Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон, рассеяние атомное

    Перейдем к более подробному рассмотрению теории рассеяния быстрых электронов газообразными молекулами. Для этого еще раз представим в схематическом виде постановку задачи рассеяния электронов молекулами пара в современной газовой электронографии. Сформированный в электронографе поток быстрых электронов одинаковой энергии в некоторой области колонны прибора пересекается потоком молекул исследуемого вещества. Интенсивность рассеяния электронов на молекулах фиксируется фотопластинкой. В ходе эксперимента необходимо, чтобы электронный пучок был достаточно слабым (при этом не нужно было бы учитывать взаимодействие электронов между собой), монохроматичным и стационарным, плоскопараллельным и коллимированным, т. е. энергия электронов — порядка десятков тысяч электронвольт. Поток молекул должен быть бесконечно узким, а плотность молекул в потоке так мала, чтобы можно было пренебречь возможностью рассеяния электрона сначала на одной, а потом на другой молекуле. Итак, в этом случае полную интенсивность рассеяния пучка быстрых электронов УУ-атомной молекулой можно описать следующим выражением (общее уравнение интенсивности рассеяния пучка)  [c.131]


    Исследования рассеяния электронов на атомных ядрах и связанные с ними открытия в области структуры нуклонов [c.778]

    Электронография позволяет проще, чем нейтронография, определить положение легких атомов в присутствии более тяжелых (водород в присутствии бора, углерода, азота и т. д. азот в при сутствии железа, углерода, вольфрама углерод в карбидах металлов). Вследствие более слабой зависимости амплитуды рассеяния электронов от атомного номера пики легких атомов в присутствии тяжелых в электронографии выявляются лучше, чем при дифракции рентгеновских лучей. [c.204]

    Благодаря своей малой массе быстро движущийся электрон легко отклоняется под действием электрических полей, создаваемых внутриатомными частицами. Для рассеяния атомными электронами вероятность отклонения электрона пропорциональна Z, а для рассеяния ядрами пропорциональна Z . В случае водорода величина обоих [c.24]

    График температурной зависимости подвижности поляронов, соответствующий формуле (6.88) при рассеянии на оптических фононах, схематически изображен на рис. 6.11 в координатах Аррениуса. Здесь обращает на себя внимание ход кривой, противоположный представленному на рис. 6.8 в отличие от квазисвободных электронов в атомных полупроводниках подвижность поляронов малого радиуса имеет минимум в области промежуточных температур. Пунктирный участок кривой изображает переход к рассеянию туннелирующих поляронов на заряженных точечных дефектах решетки, играющих в ионных кристаллах ту же роль, что и примесные ионы в валентных полупроводниках. [c.202]

    В действительности во вращательных спектрах комбинационного рассеяния в некоторых случаях каждая вторая линия не исчезает полностью, но лишь заметно уменьшается ее интенсивность. Эго чередование интенсивностей имеет место, например, для N2 (рис. 23). Чередование интенсивностей связано с наличием у атомных ядер спина подобно электрону некоторые атомные ядра обладают собственным моментом импульса — ядерным спином. Ядерный спин оказывает лишь очень небольшое прямое влияние на энергетические уровни молекул, приводя к небольшому расщеплению уровней. Однако он оказывает существенное косвенное влияние на эти уровни, благодаря чему вращательные спектры могут служить для измерения спинов ядер. [c.136]

    Теория рассеяния электронов на атомных ядрах [53, т. 1, с. 428 т. 5, с. 350 54] приводит к следующему выражению для отношения молекулярного рассеяния к атомному [c.23]


    Способность вещества задерживать Р-лучи пропорциональна их плотности. Так, толщина различных материалов, вызывающих одинаковое ослабление излучения, различается очень сильно, если она выражена в линейных единицах, и только слегка, если она выражается отношением массы на 1 см Последняя единица измерений общепринята. Ее легко получить из толщины и плотности или просто взвешиванием 1 см поглощающего вещества. Зависимость становится понятной, если вспомнить, что поглощение и рассеяние Р-лучей в основном зависят от окружающих ядро электронов. Поскольку атомный вес элемента обычно почти вдвое больше его атомного номера, равные веса всех веществ содержат примерно одинаковое количество электронов. Максимальный пробег Р-частиц с энергией 1 Мэе для различных веществ следующий  [c.328]

    Интенсивность рассеяния точечным атомом, выраженная в электронных единицах, не зависит от угла рассеяния атомная амплитуда является постоянной величиной, равной Z (кривая I рис. 12). Распределение электронного облака атома по некоторому объему приводит к ослаблению интенсивности рассеяния, тем более существенному, чем больше значение sin 8/Х (кривая II). [c.39]

    С помощью электронографических измерений было показано, что тетрафторид кремния обладает тетраэдрической структурой с межатомным расстоянием Si—F, равным 1,54 к. Как следует из данных по спектрам комбинационного рассеяния и инфракрасным спектрам, силовая константа связи 8i—F составляет 87 ООО дин см [3]. Электронная и атомная поляризации этой связи соответственно равны 8,38 и 5,46. Легко видеть, что эти величины значительно больше, чем у GF4 [234], что находится в соответствии с высказанным представлением, согласно которому молекулы—доноры электронов могут проникать через валентную оболочку кремния. [c.97]

    Для фотонного излучения с энергиями частиц более 1 МэВ, т.е. при энергии большей, чем энергия связи атомных электронов с ядром, наблюдается комптоновский эффект. В этом процессе фотоны как бы упруго сталкиваются со свободными или слабо связанными электронами, передавая им часть своей энергии и импульса. Изменение длины волны фотона при рассеянии на угол О равно [c.44]

    Многие исследователи считают, что структура полимера в растворе и блоке близка к модели хаотически переплетенных цепей и только при кристаллизации образуются упорядоченные области в виде кристаллитов. Этим объясняется, что структура полимеров в кристаллическом состоянии изучена лучше. Кроме того, прямые структурные методы (рентгенографические, электронно-графические и др.) дают наилучшие результаты при исследовании области когерентного рассеяния, т. е. для кристаллических структур с дальним порядком в расположении атомов, атомных групп и цепей. [c.34]

    В условиях нормальной дифракции рентгеновских лучей длина волны падающего излучения к меньше длины волны собственных электронных переходов в атоме Хк (а частота V, соответственно, больше v ), т. е. кК кк и v>v . Это позволяет использовать приближение рассеяния рентгеновских лучей свободным электроном. Такой электрон становится источником сферической волны с амплитудой р. Атомная амплитуда рассеяния А (0) является результатом сложения волн, рассеянных всеми электронами атома, пропорциональна Р и зависит от угла рассеяния 0 и плотности распределения электронов в атоме. Обычно атомной амплитудой рассеяния называют безразмерную величину /(0) =Л (0)//. С увеличением угла рассеяния 0 функция /(0) резко уменьщается от величины I (порядковый номер) до нуля. В принятом приближении функция /(0) является действительной. [c.218]

    Из решения этого уравнения можно найти для одного электрона амплитуду р а с се я н и я /х и затем атомную амплитуду аномального рассеяния/а в комплексной форме  [c.220]

    Чем больше заряд атомного ядра, тем сильнее будет отталкиваться от него а-частица, тем чаще будут встречаться случаи сильных отклонений а-частиц, проходящих через слой металла, от первоначального направления движения. Поэтому опыты по рассеянию а-частиц дают возможность не только обнаружить существование атомного ядра, но и определить его заряд. Уже из опытов Резерфорда следовало, что заряд ядра (выраженный в единицах заряда электрона) численно равен порядковому номеру элемента в периодической системе. Это было подтверждено Г. Мозли, установившим в 1913 г. простую связь между длинами волн определенных линий рентгеновского спектра элемента и его порядковым номером, и Д. Чедвиком, с большой точностью определившим в 1920 г. заряды атомных ядер ряда элементов по рассеянию а-частиц. [c.39]

    Необходимо отметить, что функции, входящие в уравнение (6.14), обладают различным характером изменения. Атомное рассеяние, как показывают расчеты, представляет собой монотонную функцию, быстро убывающую с ростом угла рассеяния. Эта функция определяется распределением электронной плотности вблизи ядер молекулы и не зависит от ее геометрической конфигурации. Молекулярное рассеяние представляет собой сумму синусоидальных функций разной частоты. Эмпирически было установлено, что функции K(s) и B(s) имеют тот же характер изменения, что и [c.145]


    Атом представляет собой резонансную систему. При совпадении частоты первичной волны со с собственной частотой одного из электронов атома со = возникает аномальная дисперсия из-за вклада, вносимого резонансным рассеянием. В этом случае длина рассеяния атома fa зависит от частоты <в или длины волны А, первичного излучения. Вариация атомной амплитуды А/ в зависимости от длины волпы, экстраполированная в каждой точке на угол рассеяния д = О, для атома Са показана на рис. 111.3. В области аномальной дисперсии наблюдается значительный дефицит атомного рассеяния, достигающий для редкоземельных металлов 15 электронных единиц [3]. [c.78]

    В нейтронографичсском анализе для исследования веществ используются монохроматические пучки медленных нейтронов. Специфика использования нейтронографии для структур1 ых и других исследований веществ обусловлена следующими особенностями рассеяния нейтронов в кристаллической решетке по сравнению с рентгеновскими лучами нейтроны рассеиваются ядрами атомов, а рентгеновские лучи в основном электронами рассеяние нейтронов не зависит от угла (направления) падения пучка, тогда как рассеяние рентгеновских лучей от него зависит амплитуда рассеяния нейтронов не монотонно зависит от атомного номера элемента, а в случяе рентгеновских лучей функция атомного рассеяния растет с ростом атомного номера нейтроны обладают магнитным моментом нейтроны глубоко проникают в массу исследуемого образца и слабо поглощаются веществом. [c.106]

    П. нейтральных атомов больше, чем соответствующих катионов, и меньше, чем анионов. Для молекул вклады в П. от электронных и колебат. состояний представляют соотв. электронную и атомную П. атомная П. составляет ок. 10% электронной П. Средняя электронная П. в постоянном внеш. поле пропорщ1ональна рефракции молярной. Мол. анизотропия П. проявляется в Керра эффекте и рэлеевском рассеянии света коэф. деполяризации света Д, определяемый как отношение интенсивностей перпендикулярно и параллельно поляризованных лучей при наблюдении света в плоскости, перпендикулярной направлению распространения падающего луча, равен  [c.67]

    В 1911 г. в своих блестящих экспериментах по рассеянию а-частиц веществом Резерфорд доказал, что атомы состоят из положительно заряженных ядер, где сосредоточена почти вся масса атомов, и отрицательно заряженных электронов. На основе этих наблюдений была развита микропланетарная модель атома электроны вращаются вокруг тяжелых положительно заряженных атомных ядер. Эта планетарная модель находилась в явном противоречии с теорией электромагнитного поля, и вскоре ее заменила новая модель, предложенная Бором (1913 г.). Боровская концепция также исходила из планетарного движения электронов вокруг атомных ядер, но в ней предполагалось квантование углового мо- [c.29]

    Логически мы могли бы ожидать, что эта формула даст правильное значение отношения рассеяния электронов центральным электрическим зарядом —Ze. Однако фактически, как уже говорилось, электроны не действуют подобным образом, ибо они распределены вокруг ядра концентрическими слоями. Борр) показал, что заменой 2 на (2—/) вводится вполне достаточная поправка на распределение электронов. Здесь /—атомный коэффициент рассеяния для данного атома по отношению к рентгеновским лучам. Если же имеются два типа атомов, то вводится произведение (Z —/ )(2 —/ ). Для определения среднего отношения рассеяния для атома из данных опытов, проведенных с очен1. большим числом атомов в молекулах, неупорядоченно распределенных в газовой фазе, используется метод усреднения Вирля. Как п в предыдущем разделе, он ведет к следующей форме закона рассеяния электронов молекулами газа  [c.464]

    Предсказание профиля резиста требует моделирования экспозиции и проявления. Для количественного описания распределения энергии в полимерном слое, помещенном на подложку, наиболее часто используется метод Монте-Карло. Он состоит в моделировании траектории электронов в системе резист — подложка на ЭВМ. Взаимодействие электрона со средой представляет собой ряд последовательных отражений, при которых происходит изменение направления движения электрона и потеря им энергии. В большинстве подходов используют модель с одним отражением, направление которого случайно. При этом предполагается, что направление движения электрона изменяется в результате его упругого отражения от атомного ядра, причем угол столкновения может быть вычислен из приближенных решений уравнения Шре-дингера, предложенных Борном [7]. Угловое распределение рассеянных электронов зависит от потенциала. Чаще всего используют потенциал Томаса — Ферми, рассчитываемый в предположении, что на движущийся электрон действует атомный заряд близлежащего ядра, величина которого корректируется с учетом электронной оболочки атома. Предполагается также, что между двумя упругими столкновениями электрон движется по прямой с длиной, равной среднему свободному пути, и теряет энергию. Потерю энергии электроном обычно рассчитывают в соответствии с приближением постепенного понижения (метод СЗОА) по уравнению Бете  [c.216]

    Рентгеновское и нейтронное рассеяние. Методы рентгепострук-турного и нейтроноструктурного анализа представляют собой дифракционные методы. Рентгеновские лучи — это электромагнитные волны большой энергии. Длины волн пх лежат в интервале от 0,05 до 0,20 нм. Нейтроны — незаряженные микрочастицы, обладаюплие массой покоя. Для пучков нейтронов соответствующие им длины волн лежат в пределах 0,1 —1,0 нм. Рентгеновское излучение рассеивается электронами атомов и молекул. Интенсивность рассеянного излучения фиксируется каким-либо способом и характеризует электронную плотность. Рассеяние рентгеновских лучей на ядрах оказывается пренебрежимо малым. В свою очередь, нейтроны рассеиваются ядрами атомов. При этом упругое рассеяние медленных нейтронов позволяет изучать атомную структуру вещества, а неупругое используется для изучения динамики частиц. Механизмы рассеяния рентгеновских лучей и нейтронов похожи. [c.101]

    Для решения структурной задачи по определению взаголного расположения атомов необходимо по интенсивности рассеяния рентгеновских лучей найти с нкцию распределения электронной или атомной плотности. Сферически симлютричная функция распределения f ) определяет вероятность того, что на ка ШХ-то расстояниях V и каким-то количеством атомов "Z" окружен любой атом, принятый за начало координат. [c.236]

    То обстоятельство, что рассеяние рентгеновских лучей производится электронами, приводит к тому, что положительные водородные ионы (ядра атома водорода — протоны) вообще не дают интеференций, и поэтому их положение в решетке не может быть определено непосредственно. Кроме того, не удается установить положение атомов элементов с небольшим числом электронов вблизи от атомов элементов с большим числом электронов, так как интерференции, вызываемые ими, слишком слабы. Непосредственно определить положение протонов в кристаллической решетке позволяет нейтронография (см. т. II), так как нейтроны рассеивать должны не электроны, а атомные ядра. [c.242]

    При щип действия установок для нейтронографического анализа в общих чертах сводится к следующему (рис. 51). Пучок нейтронов, источником которых является атомный реактор, проходит биологическую защиту / и по трубе кадмиевого коллиматора попадает на монохроматизирующий кристалл 2 (например, меди, свинца и т. д.), помещенный в защитную камеру 3 из боризоваиного парафина и свинца. Монохроматизированный пучок нейтронов попадает на образец 5 обычно в виде порошка в тонкой алюминиевой оболочке, слабо поглощающей нейтроны, и после отражения регистрируется счетчиком нейтронов 6. На пути луча перед образцом помещается контрольный счетчик 4. Вследствие того что нейтроны не действуют на фотопластинку, их регистрация проводится по сложной схеме, которая основана на фиксации вторичных электронов, возникающих при взаимодействии нейтронов с определенными веществами. Так, например, рассеянные образцом нейтроны могут бомбардировать двухслойный экран, состоящий из пластинки индия и обычной фотонластпнки. Нейтроны выбивают из индия электроны, и последние экспонируют фотопластинку, фиксируя на ней дифракционную картину, создаваемую нейтронами. [c.107]

    Ядерная гамма-резонансная (ЯГР) или мессбауэ-ровская спектроскопия. Основана на наблюдениях т. н. Мессбауэра эффекта, позволяющего выделять и регистрировать резонансное поглощение или рассеяние атомными ядрами гамма-квантов, не осложненное ни отдачей, ни тепловым движением ядер-излучателей и поглотителей (явлениями, приводящими в отсутствие эффекта Мессбауэра к смещению и уширению резонансной области энергий). Чрезвычайная острота такого неискаженного гамма-резонанса, его высочайшая избирательность позволяют не только заметить ничтожные (до 10 "-10 %) изменения энергии излучаемых и поглощаемых (или рассеиваемых) квантов, но и количественно их охарактеризовать, компенсируя эти изменения эквивалентным допплеровским сдвигом частоты квантов при движении источника или поглотителя (рассеивателя) со скоростью порядка нодчас всего несколько микрон/сек. Столь высокая чувствительность обеспечивает возможность наблюдения и количественного описания взаимодействий между электронными оболочками и электрич. зарядом, квадрунольным и магнитным моментами атомного ядра. По виду ЯГР-снектров удается раздельно охарактеризовать общее число -электронов и плотность их облака в районе расположения атомного ядра, участив в валентных связях -, р- и -электронов, взаимодейст- [c.535]

    Величина радиуса корреляции для разных видов поляризации могла бы быть найдена, если бы мы могли изучать распространение в диэлектрике периодического электрического поля соответствующей постоянно частоты и разной длины волны. Поскольку, однако, частота и длина волны электромагнитных волн однозначно связаны (их произведение есть скорость света), такие опыты неосуществимы. Предлагалось использовать с этой целью рассеяние нейтронов, позитрония, мюония и электронов с определенной энергией [201], но такие исследования еще не проводились. Пока что наши представления о пространственной корреляции ориентации диполе основаны на качественных рассуждениях и приближенных 0 eнкax. Так, для электронной и атомной поляризации можно ож дать их заметно корреляции лишь на очень малых расстояниях, вероятно, порядка долей ангстрема. Корреляция положения постоянных диполе , особенно в сильно структурированных жидкостях, должна проявляться на значительно больших расстояниях — порядка размеров молекулы. [c.83]

    При достаточно низких температурах и высоких давлениях атомы последней можно рассматривать как нейтральную примесь, частично пре-пятствуюш ую движению электронов проводимости. Описание рассеяния электронов на атомных примесях представляет собой сложную задачу. Видимо, для оценок можно использовать приближение Эргинсоя, решившего ее в случае сферически симметричного рассеяния электронов с эффективной массой т на атомах водорода, погруженных в среду с диэлектрической проницаемостью X [38]. Тогда [c.293]

    Пучок электронов получить значительно легче, чем пучок нейтронов, если использовать термоэлектронную эмиссию с поверхности нагретой вольфрамовой проволоки, помещенной в вакуум,иро-ванную трубку. Дифракционную картину регистрируют на флуоресцирующем экране и фотографируют. Для получения электроно-грамм необходимо использовать очень тонкие (10—100 нм) образцы. Информация, получаемая с помощью гармонического анализа электронограмм, отражает скорее распределение областей с высоким электростатическим потенциалом, чем распределение электронной плотности. Атомный фактор рассеяния для электронов равен iэll = Z— х), где С — константа. Поэтому с помощью электронной дифракции легче определить расположение легких атомов, чем тяжелых. Этот метод можно использовать для изучения соединений, которые не образуют крупных кристаллов, а также для газообразных веществ, которые вводят в виде. молекулярного пучка перпендикулярно электронному пучку. [c.57]

    ЛИШЬ уменьшает общее число фотонов. По мере увеличения энергии падающих фотонов существенную роль начинает играть эффект Комптона. Фотон сталкивается с атомным электроном и претерпевает упругое рассеяние, при этом энергия падающего кванта распределяется между электроном отдачи и фотоном рассеяния. Возникающий электрон отдачи в свою очередь вызывает ионизацию вещества. В случае эффекта Комптона общее число фотонов остается неизменным, хотя энергия их уменьшается (увеличивается длина волны X) и, кроме того, изменяется направление их движения. Эти рассеянные фотоны также могут вызывать чонизацию вещества. Вероятность комп-тоновского взаимодействия зависит от числа электронов, приходящихся на единицу площади поперечного сечения вещества. [c.260]

    Система RYSALIS j ] определяет трехмерную структуру белка по распределению плотности электронов (РПЭ). ЭС интерпретирует информацию по дифракции рентгеновских лучей, включающую информацию о положении и интенсивности рассеянных волн, и выводит атомную структуру. ЭС использует знания о составе белка и рентгеноструктурном анализе, а также эвристики, чтобы с помощью анализа РПЭ получать и проверять гипотезы относительно правдоподобных белковых структур. HYSALIS использует архитектуру типа доски объявлений , содержащей независимые источники знаний для выдвижения и проверки многоуровневой структуры гипотез. ЭС написана на языке ЛИСП. [c.262]

    Существует метод, называемый мессбауэровской спектроскопией электронов конверсии (МСЭК.) Этот метод основывается на регистрации возникающих при конверсии у-квантов электронов или рентгеновских лучей. Эмиссия электронов конверсии с различных оболочек атомов обусловлена рассеянием энергии при возбуждении атомных ядер, чем эти электроны отличаются от фотоэлектронов, испускаемых при облучении атомов или молекул УФ- или рентгеновским излучением (см. разд. 3), когда атомные ядра не возбуждаются. [c.130]

    Однако при решении этой задачи в рамках рентгеноструктурного анализа возникают дополнительные трудности, обусловленные, с одной стороны, увеличением длительности экспозиции, так как величина амплитуды рассеяния для рентгеновских лучей значительно меньше, чем для электронов. Если в электронографии время фиксирования дифракционной картины на фотопластинку длится от нескольких секунд до двух-трех минут, то в рентгенографии экспозиция исчисляется часами, а в нейтронографии иногда и несколькими десятками часов. С другой стороны, более сильная зависимость амплитуды рассеяния рентгеновских лучей от порядкового номера атомов (по сравнению с электронами) не позволяет надежно исследовать строение молекул с резким различием в величинах зарядов атомных ядер. Поскольку рассеяние рентгеновских лучей происходит на электронных оболочках атомов, основной вклад в интенсивность рассеяния этого вида излучения вносится атомами с большим зарядом ядра. Рассеяние же на легких атомах будет незначительно, и поэтому отвечающие им межъядер-ные расстояния находят с невысокой точностью. [c.128]

    В 1958 г. Р. Мёссбаузр открыл уникальное по степени монохроматичности (ДЯ/А, — 10 —10 ) явление ядерного гамма-резонанса [13]. В 1960—1964 гг. была установлена когерентность резонансного рассеяния гамма-квантов на атомных ядрах и рэле-евского рассеяния на электронных оболочках атомов. [c.16]

    Графики функций электронной плотности (1.20) и атомной амплитуды рассеяния (1.206) показаны на рис. 1.2, в. Убывание атомной амплитуды рассеяния с увеличением Н и соответственно угла рассеяния т) = 2 обусловлено внутриатомной интерференцией. При увеличении заряда ядра в 10 раз радиус первой боровской орбиты, равный наиболее вероятному расстоянию нахождения электрона от ядра, уменьшается в 100 раз и составляет 0,005 А. Распределение электронного облака приближается к виду, характеризуемому б-функцией. При больших значениях Z и соответственно параметра р, вторым членом под знаком корня в фурье-трапсфор-манте (1.206) можно пренебречь. Значение трансформанты при этом стремится к единице / (Я) -> 1 (ср. рис. 1.2, а). [c.25]

    Так как размеры атома соизмеримы с длиной волны X массбауэ-ровского излучения, между волнами, рассеянными отдельными электронами, возникает разность фаз, что приводит к зависимости /н от угла рассеяния и длины излучения к. Тепловые колебания решетки как бы размазывают атом в пространстве, в результата чего зависимость /д от угла рассеяния при изменении тепловых колебаний атома будет меняться (рис. XII.2, а). Температурный фактор, определяющий влияние тепловых колебаний атома на величину атомной амплитуды рассеяния/д, равен известному фактору Дебая — Валлера при рассеянии рентгеновских лучей, который записывается обычно как [c.229]


Смотреть страницы где упоминается термин Электрон, рассеяние атомное: [c.166]    [c.265]    [c.17]    [c.31]    [c.56]    [c.61]    [c.370]    [c.322]    [c.61]    [c.391]    [c.392]   
Успехи общей химии (1941) -- [ c.163 ]




ПОИСК







© 2025 chem21.info Реклама на сайте