иногда 1—3 связь, тогда как ответвления в этом случае отходили бы от шестого углеродного атома. [c.168]

    Лииейчые полимеры, кроме жесткоцепных ароматических, при нагревании способны плавиться или размягчаться, а некоторые также растворяются в органических растворителях. Большинство таких полимеров имеет высокоэластическое состояние и образует пленки и волокна. Раз-ветв генные полимеры, имеющие сходную молекулярную массу с аналогичными линейными полимерами, легче растворяются, имеют меньщие плотность и склонность к кристаллизации, меньшую регулярность цепей и более низкую механическую прочность. [c.16]

    На схеме 2.1 представлен механизм действия комплексного катализатора - три-хлорида титана с тризтилалюминием при полимеризации алкенов в среде инертного углеводорода в отсутствии кислорода (кислород отравляет катализатор и снижает его активность). Трихлорид титана и триэтилапюминий образуют комплекс (а). При добавлении катализатора в полимеризационную систему молекула мономера СНз=СНХ координируется у атома титана с образованием Л-комплекса и соответственно поляризуется. После разделения зарядов одна из связей в комплексе разрушается, в структуру каталитического комплекса входит молекула мономера и образуется шестичленный цикл (6). Последний регенерируется в четырехчленный цикл (в), в котором атом углерода мономера соединен с атомами титана и алюминия, а исходная этильная группа удаляется из цикла вместе с другим атомам углерода алкена. При добавлении следующих молекул мономера процесс идет аналогично и происходит вытеснение образую-щ йся полимерной матрицы вместе с этильной группой катализатора, находящейся на конце полимерной цепи. Таким образом, при координационной полимеризации обеспечивается строгий стереоспецифический катализ и соответственно регулярное строение полимера. [c.36]

    В макромолекуле боковые группы основной цепи могут иметь регулярное или нерегулярное пространственное расположение. Регулярное пространственное расположение боковых групп определяет стереорегулярность цепей полимеров. По стереорегулярности полимеры делят на изотактичесше и синдиотактические (см. рис. 1.2). Если в регулярной структуре Г — X макромолекулы но- [c.12]

    В сложных металлоорганических системах, где активный центр является, как правило, многоядериым, такая координация приводит к серьезным стереохимическим последствиям. Наиболее ярко это Проявляется при полимеризации асимметрических эпоксидов, приводящей к образованию стереорегулярных полимеров. Каталитические центры способны в этом случае выбирать только один изомер (В илп Ь) из рацемической смеси, образуя регулярную или частично регулярную цепь [18]. Более выгодные условия координации одного Из оптических изомеров являются, скорее всего, истинной причинои Стереоспецифичности. [c.221]

    Способность пади.меров к кристаллизации завислт от их хим ческого строения и определяется рядом факторов, характерных для низкомолекулярных веществ (плотностью упаковки, энерги межмолекулярного взаимодействия и соотношением ее с энерги теплового движения), а такнсе специфическими особенностя строения цепи полимера (регулярность и гибкость цепей). [c.132]

    ПВФ, полученный в присутствии обычных свободно-радикальных инициаторов, имеет беспорядочно ориентированную (атактическую) молекулярную структуру и содержит до 32% звеньев, соединенных по типу голова к голове , т. е. в поли-.мерной цепи одно мономерное звено из каждых шести присоединяется обратно . Степень стереорегулярности образцов ПВФ, синтезированных на катализаторах Пиглера — Натта, а также при инициировании полимеризациич ооралкилами, существенно не улучшается. У образцов обнаружен одни и тот же тип спектров дифракции рентгеновских лучей полимеры отличаются лишь повыщенными степенью кристалличности и температурой плавления кристаллитов [121], что обусловлено более регулярным присоединением по типу голова к хвосту . С понижением те.мпературы полимеризации повышается регулярность ПВФ за счет уменьшения аномальных мономерных связей голова— голова , хвост—хвост и разветвлений цепи полимера. [c.74]

    Важной особенностью хлоропрена, как мономера при эмульсиониой полимеризации, является срашительно высокая регулярность цепи лолучаемого полимера, связанная с ориентирующим действием полярного атома хлора (определяемым, -в свою очередь, высокой электроноакцептор ной способностью этого атома и соогветст- [c.225]

    Изотактические и синдиотактические полимеры называ-стереорегулярными, то есть полимерами с регулярным, ядоченным расположением заместителей относительно дной полимерной цепи Полимеры, полученные сво-орадикальной полимеризацией, например, поливиюш-, полистирол, поливинилфторид, полиметилакрилат, являются атактическими с малой степенью кристал-ости и высокой степенью аморфности Такие полиме-вследствие пониженных межмолекулярных взаимодей-обладают малой прочностью при разрыве и повы-ой пластичностью Методами координационной и анионной полимериза- [c.295]


Смотреть страницы где упоминается термин Регулярность цепи полимера: [c.589]    [c.132]    [c.254]    [c.2249]    [c.29]    [c.133]    [c.132]    [c.254]   
Физико-химия полимеров 1978 (1978) -- [ c.107 ]




ПОИСК







© 2025 chem21.info Реклама на сайте