Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уксусный с нитросоединениями

    Анализ полученных данных позволяет сделать вывод о том, что реакция нитрования дифенилсульфида (II) протекает через N-нитро-соединение, которое в мягких условиях является основным продуктом реакции. Перегруппировку N-нитросоединения в С-нитросоединение удалось осуществить путем кипячения этого продукта в уксусной кис- [c.77]


    Окисление аминов до нитрозо- или нитросоединений проводят пероксидом водорода в уксусной и трифторуксусной кислотах. Что служит окислителем в этих условиях  [c.332]

    При восстановлении нитрилов в амины этот метод дает лучшие ре- зультаты, чем каталитическое восстановление и метод Буво и Блана Ч Хлористое олово применяют чаще, чем металлическое олово реакцию ведут обычно в спиртовом растворе, так как хлористое олово растворяется в спирте. Восстановление можно проводить следующими способами а) хлористое олово и нитросоединение растворяют в воде или спирте и добавляют концентрированную соляную кислоту или б) хлористое олово растворяют в кислоте и постепенно приливают к раствору или взвеси нитросоединения. Смесь все время встряхивают и, если реакция идет слишком медленно, подогревают. Время реакции можно значительно сократить, если тщательно измельчить нитросоединения. Особенно Сильным восстановительным действием обладают растворы хлористого олова в ледяной уксусной кислоте и эфире , насыщенных газообразным хлористым водородом. Хлористое олово активируется, если к нему добавить небольшое количество иодистого натрия . [c.495]

    В лабораторной практике окисление алкилпроизводных ароматического ряда до кислот осуществляется хромовой кислотой (дихромат натрия в серной или уксусной кислоте), перманганатом калия в щелочной среде, азотной кислотой. В последнем случае необходимо помнить о возможности образования нитросоединений. Например  [c.214]

    Нитрование аминосоединений, которые содержат мало заместителей и поэтому легче могут подвергаться ацетилированию (например, 2,4-дихлоранилин), можно производить, растворяя нитруемое соединение в ледяной уксусной кислоте и медленно приливая раствор к смеси, состоящей из азотной кислоты, уксусной кислоты и уксусного ангидрида нитрование осуществляется в этом случае при низких температурах (реакционный сосуд охлаждают водой со льдом). Этот метод дает превосходные выходы нитросоединений при нитровании производных анилина, у которых не замещены одно или оба о-положения по отношению к аминогруппе. В качестве побочных продуктов при нитровании этих соединений образуются в незначительных количествах изомерные нитроаминам нитроанилины. [c.55]

    Автор синтеза указывает, что более низкие выходы хинонов (50—65%) получаются при применении в качестве электролита 75% по весу водного раствора серной кислоты. В конце процесса восстановления католит разбавляют примерно до 500 мл (4 н. раствор серной кислоты) и окисляют непосредственно. Низкая растворимость нитросоединений в водном растворе кислоты требует чрезвычайно эффективного перемешивания температуру внутри камеры во время восстановления следует поддерживать равной 50—60°, чтобы сохранять нитросоединение в расплавленном состоянии и таким образом способствовать образованию тонкой эмульсии. Иногда к концу восстановления выкристаллизовывается сернокислый аминофенол, и в результате выделения водорода в конце синтеза пастообразный продукт может выдавливаться через край пористой чаши. Эти осложнения причиняют больше неприятностей, чем непрерывное экстрагирование, которое необходимо в случае применения в качестве католита уксусной кислоты. [c.65]


    Когда электролиты, полностью диссоциированные в воде, растворяются в растворителях с низкой диэлектрической постоянной, кулоновское притяжение оказывается достаточным для образования ионных ассоциатов при предельно низких концентрациях ионов. Сила взаимодействия между ионами обратно пропорциональна диэлектрической постоянной среды (разд. 6.1). Таким образом, все электролиты являются слабыми электролитами в растворителях с низкой диэлектрической постоянной. К растворителям, играющим важную роль при изучении неводных растворов электролитов, принадлежат спирты, жидкий аммиак, диоксан, ацетон и другие кетоны, безводная муравьиная кислота и уксусная кислота, пиридин, некоторые амины и нитросоединения. [c.347]

    Только в, 1880 г. Бейльштейн и Курбатов [1] смогли показать, что при кипячении определенных фракций ка,вказской нефти с азотной кислотой (например, 1 часть фракции, кипящей при 95—100°, и 4 части азотной кислоты удельного веса с 2о=1,38) наряду с уксусной и янтарной кислотами можно изолировать небольшие количества нитросоединений главным образом алициклической природы. [c.265]

    Однако, как показали исследования Р. Мак-Клири и Дегеринга [81], предположение об образовании низкомолекулярных нитропарафинов путем нитрования карбоновых кислот с последующим их декар-бо,ксилированием не оправдывается. При нитровании уксусной или изо-масляноп кислоты в условиях газофазного нитрования при 400—420 (молярное отношение карбоновая кислота концентрированная азотная кислота, равное 1,5 1) образуются толькО следы нитросоединений, а кислоты остаются без изменения. При аналогичной обработке нитроэтана или 1- и 2-нитропропана, или нитробутана низкомолекулярные нитропарафины также не образуются. Происходит только некоторая потеря нитропарафина с образованием углекислоты. [c.283]

    При восстановлении алифатических нитросоединений в амины химическим путем, например цинковой пылью с уксусной кислотой или железом и соляной кислотой, в качестве побочных продуктов образуются кетоны и соль гидроксиламина. Это происходит вследствие того, что часть промежуточно образующегося нитрозонарафина успевает перегруппироваться в кетоксим до дальнейшего восстановления в амин кетоксим же в кислом растворе очень быстро подвергается гидролизу с образованием кетона и гидроксиламина  [c.347]

    Для того чтобы проследить, как изменяются свойства кислот в основных растворителях с изменением диэлектрической проницаемости, рассмотрим поведение кислот в гидразине (8 = 52) и в пиридине (е = 12,5). В ряду основных растворителей гидразии относится к аммиаку, как муравьиная кислота к уксусной. Вследствие своей нысокой основности и высокой диэлектрической проницаемости гидразин наиболее нивелирующий растворитель по отношению к кислотам. Исследование показывает, что в гидразине кислоты с константами диссоциации в воде от 10 до 10" полностью диссоциированы и являются сильными кислотами. В гидразине особенно усплпваются нитрозамещенные кислоты даже нитросоединения образуют хорошо проводящие растворы благодаря специфическому взаимодействию гидразина с нитрогруппой. [c.282]

    Активированные положения (например, в соединениях типа 2СН22 ) подвергаются нитрованию под действием дымящей азотной кислоты в уксусной кислоте, ацетилнитрата в присутствии кислого катализатора [222] или алкилнитратов в щелочной среде [223]. В последнем случае происходит нитрование карбанионной формы субстрата, а в качестве продукта выделяется сопряженное основание нитросоединения. Выходы обычно невысокие. [c.92]

    Ингибиторами процесса полимеризации являются вещества, относящиеся к самым различным классам органических и неорганических соединений. В их число входят многоатомные фенолы, особенно гидрохинон, пирокатехин, пирогаллол, ароматические амины, например М-фенил-2-цафтиламин, 4-амино-1-нафтол, ароматические нитросоединения, такие, как тринитробензол, пикриновая кислота, 2,4-динитроани-лин, а также сера, иод, медные, железные и хромовые соли уксусной, салициловой, акриловой и метакриловой кислот. [c.74]

    Свойства. — Эффективным методом получения моно-, ди- н тринитро производных многих ароматических углеводородов, а также их окси-, галоад- и других замещенных является нитрование азотной кислотой или ее смесью с уксусной кислотой, уксусным ангидридом или серной кислотой. Полинитросоединения, получаемые путех прямого нитрования, имеют мета-ориентацию о- и /г-динитросоединения, хотя и могут быть получены косвенными методами, но встречаются редко. Нитросоединения применяются в качестве растворителей, взрывча тых веществ, красителей, дущистых веществ, реактивов для анализоа, а также имеют большое значение как промежуточные соединения при получении аминов, в которые они превращаются при восстановлении. [c.197]


    Для восстановления алифатических нитросоединений с успехом примени каталитическое гидрирование над никелем Ргаея [44], над окисью платины восстановление железом в ледяной уксусной или соляной иислоте [46], алюмоп лития [471 и натрийэтоксиалюмогидридом [48 . [c.524]

    В промышленности амины лолучают восстановлением нитросоединений железом в. присутствии соляной или уксусной кислоты. По классическому методу Вешана и Бринмейера восстановление ведут в металлических сосудах в присутствии измельченных и обезжиренных опилок литого железа. Перед восстановлением железо подвергают травлению разбавленными кислотами, благодаря чему повышается его активность. Очень хорошие результаты получают при работе с железом, восстановленным водородом. Характерной чертой метода является применение значительно меньшего количества кислоты, чем это необходимо по стехиометрическому расчету, так как в присутствии РеС12 реакция идет за счет водорода воды. В последней стадии реакции образуется смесь окислов железа, в которой преобладает Ре Оз . В промышленности количество кислоты можно ограничить /40 частью от теоретически необходимого. При работе в малых масштабах применяют несколько большее количество кислоты, однако не превышающее 0,5 грамм-эквивалента на моль нитросоединения, так как в противном случае в раствор переходит слишком много железа и при выдапении образуется плохо фильтрующаяся гидроокись железа. [c.496]

    Цинк может действовать в качестве восстановителя как в кислой, так и в щелочной среде. Восстановление нитросоединений в соляной кислоте не всегда удобно, потому что при этом одновременно может аамещать-ся хлор. В ледяной уксусной кислоте цинк легко восстанавливает три-арилкарбинолы и альдегиды, причем восстановление альдегидов частично сопровождается реакцией конденсации. [c.497]

    Образование нитросоединений прн действии азотиой кислоты ти серно-азотиой кислотной смеси (так называемое С-нитрование) происходит по схеме, описанной ранее. Нитрующим агентом К-нитрования при действии на аминосоединение концентрированной азотной кислоты илн серно-азотиой кислопюй смеси является также катион нитроння К02 [62] н реакция также идет в две стадии присоединение КОз и последующее отщепление замещаемого водорода протоиакцептором [3]. Однако при проведении этой реакции необходимо считаться с наличием в соединении легко окисляющейся аминогруппы. Поэтому часто, чтобы предотвратить нли хотя бы уменьшить окислительные процессы амино группу стабилизируют илн, как говорят, защищают получением либо соли (обычно действием серной кислоты), либо ацильного производного (действием уксусной кислоты). Далее полученный продукт нитруют. [c.224]

    Наличие в ядре фурана, как и пиррола, электроотрицательного (электрофильного) заместителя ( СНО, СООН и др.) стабилизирует ядро фурана, и нитрование в этом случае протекает гладко с высоким выходом нитросоединения. Так, например, при нитровании фурфурола в среде уксусного ангидрида действием концентрированной азотной кислоты й — = 1,42) в присутствии 5—7% концентрированной серной кислоты при —10° образуется 5-нитрофурфуролдиацетат, при гидролизе которого получается 5-нитрофурфурол (выход до 90%)  [c.57]

    Вещества, вызывающие химические ожоги, могут принадлежать к различным классам соединений минеральные и некоторые карбоновые кислоты (например, уксусная, хлоруксусная, ацетилендикар-боновая и др.), хлорангидриды кислот (например, хлорсульфоновая кислота, хлористые сульфурил и тионил), галогсниды фосфора и алюминия, фенол, едкие щелочи и их растворы, алкоголяты щелочных металлов, а также вещества нейтрального характера — жидкий бром, белый фосфор, диметилсульфат, нитрат серебра, хлорная известь, нитросоединення ароматического ряда. [c.269]

    При реакции ЗпС с алифатическими азоксисоеди пениями образуются симметричные двузамещенные гидразины [61] Аналогично тройная связь между атомами азота в диазониевых соединениях восстанавливается только до гидразогруппы [62]. Как и в случае металлического олопа, при восстановлении хлоридам олова до вольно часто образуются хлорзамещениые продукты Этот процесс можно считать главным для нитросоединений со свободным пара положением при восстановлении безводным хлоридом олова в ледяной уксусной кислоте, содержащей уксусный ангидрид [53]. [c.126]

    Иногда использование порошка приводит к самопроизвольному экзотермическому восстановлению. Надежный реагент можно получить смачиванием 200 г обезжиренного порошка железа концентрированной соляной кислотой (35 мл) и повторным высушиванием. Протравленный таким образом порошок можно хранЕ ть в бензоле. Восстановление при помощи этого реагента можно проводить или в бензоле, или в водном растворе спирта (примеры аи г. ). При использовании порошкообразного железа в уксусной кислоте можно восстанавливать оптически активные алифатические нитросоединения до аминов с сохранением конфигурации асимметрического Ж],еитра [7]. Применение основных восстановителей, таких, как алю согидрид лития, при-тодит к рацемизации. Порошкообразное железо и уксусная кисло- [c.470]

    Декарбоксилирование с целью получения нитросоединения из нитрозамещенных карбоновых кислот применяют в ограниченной степени (способы декарбоксилирования см. гл. 1 Алканы, циклоалканы и арены5>, разд. Е.1). В качестве примеров можно привести синтез 1,3,5-тринитробензола [3] и 2- (пример 6.1) и 3-нитробензофура-нов [4]. При окислении таких соединений, как тринитротолуол, с целью получения карбоновых кислот для декарбоксилирования следует избегать присутствия азотной или уксусной кислоты, поскольку вместо карбоксильной группы в этом случае может входить оксигруппа [5] [c.509]

    Нитро- и 2, 2 -азобензимидазол несколько различаются по своей кислотности. причем последний является более слабой NH-кислотой. Ьсли осаждать азо-соединение из щелочного раствора кислотой, то в осадок увлекается и некоторое количество нитросоединения. Удобно применение в этих целях этилацетата. По-видимому. образующаяся при его гидролизе и постепенно выделяющаяся уксусная кислота селективно осаждает 2, 2 -азобензимидазол. тогда как 2-нитробензимидазол остается при этом в растворе. [c.136]

    Базани и Пианка [135] предлагают улучшенный метод нитрования ароматических о-оксикарбоновых кислот и их эфиров, который состоит в следуюш ем 1 моль соответствуюш его соединения в небольшом количестве уксусной кислоты быстро обрабатывается смесью 1 моля азотной кислоты с 9 объемами уксусной при комнатной температуре и затем нагревается до тех пор, пока раствор станет коричневым. Полученное нитросоединение высандавают водой. Салициловая кислота дает при этом 5-нитропроизводное [c.53]

    Смесь азотной и уксусной кислот с успехом применяют для превращения анилина и его производных в соответствующие нитросоединения. Как известно, при нитровании азотной кислотой обычно обрабатывают ею не анилин, а ацетанилид. В этом случае происходит образование преимущественно п-нитроаце-танилида и лишь в незначительных количествах о-нитроаце-танилида. Витт и Утерман [137] показали, что применение вместо азотной кислоты смеси ее с уксусной кислотой существенно изменяет отношения образующихся изомеров. [c.54]

    При нитровании уретана, метилуретана и мочевины в среде с отношением (СНзСО)гО СНзСООН = 24 1 при 25° в течение 1 часа выходы нитросоединений достигают 60—80%. При нитровании уретана при 25° в течение 20 час. в средах с отношением (СНзСО)20 Hj OOH = 1 1 и 1 19 выходы нитросоединений составляли, соответственно, 80 и 40%. В системе уксусная кислота — вода с отношением СНзСООН Н2О = == 199 1 нитрование не происходит. При растворении соответствующих нитрамидов в указанных выше растворителях свободной азотной кислоты не обнаружено. Реакция нитрования уретана в 60%-ной H IO4 обратима. Положение равновесия для уретана при 70° достигается через 20 мин. Выход нитро-уретана 53%. [c.178]

    Хотя нитрование вторичных аминов можно проводить в отсутствие уксусного ангидрида, выход N-нитросоединений Заметно увеличивается в присутствии этого реагента. Применение уксусного ангидрида особенно необходимо при каталитическом нитровании сильно основных аминов. Это объясняется тем, что х хорноватистан кислота быстро разрушается азотной кислотой и, сдедоватепьНО, не успевает прореагировать с амином в том случае, когда скорость реакции хлораминиро-вания будет относительно низкой. [c.331]

    Вторую подгруппу апротонных растворителей составляют жидкости, кислотно-основное взаимодействие которых с растворенным соединением происходит не вследствие дележа протона с основанием, а в результате притягивания электронной пары от основания электроноакцепторными атомами или группами в молекулах растворителя. Здесь мы встречаем уксусный ангидрид (СНзСО)гО и хлористый ацетил СНзСОС , кислотная природа которых обосновывалась выше. В эту подгруппу входят разнообразные нитросоединения, среди которых главный — питрометан — один из самых распространенных в исследовательской и технологической практике растворителей. [c.40]

    Неорганический нитрит и кислота. Это сочетание реагентов обладает тем преимуществом, что применение ею позволяет избежать предварительною получения нитрозирующего агента. Неорганический нитрит и кислота могут применяться как и случас растворимых, так и тз сл ае нерастворимых в воде соединений. При нитрозироваиии нерастворимых в воде веи еств используют ледяную уксусную кислоту и нитрит натрия, растворенный в минимальном количестве воды. При нитрозироваиии нитроггарафи-нов к щелочному раствору нитросоединения обычно добавляют нитрит и минеральную кислоту. [c.430]

    К важным р-циям, включающим взаимод. субстрата только с СО, относятся К. нитросоединений, в результате к-рого образуются изоцианаты (8), р-ция СО с метанолом с образованием в зависимости от используемого катализатора и условий процесса уксусной к-ты (9) или метилфор-миата (10) и К. метилацетата, приводящее к уксусному ангидриду (11)  [c.324]

    В настоящее время предложено много различных методов восстановления нитросоединений в амины, отличающихся между собою характером используемых восстановителей. Выбор восстановителя зависит от химической природы нитросоединения. Согласно литературным данным, для восстановления нитропроизводных хинолина в качестве восстановителен предложены самые различные вещества — железо в соляной или уксусной кислоте, олово или хлорное олово, цинк с хлористым аммонием, гипосульфит натрия, полисульфит аммония, каталитически активированный водород с использованием в качестве катализатора платины, никеля Ренея [222—225]. [c.87]

    Нитрованием хлористого холестерила (XII) получают нитросоединение (XIII). Действием цинка в уксусной кислоте это соединение восстанавливается с удалением нитрогруппы, причем образуется Зр-хлор-холестанон-6 (XIV). Последний при действии едкого кали превращается в г-холестанон (XI). Такого рода реакции с образованием трехчленного цикла были известны ранее в алифатическом ряду. Так, 5-хлорпента-нон-2 (XV) при действии щелочей переходит в метилциклопропилкетон. [c.297]


Смотреть страницы где упоминается термин Уксусный с нитросоединениями: [c.79]    [c.78]    [c.13]    [c.395]    [c.670]    [c.293]    [c.137]    [c.143]    [c.88]    [c.240]    [c.345]    [c.1664]    [c.129]    [c.593]    [c.96]   
Введение в электронную теорию органических реакций (1977) -- [ c.402 ]




ПОИСК





Смотрите так же термины и статьи:

Нитросоединения

Нитросоединения аци-Нитросоединения



© 2025 chem21.info Реклама на сайте