Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластификация определение

    Пластификация углеродных порошков. Формование углеграфитовых материалов требует пластификации смеси углеродных порошков. Как показано в [В-4], это необходимо, главным образом, для увеличения коэффициента боковой передачи давления, обеспечивающего нормальное формование материала. Кроме того, при прессовании выдавливанием для достаточно полного и быстрого заполнения объемов пресс-инструмента необходима относительно высокая текучесть массы. Это требует от связующего в определенном температурном интервале соответствующей вязкости и поверхностного натяжения, определяющих способность связующего смачивать частички порошка. Вязкость пека определяют в интервале 120-350 С. [c.116]


    Методы пластификации полимеров в принципе мало зависят от природы полимера они в равной мере применимы при совмещении как высокомолекулярных, так и более низкомолекулярных веществ. Поэтому при описании какого-либо метода пластификации определенного полимера следует помнить, что этот метод в равной мере применим и для других полимеров. [c.854]

    Операции смешения компонентов, пластификация и гомогенизация массы происходят в экструдере 5, из которого смесь через щелевую головку выдавливается в виде бесконечной ленты пластиката и транспортером непрерывно подается в зазор между валками четырехвалкового каландра 9. Температуру валков каландра поддерживают в определенных пределах и регулируют подачей пара  [c.30]

    Резиновый наполнитель уменьшает деформационную способность битумной мастики. Относительное удлинение ее при отрицательных температурах ниже, чем у битума. Пластификация мастики значительно увеличивает относительное удлинение, повышает деформационную способность покрытия. И хотя при определении предельного относительного удлинения при возрастающем напряжении условия деформирования мастик не такие, как при постоянном напряжении, однако численные результаты (табл. 6.4) изменяются в том же порядке, что и при постоянном напряжении. [c.150]

    Известны пластификаторы другого типа нерастворимые в полимере, но распределяющиеся по границам раздела элементов надмолекулярной структуры, смачивая их поверхности. Благодаря этому повыщаются подвижность структурных элементов относительно друг друга и гибкость материала. Такая пластификация названа межпачечной, или межструктурной. В случае межструктурной пластификации небольшое количество пластификатора дает значительный эффект. Однако этот эффект ограничен определенными пределами, так как области раздела элементов структур ограничены. Пластификатор, введенный сверх того количества, какое необходимо для смачивания областей раздела, не вызывает дополнительных изменений свойств материала, и избыток пластификатора может выделиться на поверхности полимера ( отпотевание ). Когда пользуются растворимыми пластификаторами, такого предела нет. По мере увеличения содержания растворимого пластификатора возрастает степень эластичности материалов, в конце концов превращающихся в вязкотекучие продукты. Свойства пластифицированного полимера при любом его соотношении с растворимым пластификатором промежуточные между свойствами исходного полимера и пластификатора. Практически выбираются оптимальные соотношения, которые обеспечивают наиболее выгодные для конкретной области применения материала физико-химические, электроизоляционные и другие свойства. [c.28]


    В работах последующих лет процесс пластификации рассматривался как смешение жидкостей [83]. При этом авторы работы [84—87] считали, что молекулы пластификатора, диффундирующие в полимер, вступают в определенное энергетическое взаимодействие с некоторыми группами макромолекул, образуя с ими своего рода сорбционные молекулярные соединения. [c.150]

    Разработаны способы нанесения реагентов на ППУ, основанные на предварительной пластификации таблеток ППУ и последующей обработке их малым объемом ацетонового раствора аналитического реагента. Реагенты, нанесенные таким способом, прочно удерживаются и равномерно распределяются в таблетке. С использованием этой процедуры были разработаны тест-методы определения никеля и хрома(У1). [c.215]

    Журков и Абасов считают, что именно усиление межмолекулярного взаимодействия ири ориентации приводит к уменьшению структурного коэффициента у и повышению прочности. И наоборот, ослабление межмолекулярного взаимодействия при пластификации увеличивает этот коэффициент и снижает прочность. По мнению этих авторов, участие межмолекулярных сил в механизме разрыва сказывается в изменении коэффициента у, с уменьшением которого вероятность разрыва химических связей снижается. Однако, как будет показано далее, изменение у связано главным образом с изменением числа рвущихся химических связей в поперечном сечении образца, а не с изменением межмолекулярного взаимодействия. Нельзя согласиться также с определением структурного коэффициента в работах " как коэффициента перенапряжений и коэффициента как периода колебаний атомов в полимерной цепи, на что уже указывалось в гл. I. На это обстоятельство следует обратить внимание, так как неточная трактовка физического смысла коэффициентов в уравнении долговечности получила широкое распространение. [c.142]

    Весь комплекс указанных исследований В. А. Каргина и Г. Л. Слонимского позволил теоретически обобщить экспериментальные данные о характере и природе деформирования аморфных полимеров для каждого из трех физических состояний, соответствующих определенным температурным интервалам, позволил установить количественные закономерности переходов из одного физического состояния в другое и сделать ряд важных выводов, имеющих существенное практическое значение, например, в понимании механизмов пластификации полимеров. [c.11]

    На рис. 91 представлена зависимость температуры стеклования Гс нитрата целлюлозы от содержания касторового масла. Из рисунка видно, что при введении в нитрат целлюлозы небольшого количества касторового масла температура стеклования резко сш-жается, но. до определенного предела, так называемого предела совместимости. Из рис. 91 видно также, что при пластификации [c.163]

    П. классифицируют обычно по их химич. природе (см. табл. 1) и по степени совместимости с полимером (табл. 2). По второму признаку П. делят на первичные и вторичные (обладающие соответственно хорошей или ограниченной совместимостью с полимером). Вторичные П. могут со временем выделяться ( выпотевать ) на поверхность полимерного материала в виде жидкости или кристаллич. образований. Совместимость зависит от строения и полярности полимера и П. Этот показатель м. б. определен визуально, по характеру диаграмм фазового равновесия системы полимер — пластификатор или др. методами. Деление П. на первичные и вторичные в известной мере условно, т. к. совместимость П. с полимером может существенно зависеть от темп-ры, давления, влажности воздуха, интенсивности солнечной радиации и др. факторов. Вторичные П. вводят в полимерные материалы, как правило, вместе с первичными. Они могут придавать материалам нек-рые специфич. свойства (напр., негорючесть, термостойкость) или служить дешевыми заменителями первичных П. Подробно о механизме действия П. см. Пластификация. [c.309]

    Вид кривой РТЛ чувствителен к структуре полимера (молекулярной ориентации, степени кристалличности, степени сшивания и др.) и предыстории образца это позволяет широко применять метод РТЛ при исследовании вулканизации, пластификации, ориентации и др. процессов, а также для идентификации полимеров. Изучение РТЛ в поле механич. напряжений позволяет исследовать молекулярный механизм высокоэластичности вынужденной. Метод РТЛ используют также для определения состава и однородности смесей полимеров по сопоставлению положения -максимумов смеси и каждого из компонент. Напр., наличие в многокомпонентных смесях таких полимеров, как полиэтилен, натуральный или изопреновый каучук, удается обнаружить при их содержании 1—2%. [c.310]

    Как известно, свойства пластических масс существенно изменяются при введении пластификаторов (стр. 456)—высококипящих веществ, совмещающихся с полимером, или мягких смол ( поверхностная пластификация ). Применяя описанный выше принцип, можно будет получать полимеры, химически связанные с веществами, оказывающими пластифицирующее действие ( внутренняя пластификация ). Имеет значение также сополимеризация или совместная поликонденсация с соединениями, которые, входя в состав боковых цепей, придают сополимеру определенные свойства, например повышают адгезию пленки к металлической или другой поверхности, улучшают окрашиваемость и т. д. [c.442]


    Определенное место в развитии теории пластификации полимеров заняло так называемое правило равных объемов [151], согласно которому равные объемные доли введенных пластификаторов дают одинаковый эффект пластификации. [c.123]

    Однако позднее было установлено, что указанные выше правила являются отражением двух различных механизмов пластификации и каждому из этих правил подчиняются лишь определенные полимерные системы, в которых преобладает действие одного из описанных механизмов, в то время как многочисленные реальные системы могут иметь большие или меньшие отклонения от каждого из правил. [c.123]

    Взаимодействие полимеров с растворителем имеет большое значение при переработке полимеров, их применении, в биологических процессах и др. Например, белки п полисахариды в живых организмах и растениях находятся в набухшем состоянии. Многие синтетические волокна и пленки получают из растворов полимеров. Растворами полимеров являются лаки и клеи. Определение свойств макромолекул, в том числе молекулярных масс, проводят, как правило, в растворах. Пластификация полимеров, применяемая в производстве изделий, основана на набухании полимеров в растворителях (пластификаторах). Вместе с тем для практического применения полимеров важным их свойством является устойчивость в растворителях. Для решения вопросов о возможном набу-ханни, растворенпи полимера в данном растворителе или об его устойчивости по отношению к этим процессам необходимо знать закономерности взаимодействия полимеров с растворителями. [c.312]

    Для внутрипачечной пластификации характерно непрерывное понижение Тс с увеличением количества введенного пластификатора (рис. 206). При межпачечпой пластификации тгаблгодаются значительные понижения температуры стеклования при введении Очень небольших количеств пластификатора, по Т понижается только до определенного предела. Это хорошо видно из рис. 206, на котором приведены данные для системы ннтрат целлюлозы — касторовое масло. [c.446]

    Пластификацией называется процесс введения в полимер ннзкомолекуляр-110Й жидкости. Как и все методы, связанные с введением в полимер тех плп иных веществ, пластификация имеет целью изменение свойств полимера в определенном иаправлепии. Пластификация применяется для расщирения области высокоэластического состояния (илп создания его у жесткоценных полимеров) снижением температуры стеклования полимера Тс и для улучшения технологических свойств полимера снижением его температуры текучести Тг. [c.262]

    Т. полимеров-чувствит. метод изучения разл. типдв сегментальной подвижности и релаксац. процессов, диффузии низкомол. примесей, структурных переходов и т.п. Лучше всего исследована радиотермолюминесцешщя полимеров (метод РТЛ), стимулированная у-квантами или быстрыми электронами при т-ре жидкого азота (77 К). Поскольку вид кривой РТЛ зависит от структуры и предыстории образца, метод РТЛ используют при исследовании вулканизации, пластификации, ориентации полимеров и т. п. Изучение РТЛ в поле мех. напряжений позволяет выяснять мол. механизм вынужденной высокоэластичности. Положение максимумов на кривой РТЛ служит для определения состава и однородности смесей полимеров напр., наличие полиэтилена, натурального или изопренового каучука в многокомпонентных смесях удается обнаруживать при их содержании 1-2%. [c.542]

    Сложные полиэфиры применяют также для пластификации карбамидоформальдегидных олигомеров в процессе синтеза. Широко используют в качестве пластификаторов и растворимые в воде полиэфиры на основе двухосновных кислот и полиэтиленгликолей. Использование в качестве пластификаторов сополимеров акриловой и метакриловой кислот также дает хорошие результаты. Их применяют главным образом для производства растворимых в воде лаков. Лаковые аминоолигомеры должны обладать определенным содержанием пленкообразующего вещества, определенной плотностью и вязкостью, способностью к окрашиванию, совместимостью с другими смолами и пластификаторами, стабильностью, иметь определенное кислотное число и число помутнения. [c.77]

    До сих пор подразумевалось, что пластификатор является хорошим растворителем полимера, и его молекулы проникают в любую точку полимера, внутрь любых полимерных структур. Такая пластификация получила название внутриструктурной, в отличие от межструктурной пластификации, когда пластификатор является плохим растворителем полимера. Тогда с полимером пластификатор смешивается только в малых количествах, и его молекулы проникают, в основном, в более рыхлые и неупорядоченные межструктурные пространства. Малое количество пластификатора адсорбируется на поверхностях раздела и играет роль граничной смазки, облегчающей подвижность надмолекулярных структур. Эта ситуация аналогична существующей в коллоидной системе, в которую в виде добавки введено ПАВ. При межструктурной пластификации из-за увеличения подвижности надмолекулярных структур Гст полимера снижается, но до определенного предела, в отличие от внутриструк-турной пластификации. [c.200]

    Из данных, приведенных в табл. 5,18, видно, что при повышении температуры и увеличении влажности прочность соединений снижается. Незначительный рост прочности после вакуумирования обусловлен, по-видимому, восстановлением межмолекулярных связей. Различие между исходной прочностью к прочностью после вакуумирования вызвано, видимо, разрушением химических связей на границе раздела. Эти процессы имеют место и при эксплуатации соединений в атмосферных условиях, особенно при повышенной влажности, но они протекают с значительно меньшей скоростью. Тот факт, что происходит разрушение химических связей, дополнительно подтвержден результатами испытаний образцов эпоксидных полимеров, отвержденных по указанному выше двухступенчатому режиму, — после их предварительной выдержки в течение 72 ч при 100 °С на воздухе и в воде с последующим определением прочности в той же среде при различных температурах (табл. 5.19). Образцы, выдержанные при 100 °С и испытанные в воде, имеют более высокие прочность и удлинение по сравнению с образцами, выдержанными на воздухе. Можно предположить [113], что в процессе испытя-нщТвода, проникающая в полимер, разрушает более напряженные связи, происходит их перегруппировка. В этом случае удлинение повышается в большей степени, чем при пластификации клея водой [113], а кривая напряжение — деформация характеризуется наличием значительного плато вынужденной эластичности. [c.149]

    Получение полимерпых материалов с определенным комплексом свойств связано не только с синтезом полимеров различного химического строения, но и с созданием структур. Одним из важных методов структурной модификации полимерных материалов является пластификация. Практически пластификация состоит в введении в полимер различных жидкостей или твердых тел (пластификаторов ), улучшающих эластичность материала н придающих ему морозостойкость, а также облегчающих его переработку, i С теоретической точки зрення сущность пластификации состоит b изменении вязкости системы, увеличении гибкости молекул и по ДВИЖН0СТ1 надмолекулярных структур. [c.435]

    Существенную роль при пластификации играет температура стеклования самого пластификатора, которая должна быть по возможности меньше, особенно при применении больших его количеств. Отклонение от правила объемных долей смеси полистирола с диоктил- или диметилфталатом, содержащей выше 35% (по объему) пластификатора, связано с тем, что при столь большой концентрации пластификатора решающее влияние на вязкость и полимерной системы начинают оказывать свойства самого пластификатора. По мере уменьшения количества полимера в высокопластифици-рованных смесях температура стеклования их приближается к самого пластификатора, так как после достижения определенного соотношения компонентов, когда полимер насытится пластификатором, все возрастающую роль играют связи между молекулами последнего. Следовательно, в подобных смесях нижним пределом температуры стеклования становится самого пластификатора. [c.514]

    Таким образом, результаты исследования композиций на основе термодинамически несовместимых кристаллизующихся полимеров согласуются с представлением о том, что при определенном режиме термообработки в системе возможно образование размытых межфазных областей, в которых наряду с явлением пластификации полимерного наполнителя (полиэтилен) полимерным связующим (олигоэфир) наблюдается ограничение подвижности макромолекул связующего при его кристаллизации на поверхности раздела с полимерным наполнителем. Крижевский [396 проследил, как происходит диффузия на границе раздела ПЭ—ПП при разных температурах, и в качественной форме установил влияние компонентов на их кристаллизацию. Он предположил, что, когда оба компонента кристаллизуются, диффузия на границе раздела зависит от надмолекулярной структуры компонентов. При этом допускается существование критической концентрации каждого компонента в другом, при которой возможно образование гомогенной смеси в расплаве выше этих концентраций промежуточный слой существует и в расплаве. Охлаждение расплава и кристаллизация компонентов ведет к расслоению и возникновению независимых надмолекулярных структур. При этом концентрация компонентов в промежу- [c.239]

    Жидкое А. с. полимеров возможно только при отсутствии пространственной структуры или в случае, когда связи между макромолекулами достаточно слабы, т. е. легко нарушаются тепловым движением. Вследствие высокой вязкости полимеров и гибкост1г макромолекул жидкое А. с. полимеров также обладает особенностями. Развитие текучести, т. е. изменение формы под действием внешних сил, может происходить настолько замедленно, что при относительно небольших временах оно практически незаметно и вследствие высокоэластично-сти потока возникает комплекс свойств, соответствующий определению твердого А. с. Однако с течением времени текучесть оказывается заметной, вследствие чего в той или иной степени маскируется высокоэластич-ность и жидкое А. с. такого тола становится очевидным. Вязкость полимера очень сильно уменьшается с ростом темн-ры, а также при введении растворимых в нем низкомолекулярных веществ (см. Вязкость, Пластификация, Растворы). Поэтому длительность пребывания способного к течению полимера (или его р-ра) в твердом А. с. может варьировать от сколь угодно больших значений (напр., при темп-ре, блиакой к стеклования те.ппературе) до 1—0,1 мсек (папр., в р-рах полимеров низкой концентрации). [c.11]

    Процессы деструкции могут быть использованы в исследовательско-аналитических целях, если протекают до образования мономеров, характеризуемых определенной молекулярной массой. Таким путем определяется состав и строение полимера. Деструкция при воздействии известных факторов (температура, давление, кислород воздуха) используется для производственно-технологических целей при пластификации полимеров, при получении блок-сополимеров и привитых сополимеров из смесей нескольких полимеров или полимеров с мономерами. В условиях эксплуатации и хранения техники деструкция — процесс нежелательный, ухудшающий физико-механические свойства полимеров. Деструкция приводит [c.42]

    Как правило, уменьшенпе эффективной вязкости с возрастанием скорости сдвига происходит тем сильнее, чем выше жесткость полимерной цепи, выше молекулярная масса полимера и ниже теми-ра. Наир., В. а. расплавов полиэтилена практически пе проявляется при темп-рах выше 290°С, в ю время как опа в сильной степени выражена для температур 140—200 °С. Поликапролактам и полиэтилентерефталат низкой мол. массы в процессах переработки ведут себя как практически ньютоновские жидкости, и с В. а. этих полимеров можно не считаться. Напротив, прп течении полидисперс-иых каучуков и жесткоцепиых полимеров типа эфиров целлюлозы В. а. проявляется во всем практически доступном наблюдению диапазоне скоростей деформации. Пластификация способствует тому, что область, в к-рой проявляется В. а., сдвигается в сторону низких напряжений и охватывает более широкий диапазон скоростей сдвига. При увеличении скорости сдвига от нуля до значений, характерных для технологич. процессов переработки полимеров (экструзии, литья под давлением, калаидрова-иия и т. п.), в типичных случаях эффективная вязкость в области В. а. снижается в 10 —10 раз. Поэтому показатели вязкостных свойств полимерных систем, определенные в области низких скоростей и напряжений сдвига, часто ока.зываются непригодными для описания технологич. свойств этих систем. [c.283]

    Наиболее распространены след, методы определения теплостойкости 1) по Мартенсу (ГОСТ 15089-69) — консольный изгиб при напряжении ок. 5 Мн/м (50 кгс/см ), 2) по Вика — вдавливанием цилиндра сечением 1 мл под действием нагрузки ок. 10 или ок. 50 к (1 или 5 кгс) на глубину 1 мм 3) двухопорный изгиб при одном из нескольких стандартизованных напряжений (ГОСТ 12021—66, ASTM, ИСО). Теплостойкость существенно зависит от нагрузки чем больше нагрузка, тем ниже теплостойкость. Поэтому часто оценивают поведение материалов при различных нагрузках. Предусмотренные ГОСТ 12021—66 три нагрузки позволяют оценить не только теплостойкость, но и характер ее падения с увеличением нагрузки. Теплостойкость широко применяют при контрольных испытаниях, когда надо следить за изменением темп-рных границ стабильности материала, т. е. при отверждении, пластификации и т. п. [c.443]

    Параметры у, у и а можно представить как характеристики эффективности, с которой равные количества различных сорбируемых веществ пластифицируют полимер и, таким образом, увеличивают подвижность сегментов Определение равного количества меняется в зависимости от выбора того или иного применяемого параметра и размерности единиц величин с, и а,. Эффективность пластификации полимера данным веществом обычно зависит от ряда факторов, таких, как величина и природа взаимодействия между различными компонентами, размер и форма молекул сорбируемого вещества, внутренняя гибкость полимерных цепей, химическая природа полимера и температура. Различные сочетания этих факторов обусловливают очень сложный характер процесса. Следо зательно, величину и направление зависимости различных параметров от концентрации можно заранее предсказать лишь в самых общих чертах. [c.240]


Смотреть страницы где упоминается термин Пластификация определение: [c.206]    [c.131]    [c.435]    [c.455]    [c.435]    [c.446]    [c.455]    [c.455]    [c.68]    [c.319]    [c.44]    [c.372]    [c.126]    [c.310]    [c.286]    [c.323]    [c.277]    [c.320]   
Пластификация поливинилхлорида (1975) -- [ c.6 ]




ПОИСК





Смотрите так же термины и статьи:

Пластификации



© 2025 chem21.info Реклама на сайте