Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пересыщение химической реакции

    Применяемая в этом случае аппаратура представляет собой полые кристаллизаторы камерного типа. Пересыщение в системе создается тремя способами либо в результате смешения горячей ПГС с охлаждающим газом, либо в результате химической реакции реагентов, либо в результате адиабатического расширения паров. [c.240]

    Твердые вещества в данных условиях тоже могут находиться в состояниях, обладающих различной термодинамической устойчивостью, например, в различных кристаллических формах. В свою очередь для любой из этих форм более устойчивым является состояние, соответствующее идеально правильному кристаллу. Дефекты структуры, вызванные условиями образования кристалла или последующей деформацией под действием внешних механических сил, в какой-то степени уменьшают его устойчивость, так как образование этих деформаций связано с затратой энергии и сопровождается возрастанием энтропии. Точно так же кристаллическое тело в измельченном состоянии, т. е. обладающее большей поверхностью, менее устойчиво. Во всех подобных случаях уменьшение устойчивости сопровождается возрастанием изобарного потенциала. В таких состояниях вещество обладает большей химической активностью и меньшей химической стойкостью, большей способностью к фазовым переходам (большим давлением насыщенного пара, большей растворимостью и т. д..) Выделение вещества в более активных формах и состояниях может происходить самопроизвольно только из состояний с еще большим изобарным потенциалом (еще более активных в данных условиях). Обычно такими состояниями служат сильно пересыщенный раствор или переохлажденная жидкость. Кроме того, такое вещество может получаться при химической реакции, происходящей в условиях, достаточно далеких от равновесных. [c.227]


    Так как развитие поверхности влияет и на химические равновесия, то явления пересыщения проявляются не только при фазовых переходах, но и в химических реакциях. [c.361]

    На рис. 167 представлена тип-ичная кривая изменения скорости со временем для процессов, в которых отсутствуют готовые зародыши новой фазы, и следовательно, возможно значительное пересыщение. Это может иметь место и прн кристаллизации из переохлажденной жидкости илн из пересыщенного раствора, и при конденсации жидкости из пересыщенного пара, и в химических реакциях, сопровождающихся выделением новой фазы. [c.491]

    В растворах пересыщение, необходимое для получения зародышей, достигается обычно либо путем химической реакции с образованием продуктов, трудно растворимых в данном растворителе, либо добавлением к раствору вещества другого компонента, который уменьшает растворимость этого вещества. Например, спиртовой раствор канифоли превращается в коллоидную дисперсию при добавлении к нему воды. [c.9]

    Методы конденсации. В основе всех конденсационных методов образования аэрозолей лежит конденсация пересыщенных паров. Пересыщение паров может быть достигнуто либо за счет охлаждения системы, либо при образовании пара в результате химической реакции. [c.356]

    Методы конденсации. 1. Метод замены растворителя заключается в том, что истинный раствор вещества добавляется к жидкости, смешивающейся с растворителем, но в которой само вещество мало растворимо и выделяется в виде высокодисперсной фазы. 2. Метод конденсации из паров основан на одновременной конденсации паров диспергируемого вещества и растворителя на холодной поверхности. 3. Химические методы конденсации основаны на переводе растворенных веществ в нерастворимое состояние при помощи различных химических реакций (восстановление, гидролиз, двойной обмен и др.) с последующей агрегацией и рекристаллизацией нерастворимых частиц, образующих дисперсную фазу. Образование новой фазы происходит из пересыщенного раствора в результате роста частиц на центрах или зародышах кристаллизации. Стабилизаторами являются растворимые вещества, возникающие в результате химической реакции. [c.262]

    Аэрозоли. Аэрозолями называют свободно-дисперсные системы с газообразной дисперсионной средой и дисперсной фазой, состоящей из твердых или жидких частиц. Аэрозоли образуются при взрывах, дроблении и распылении веществ, а также в процессах конденсации при охлаждении пересыщенных паров воды и органических жидкостей. Аэрозоли можно получить и с помощью химических реакций, протекающих в газовой фазе. [c.447]


    Конденсационные методы позволяют получать дисперсные системы из гомогенных сред. Появление новой фазы происходит при пересыщении среды. Пересыщение, т. е. создание концентраций, превышающих равновесные, можно вызвать проведением химической реакции или физического процесса. В зависимости от этого различают физические и химические конденсационные методы. [c.14]

    Примером процесса кристаллизации, в котором совмещаются приемы создания пересыщения за счет химической реакции (осаждения) и охлаждения раствора, является образование кристаллов гидрокарбоната натрия в содовой колонне в аммиачном способе производства соды. При карбонизации углекислым газом аммонизированного рассола, заполняющего состоящую из 25—35 царг колонну с тарелками, раствор пересыщается малорастворимым гидрокарбонатом натрия, чему способствует и дополнительное охлаждение суспензии с помощью расположенных в части царг поверхностных водяных холодильников. [c.254]

    Кристаллизация из газовой фазы — это конденсация молекул газа с образованием кристаллического вещества, минуя жидкую фазу. Физической кристаллизацией называют образование кристаллов из молекул, находящихся в одно- или многокомпонентной газовой фазе. Химическая кристаллизация — это возникновение кристаллов вследствие пересыщения газовой фазы новым веществом, образующимся в результате химической реакции между газообразными компонентами. Кристаллизация из газовой фазы в неизменном объеме, вследствие конденсации вещества, сопровождается понижением давления. При физической кристаллизации процесс конденсации (обратный сублимации) достигается при понижении температуры или при сжатии (уменьшении объема) газа. Для химической кристаллизации необходимо смешение реагирующих газов. [c.262]

    Эти методы также основаны на конденсационном выделении новой фазы из пересыщенного раствора. Однако в отличие от физических методов, вещество, образующее дисперсную фазу, появляется в результате химической реакции. Таким образом, любая химическая реакция, идущая с образованием новой фазы, может быть источником получения коллоидной системы. [c.23]

    Химические методы создания пересыщения чрезвычайно богаты любая реакция, приводящая к образованию нерастворимого, а в случае конденсированных фаз и летучего продукта (или, наоборот, нелетучего — при взаимодействии газов), может использоваться в принципе для получения дисперсной системы. Однако при получении дисперсной системы в водной среде желательно использовать реакции, которые не связаны с присутствием большого количества электролитов, способных вызвать коагуляцию образующейся системы (см. гл. IX и X). Процессы образования дисперсных систем различной дисперсности и концентрации в результате химических реакций широко распространены в природе п используются в различных областях технологии. Ниже приведены некоторые типичные примеры получения дисперсных систем при различных химических реакциях. [c.135]

    Монодисперсные системы могут быть получены также по Ла-Меру, если в системе в течение длительного времени поддерживается небольшое пересыщение за счет медленно протекающей химической реакции. Например, при взаимодействии разбавленного раствора тиосульфата натрия с разбавленной серной или соляной кислотой протекает медленная реакция  [c.137]

    По происхождению системы с газовой дисперсионной средой разделяют, как и все дисперсные системы, на д и с п е р г а Ц И о н-ные и конденсационные аэрозоли. Диспергационные аэрозоли, образующиеся при измельчении твердых тел или распылении жидкостей, как и лиозоли, полученные путем диспергирования, имеют довольно крупные частицы и, как правило, полидисперсны. Аэрозоли, полученные методом конденсации из пересыщенных паров или в результате химических реакций, наоборот, обычно являются высокодисперсными системами с более однородными по размеру частицами. [c.341]

    Процесс образования тумана при смешении газов используется в технике для измерения малых концентраций паров и, в частности, паров 50з. Сущность метода измерений состоит в том, что исследуемый пар переводят в фазу видимой аэрозоли (тумана), после чего, зная степень пересыщения и пропорции разбавления, рассчитывают исходную концентрацию ЗО . Появление тумана и его плотность измеряют фотоэлементом. Для образования тумана может использоваться подмешивание холодного воздуха или газа, вступающего в химическую реакцию с исследуемым веществом. Так, для содержащего ЗОз сухого воздуха могут использоваться водяные пары, приводящие к образованию аэрозолей серной кислоты. Добавка к дымовым газам аммиака приводит к образованию сульфата аммония ( ЫН4)2504, который при температурах ниже 100°С выделяется в форме кристаллической аэрозоли. Чувствительность метода относительно невелика, но может быть повышена до 10 — 10 мг/м при использовании метода подсчета импульсов света отдельных частиц, пролетающих через луч света. Импульсы поступают на фотоумножитель и регистрируются счетчиком. [c.229]


    Фактор, определяющий характер и размер частиц осадка,— пересыщение раствора. Коэффициенты пересыщения для хорошо растворимых солей не превышают 1,5. Растворы с особо высокой степенью пересыщения образуют малорастворимые вещества. Чем выше степень пересыщения (меньше устойчивость пересыщенного раствора, меньше индукционный период), тем больше вероятность выделения твердой фазы в аморфном состоянии. Чем труднее растворимо вещество, тем более высокая степень пересыщения наблюдается в растворе, в котором оно образуется в результате химической реакции. Хорошо же растворимые вещества выделяются из своих пересыщенных растворов в виде кристаллов. Коэффициенты пересыщения (/С) при этом малы. [c.53]

    При вакуумной металлизации покрытие формируется из пересыщенных паров металла вследствие их конденсации на холодной поверхности пластмассы. При химической же металлизации покрытие образуется на месте химической реакции, образующей атомы металла. Такая реакция име- [c.53]

    Конденсация в результате химической реакции. Для получения аэрозоля необходимо, чтобы в результате химической реакции образовались пересыщенные пары вещества, которые затем могут конденсироваться. Это происходит при реакции некоторых веществ с водой, например, при присоединении молекул воды к химическому соединению (реакция гидратации) или при разложении химического соединения при взаимодействии с водой (реакция гидролиза). [c.75]

    Особенно широко для получения коллоидных растворов используют химическую конденсацию, т. е. проводят химические реакции, в результате которых образуются малорастворимые соединения. Если химическая реакция протекает достаточно быстро, нерастворимый продукт создает большое пересыщение, и получается золь. Это явление вызывает большие [c.125]

    Пересыщенные пары, из которых конденсируются частицы аэрозолей, могут образовываться и вследствие химических реакций. Наиболее известный пример таких процессов — образование дыма при горении. Аэрозоли получают и при реакции паров аммиака и хлористого водорода, при взаимодействии многих веществ, таких, как SO3, H l, А С1з, с парами воды в воздухе. [c.148]

    Очень часто процесс объемной десублимацни проводят в вертикальных трубчатых (пустотелых) аппаратах [120, 121] методом смешения горячей ПГС с охлаждающим газом или в результате химической реакции смешивающихся компонентов. В начальном участке трубчатого реактора-десублнматора происходит смешение и взаимодействие газообразных компонентов. На дальнейших участках десублиматора происходит образование зародышей, рост кристаллов, падение пересыщения в связи с явлениями кристаллообразования. Тогда математическая модель процесса объемной десуб-.лимации примет вид (следствие из уравнений (1.58), пренебрегаем явлениями агломерации и рассматриваем стационарный случай работы аппарата) [c.241]

    Не следует думать, что если возможны разные направления изменений данного вещества и образование продуктов, различных по устойчивости, преобладающим всегда будет то направление, которое ведет к наиболее устойчивому состоянию. То или другое направление процесса определяется в первую очередь соотношением скоростей параллельных процессов, а в большинстве случаев скорость зависит не столько от термодинамических параметров процесса, сколько от кинетических факторов. Поэтому очень часто процесс ведет к образованию продукта, который по термодинамической устойчивости занимает промежуточное место между исходными веществами и возможными продуктами взаимодействия, обладающими наибольщей устойчивостью в данных условиях. чЭто наблюдается и в химических реакциях и при фазовых переходах, например когда при кристаллизации из раствора (при достаточной степени пересыщения его) вещество выделяется в кристаллической форме, являющейся метастабильной для данных условий. [c.228]

    Однако наряду с этим имеется немало процессов, при которых возникает новая фаза, как, например, при выделении растворенного вещества из пересыщенного раствора, при конденсации жидкости из пересыщенного пара в его объеме или при кипении жидкости (образовании пузырьков пара внутри объема жидкости) и при протекании соответствующих химических реакций. Во всех этих случаях новая фаза возникает первоначально в виде частиц очень малого размера, и это может вносить весьма существенные усложнения в ход процесса. [c.490]

    Конденсация в результате химической реакции. Конденсация вещества, которая происходит при некоторых химических реакциях в жидкой ILTH газово срс.чах, является, подобно конденсации при охлаждении растворов или паров, непосредственным следствием предварительного пересыщения раствора или воздуха обра-зовавишмся продуктом реакции. Очевидно, что образующийся 8 результате реакции продукт пересынгает раствор или пространство в случае, если он получается в концентрации, превышающей соот- [c.190]

    Согласно теории окисления через перекиси скорость химических реакций процесса горения углеводородных смесей обусловливается интенсивностью возникновения активных перекисей, с одной стороны, и быстротой их исчезновения—с другой. В период индукции в горючем происходит первичное накопление перекисей. Увеличение количества молекул перекиси сопровождается повышением числа экзотермических реакций окисления, что вызывает возрастание температуры и, следовательно, большую интенсивность возникновения новых молекул перекиси. При достаточной концентрации активных перекисей скорость реакции окисления настолько возрастает, что появляется пламя. Между моментом достижения достаточной для воспламенения концентрации перекисей и самим воспламенением протекает некоторый интервал времени, в результате чего горючая смесь в момент появления пламени оказывается пересыщенной перекисями, почему реакция принимает чрезвычайно бурный характер, т. е. возникает детонация. Очевидно, что то горючее будет наиболее склонно к детонации, у которого возрастание скорости образования перекисей прл повышении температуры будет происходить наиболее интенсивно, так как в этом случае будет увели-чиваться возможность пересыщения смеси перекисями в момент воспламенения. Влияние перекисей на возникновение детонации в двигателе было показано Каллендаром экспериментально. Он испытывал влияние на работу двигателя добавляемых к топливу стойких (перекись бензоила) и нестойких (перекись ацетила, перекись метилэтилкетона и др.) перекисей и отметил различие в их влиянии. [c.354]

    Для получения промывочных жидкостей широко используются также конденсационные методы. В их основе лежат физические или химические процессы возникновения новой фазы при соединении молекул и ионов в гомогенной среде. При химической конденсации новая фаза выделяется в результате химической реакции из пересыщенного раствора. В буровой практике нашли применение разработанные в МИНХиГП им. И. М. Губкина промывочные жидкости, которые содержат конденсированную фазу, выделенную по методу или двойного обмена [c.41]

    В основе математической модели лежат представления о кластерах - это устоюшвые образования, которые формируются в 1гересыщенном растворе в ходе серии бимолекулярных реакций между ионами или молекулами растворенного вещества кластеры, достигшие критического размера, расходуются на образование зародышей и играют важную роль в росте кристалла кластеры диффундируют к поверхности растущего кристалла и ожидают в некоторой очереди кластеров со случайной ориентацией на поверхности, что приводит к значительной пленке кластеров, нуждающейся во встраивании в кристаллическую решетку [4 . По такому механизму рост кристаллов как бы квантуется порциями этих кластеров. Причем раствор то обедняется ими за счет роста и образования зародышей, то обогащается ими за счет создания пересыщения путем химической реакции. [c.164]

    Все конденсационные методы связаны с образованием новой фазы. В пересыщенном растворе, возникающем в результате той или иной химической реакции, образуются зародыши или центры кристаллизации. Если условия таковы, что скорость образования зародышей велика, а скорость роста кристаллов мала, то в этом случае образуется множество кристаллов, достигающих размеров коллоидных частиц. В итоге получаются сравнительно монодисперсные золи. Наоборот, если скорость образования зародышей будет мала, а скорость их роста велика,растет небольшое число крупных кристаллов. Тогда небольшое число зародышей, возникших в начале процесса образования золя, вырастет к его концу до кристаллов больших размеров, между тем как кристаллы, растущие на зародышах, появившихся к концу процесса, останутся маленькими. В результате получается цол идисперсный золь . [c.305]

    Можно, до некоторой степени условно, разделить факторы, приводящие к появлению метастабильности исходной системы, на две группы химические (прежде всего химические реакции, приводящие к возникновению высо1шх концентраций слаборастворимого соединения и тем самьи>1 к высоким пересыщениям в системе) и физико-химические (изменение давления, температуры и состава фаз). [c.163]

    Были развипы следующие мегоды неравновесной термодинамики метод термодинамических функций Ляпунова (вблизи и вдали от равновесия), вариационный принцип минимума производства энтропии, анализ производства энтропии дпя определения движущих сил и закономерностей в кристаллизации. Движущие силы кристаллизации помимо разности химических потенциалов содержат также энтальпийную составляющую, характеризующую тепловую неравновесность системы. Рассмотрена роль этих вкладов для систем с высокими тепловыми эффеетами при кристаллизации, например, ортофосфорной кислоты Анализ производства энтропии системы с фазовыми превращениями позволил подтвердить распределение Хлопина для макрокомпонента и примеси (случай полного термодинамического равновесия), получить новые закономерности (и проверить их на ряде систем) для распределения компонентов при частичном равновесии. На основе вариационного принципа минимума производства энтропии определены закономерности для стационарных форм роста кристаллов, предельного пересыщения и т.д. Используя метод избыточного производства энтропии нашли новый класс осцилляторов, роль которых могут играть процессы кристаллизации, протекающие за счет химической реакции Используя кластерную теорию пересыщенных растворов, методы нелинейной динамики, было создано математическое описание, учитывающее колебания (в том числе и на термодинамической ветви) в кристаллизации, определены причины их возникновения. Разработаны алгоритмы управления (с обратной связью и без неё) хаотическими колебаниями в системах с кристаллизацией [c.21]

    Некоторые газы и пары взаимодействуют друг с другом с образованием продуктов, имеющих при обычных температурах низкое давление пара Так образуется дым NH4 I при взаимодействии НС1 и NH3 или туман H2SO4 при взаимодействии паров SO3 и воды Поскольку газы состоят из свободных молекул то и реакция должна происходить между последними, и только что возникший продукт реакции также должен находиться в виде свободных молекул Из них путем агрегации и конденсации образуются очень мелкие жидкие или твердые первичные частицы, скорость возникновения которых определяется степенью пересыщения продукта реакции Таким образом, образование тумана или дыма при химическом взаимодействии газообразных веществ является по существу конденсационным процессом [c.36]

    Первая стадия реакции представляет собой химическое растворение, осложненное осаждением на зернах фосфата плотных или сравнительно рыхлых пористых корок сульфата кальция. Плотные корки сильно затрудняют диффузию жидкой фазы к поверхности фосфата, и поэтому реакция замедляется рыхлые корки замедлянзт реакцию в меньшей степени. Структура образующейся корки обусловлена скоростью кристаллизации твердой фазы, зависящей главным образом от пересыщения раствора сульфатом кальция. Поэтому скорость разложения фосфата определяется не только активностью (концентрацией) кислоты, но и степенью ее пересыщения продуктами реакции. На рис. 217 показан общий вид зависимости степени разложения фосфата за определенное время (изохрона) от концентрации исходной серной кислоты. С увеличением концентрации разбавленных растворов (начиная от нулевой) и уменьшением концентрации крепких растворов (от 100% Н2504) активность их повышается и скорость, а следовательно, и степень разложения увеличиваются. Однако, начиная с некоторых концентраций кислоты (малых и больших) возрастает пересыщение системы сульфатом кальция. Это вызывает уменьшение скорости и степени разложения как в области малых, так и больших концентраций кислоты. По этой причине на кривой рис. 217 имеются два максимума. Минимум между ними характеризует область наибольшего пересыщения раствора сульфатом кальция с образованием на зернах фосфата корки труднопроницаемой для кислоты. Положение максимумов (концентрация кислоты и степень разложения фосфата) зависит от вида сырья, отношения Т Ж, температуры и др. [c.45]

    Осаждение вещества (кристаллизация) связано с появлением новой, твердой фазы нри нересыщепии раствора. Пересыщение раствора может быть вызвано образованием в результате химической реакции нового вещества с малым значением произведения растворимости, а также в результате введения одноименного иона или добавления вещества, связывающего воду и тем самым уменьшающего ее активность. [c.103]

    Если растворимость меньше 1 г/100 г растворителя (1дс<0), то возможно выращивание кристаллов методом кристаллизации ири химической реакции. Соответствующая граница проводится на рис. 3-17 на основании опыта выращивания иодата кальция, хлорида свинца, флюорита, крокоита, гипса и др. Однако не исклю-чено, что эта граница может передвинуться вправо. Пожалуй,, затруднением тогда будет лишь подбор исходных веществ для реакции, которые обладали бы большей растворимостью, чем синтезируемое вещество. Начиная с растворимости 1 г/100 г растворителя доступен для использования метод рециркуляции. Приблизительно с растворимости 5 г/100 г (1дс>0,7) возможно выращивание кристаллов при испарении раствора и при концентрационной конвекции. Для меньших значений растворимости применение методов кристаллизации при испарении и концентрационной конвекции возможно, но нерационально, так как процесс будет идти очень медленно, а в методе кристаллизации при испарении потребуются большие объемы раствора и увеличится опасность запаразичивания. Дело в том, что испарение происходит с поверхности раствора,, кристалл же находится в его глубине, и чем больше расстояние между кристаллом и поверхностью, тем больше пересыщение у поверхности по сравнению с пересыщением около кристалла (при отсутствии принудительного перемешивания). [c.117]


Смотреть страницы где упоминается термин Пересыщение химической реакции: [c.107]    [c.107]    [c.163]    [c.297]    [c.54]    [c.38]    [c.25]    [c.197]    [c.105]   
Теоретические основы образования тумана при конденсации пара Издание 3 (1972) -- [ c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Пересыщение



© 2025 chem21.info Реклама на сайте