Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Барит, определение кремния

    Для определения в работавших маслах продуктов износа — железа, меди, алюминия, хрома, никеля, свинца, ванадия, а также бария и кремния — успешно применяют описанную в предыдущем разделе методику анализа газойлей с использованием вращающегося электрода. Условия анализа и метрологические характеристики метода приведены в табл. 48. [c.203]


    Растворы ацетатов натрия и аммония также способны растворять значительные количества сульфата свинца. Растворимостью сульфата свинца в растворах тартрата аммония, содержащих аммиак, пользуются в анализе для его определения и отделения от других нерастворимых в воде-белых порошкообразных веществ, таких, как сульфат бария, двуокись кремния ИТ. д., которые не растворяются в тартрате аммония. [c.600]

    Для сравнения различных методов определения краевого угла (см. рис. И, И) были проведены испытания по смачиванию порошков двуокиси титана, сульфата бария, двуокиси кремния, стекла. Форма частиц порошков была близка к сферической, а диаметр составлял 0,26—0,7 мкм. [c.69]

    При выполнении анализов повышенной точности, а также в случае руд, содержащих большие количества сернокислого бария, двуокись кремния определяют после отделения бария. Если предполагается определение бария или последующее определение других компонентов, то барий осаждают вместе с нерастворимым остатком серной кислотой. При сплавлении смешанного осадка двуокиси кремния и сернокислого бария с углекислым натрием получаются растворимый в воде силикат натрия и труднорастворимый углекислый барий  [c.121]

    Определение кремния, бария, алюминия и ванадия из одной [c.96]

    Последовательность операций, выполняемых при определении кремния, бария, алюминия и ванадия в ненасыщенной контактной массе БАВ, приведена на схеме 1. [c.96]

    Какой прибор — ИСП-30 или ИПС-51—больше подходит для определения в дуге постоянного тока малых содержаний натрия, бария, фосфора, кремния (Для ответа воспользоваться табл. 8.) [c.184]

    Разработаны методы определения кремния в виде желтого кремнемолибденового комплекса в полупроводниковых материалах [168], минеральном сырье [169], в присутствии германия [170], болгарском барите [171], природных силикатах [172] и в промывочных растворах в присутствии фторидов [173]. [c.128]

    Чувствительность определения (в %) натрия, калия и стронция — 1 10" бария, магния, кремния, алюминия и железа — 1 10 . [c.63]

    Выплавка стекла. Стекло может быть прозрачным или полупрозрачным, бесцветным или окрашенным. Оно является продуктом высокотемпературного переплава смеси кремния (кварц или песок), соды и известняка. Для получения специфических или необычных оптических и других физических свойств в качестве присадки к расплаву или заменителя части соды и известняка в шихте применяют другие материалы (алюминий, поташ, борнокислый натрий, силикат свинца или карбонат бария). Цветные расплавы образуются в результате добавок окислов железа или хрома (желтые или зеленые цвета), сульфида кадмия (оранжевые), окислов кобальта (голубые), марганца (пурпурные) и никеля (фиолетовые). Температуры, до которых должны быть нагреты эти ингредиенты, превышают 1500 °С. Стекло не имеет определенной точки плавления и размягчается до жидкого состояния при температуре 1350—1600 °С. Энергопотребление даже в хорошо сконструированных печах составляет около 4187 кДж/кг производимого стекла. Необходимая температура пламени (1800— 1950 °С) достигается за счет сжигания газа в смеси с воздухом, подогреваемым до 1000 °С в регенеративном теплообменнике, который сооружается из огнеупорного кирпича и нагревается отходящими продуктами сгорания. Газ вдувается в поток горячего воздуха через боковые стенки верхней головки регенератора, которая является основной камерой сгорания, а продукты сгорания, отдав тепло стекломассе, покидают печь и уходят в расположенный напротив регенератор. Когда температура подогрева воздуха, подаваемого на горение, снизится значительно, потоки воздуха и продуктов сгорания реверсируются и газ начнет подаваться в поток воздуха, подогреваемого в расположенном напротив регенераторе. [c.276]


    Экспериментально установлено, что ударные воздействия вызывают существенные структурные изменения в кристаллах. Эти изменения одинаковы для одного типа кристаллов и отличны для веществ с разным типом химической связи. Для ионных кристаллов - хлоридов натрия и калия обнаружены осцилляции величин микродеформаций, а также дробление и слияние блоков в процессе механической обработки. Для кремния выявлен блочный тип уширения линий, а уменьшение и увеличение размера блока, на отдельных этапах механической обработки, свидетельствует о процессах дробления и спонтанной рекристаллизации. Для пероксидов бария и кальция обнаружена неизменность размеров блоков мозаики в процессе механической обработки, ударные воздействия в этих случаях приводят к появлению существенных микродеформаций. Для этих соединений на определенном этапе механической обработки (ему соответствуют максимальные значения микро деформаций на приведенном ранее рис. 6) структурные изменения проявляются также в виде скачка в значениях параметров элементарной ячейки (рис.5а и 56). Для всех кристаллов отжиг и хранение при комнатной температуре в течение 1-го года приводит к полному устранению микродеформаций. [c.40]

    Назвать наиболее пригодную форму осаждения при определении а) кальция б) бария в) свинца г) железа д) магния е) меди ж) кадмия з) висмута и) цинка к) кремния л) калия м) натрия н) сульфат-иона о) фосфат-иона. [c.53]

    Литий. Метод определения магния, марганца, железа, алюминия, кремния, бария [c.584]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    Основными составными частями стекол, применяемых в вакуумной технике, являются двуокись кремния, трехокись бора, в качестве присадок добавляют в определенных пропорциях окислы натрия, калия, кальция, бария, алюминия, марганца и др. Все они имеют цель придать стеклу определенные физические и химические свойства. [c.225]

    Для определения алюминия обычно используют дуговое возбуждение. Проба интенсивно испаряется и спектральные линии хорошо возбуждаются. Искру применяют сравнительно редко (при анализе растворов и брикетов). У алюминия невысокие энергия ионизации (5,98 эв), а также энергия возбуждения чувствительных линий. Поэтому с введением в пробу щелочных элементов чувствительность анализа резко повышается. В качестве внутреннего стандарта при определении алюминия хорошие результаты дают соединения магния, кремния и кальция. Однако эти элементы широко распространены в природе и их использование затруднительно. Удовлетворительные результаты получают, используя бериллий, барий, хром, кобальт и никель. [c.194]

    При испарении пробы из канала угольного электрода магний поступает в пламя дуги до полного выгорания пробы (рис. 97). Для определения Магния целесообразно использовать в качестве внутреннего стандарта соединения кальция, стронция, бария, алюминия и кремния. Сравнительно высокие его содержания легко можно определять прямыми и косвенными методами. Определение малых концентраций представляет значительные трудности из-за возможных [c.233]

    Следующий метод основан на применении закона Генри (так называемого закона распределения ) и заключается в титровании борной кислоты, экстрагированной эфиром из водного раствора, содержащего, помимо борной кислоты, соляную кислоту и спирт 1. Этот метод удобен для рядовых определений бора (в пределах 0,3—16% B Og) в стекле. Кремний, кальций, барий, магний, алюминий, натрий, литий, железо, цинк, свинец и мышьяк в количествах, обычно встречающихся в стекле, не мешают определению. В присутствии фтора получаются пониженные результаты. [c.840]

    Химико-спектральное определение бериллия, магния, кальция, бария, алюминия, титана, ванадия, вольфрама, хрома, марганца, железа, кобальта, никеля, меди, серебра, золота, цинка, кадмия, индия, олова, свинца, висмута, галлия и сурьмы в боре, борном ангидриде и борной кислоте Химико-спектральное определение магния, кремния, алюминия, меди, свинца, железа, фосфора, мышьяка, молибдена и натрия в боре..... [c.527]

    Интересный способ определения содержания кобальта в солях никеля состоит в предварительном окислении o + до Со " перборатом натрия в аммиачном буферном растворе [16]. После разрушения избытка окислителя сульфатом гидроксиламина раствор полярографируют в пределах от —0,2 до —0,8 в. Потенциал полуволны Со + равен —0,4 в. Определению не мешают мышьяк, кадмий, сурьма, олово, цинк и, если находятся в умеренных количествах, висмут, медь, железо, марганец, молибден. Свинец н хром, присутствующие в больших количествах, удаляют путем осаждения хлоридом бария или сульфатом натрия. При содержании кобальта около 0,1% ошибка определения не превышает 2,6%. В 0,01 М растворе триэтаноламина и 0,1 М растворе КОН было определено содержание свинца и железа в пергидроле и меди, свинца и железа в плавиковой кислоте и фториде аммония в количестве 1.10 —5.10 % [17]. В растворе фторидов проводилось также определение олова, основанное на получении его комплексных ионов [18]. Разработан метод определения растворимой окиси кремния в уранилнитрате, основанный на полярографическом восстановлении кремнемолибденового комплекса [19]. Можно определить 2 мкг ЗЮг с точностью до 10%. Мешают ванадий и железо. [c.83]


    ОПРЕДЕЛЕНИЕ ДВУОКИСИ КРЕМНИЯ В ПРИСУТСТВИИ БОЛЬШИХ КОЛИЧЕСТВ БАРИЯ [c.129]

    Окисные марганцевые руды обычно содержат значительные количества бария при содержании серы меньше 0,2%, поэтому определение двуокиси кремния при выполнении рядовых анализов можно производить теми же методами, что и при анализе железных руд. Небольшие количества сернокислого бария, переходящие в раствор, мало загрязняют осадок кремневой кислоты. [c.270]

    В случае рядовых анализов определение бария может быть совмещено с определением кремневой кислоты. Для этого прокаливание нерастворимого остатка, состоящего из кремневой кислоты и сульфата бария, ведут ниже 1000° С. При этом заметного разложения сульфата бария не наступает, а обезвоживание кремневой кислоты происходит удовлетворительно. Осадок после прокаливания обрабатывают фтористоводородной и серной кислотами, остаток сульфата бария взвешивают, а по разности находят содержание двуокиси кремния. [c.271]

    Накоплен большой опыт в применении неорганических ионитов и особенно дешевых природных сорбентов для очистки воды от радиоактивных загрязнений [268], а также для концентрирования элементов с целью определения их содержания в природных водах. Так, при радиохимическом анализе воды для сорбции э°5г рекомендуют сульфат бария, активированный кальцием [269] для цезия — ферроцианид титана или циркония, фосфоромолибдат аммония [270], смешанный ферроцианид железа и калия [271], для калия — фосфаты циркония, циркония и вольфрама, циркония и молибдена, циркония и кремния [272]. [c.201]

    Неудовлетворительные результаты получены при определении олова [5.959], бария и стронция [5.960 ] в горных породах после обработки проб смесью азотной и фтороводородной кислот. Следовые количества серебра можно полностью перевести в раствор только после повторной обработки такой смесью [5.961]. Некоторые карбиды не разлагаются при растворении сталей в смесях НЫОз, НР и Н2504 перманганат калия ускоряет окисление [5.962]. Горячая смесь НМОд и НР не действует на углерод, но окисляет его при 150 °С под давлением [5.912]. Л При определении кремния атомно-абсорбционным методом в жаропрочных сплавах на никелевой основе пробу рекомендуют разлагать в авто- [c.196]

    Определение кремния в различных объектах отличается лишь характером предварительной обработки анализируемого вещества. Метод применен к анализу черных сплавов, силикатов, руд, шлаков, огнеупорных материалов и т.д. /59-77/. Совершенно не мешает определению присутствие болыж количеств соляной, азотной, фосфорной кислот, хлористого калия, хлористого аммония, до I г хлоридов лития, бария, железа, кальция, бериллия, стронция, никеля, кобальта, марганца, цинка, хрома, олова, ртути, молибдата аммония. В присутствии Ю о-ного раствора хлористого кальция не мешают хлориды алюминия, титана и ванадила, цирко-нилсульфат, если их не более 0,5 г. Указанным методом был определен кремний в сотнях образцов пегматитов, в стекле, граните, гнейсах, амфиболитах, кварцево-слюдя<1ых сланцах, сплаве "альси- ер". Среднее квадратичное отклонений полученных результатов от данных весового анализа составляет + 0,24 относительных /77/. [c.11]

    Интересный вариант этой реакции заключается в определении борной кислоты по измерению влияния последней на оптическое вращение растворов винной кислоты [128]. Боротартратный комплексный ион образует также нерастворимую бариевую соль, поэтому был предложен спектрофотометрический метод определения бора с применением хлоранилата бария и винной кислоты, основанный на фотометрировании освобожденного хлоранилат-иона [129]. Комплексообразование такого же типа позволяет, применяя глицерин, устранять мешающее влияние бора при гравиметрическом определении кремния дегидратацией кремниевой кислоты [130] или же используя маннит — при фотометрическом определении силикат-иона, основанном на реакции последнего с бензоином [131]. [c.287]

    Лабораторная методика спектрального определения примесей натоая, калия, стронция по 1.10-2 , бария, магния, кремния, алшиния, железа по 1.10-3 . П.я. А-7815, [c.55]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    После спекания тигель охлаждают на воздухе. Охлажденный спек не рекомендуется оставлять длительное время на воздухе, так как это ухудшает разделение молибдена и рения при анализе молибденитов за счет перехода окиси кальция в карбонат [376]. Остывший спек вьщелачивают водой при нагревании раствора до кипения в течение 20—60 мин. В полученном растворе (щелоке) содержатся перренат- и в небольших количествах (1—12 мкг/мл) молибдат-, вольфрамат-, ванадат-, сульфат- и другие ионы в осадке — нерастворимые соли молибдена(У1), вольфрама(У1), кремния и др., гидроокиси железа(1П), алюминия, титана(1У), меди(П), марганца(1У) и других элементов. Щелок фильтруют через бумажный фильтр, осадок па фильтре промывают горячей водой. Фильтрат при стоянии мутпеет вследствие образования осадка карбоната, который, однако, не мешает определению рения. Для предотвращения образования этого осадка рекомендуется собирать фильтрат в сосуд, содержащий небольшое количество соляной кислоты ( 1 мл). Для уменьшения содержания в фильтрате молибдат-, вольфрамат- и сульфат-ионов при выщелачивании плава в раствор добавляют соединения бария, образующего с названными ионами малорастворимые в воде соединения [133, 384, 576]. Иногда для удаления из фильтрата кальция к нему прибавляют карбонат аммония [501]. В результате всех этих процедур рений эффективно отделяется также от Са, d, Bi, Sb, Hg, Se, Te и As. [c.236]

    Исследована возможность повышения чувствительности определения бериллия, марганца, хрома и алюминия в нефтепродуктах путем обработки графитовой трубки карбидообразующими элементами [267]. Работа выполнена на СФМ Перкин-Элмер , модель 403 с ЭТА НСА-70. Для обработки печи применяли лантан, цирконий, кремний, ванадий, бор, молибден и барий в виде водных растворов неорганических соединений и масляных растворов сульфонатов. В атомизатор вводили раствор с заданным количеством обрабатываюшего элемента и проводили три стадии термообработки сушку при 100 °С, озоление при 600 °С и атомизацию при 1950 °С. При этом образовывались термостойкие карбиды, которые покрывали внутреннюю поверхность графитовой печи и устраняли помехи при анализе. Температура плавления карбидов этих семи элементов 2550—3530 °С. Механизм устранения помехи, по-видимому, заключается в предотвращении образования карбида определяемого элемента. Печь можно обработать одним или несколькими элементами одновременно или последовательно, с повторением каждый раз всех трех циклов нагрева. Во всех случаях после обработки абсорбция значительно повышается (в 2,2— [c.154]

    У бериллия малолинейчатый спектр. Это ограничивает выбор аналитических линий. Однако среди немногих линий имеются очень интенсивные и удобные для анализа. Бериллий — сравнительно трудновозбудимый элемент (энергия ионизации 9,32 эв, энергия возбуждения наиболее интенсивной дуговой линии 5,3 эв), поэтому большой чувствительности анализа можно достигнуть с высокотемпературным источником. Имеются указания о снижении интенсивности линий бериллия в присутствии элементов с низким потенциалом ионизации [14]. При определении бериллия в рудах в качестве буфера применяют смесь угольного порошка, углекислого стронция, полевого шпата и углекислого бария (5 5 2 0,5) [9, 424] в качестве внутреннего стандарта рекомендуют алюминий, кремний, кальций, стронций, барий, магний [8]. [c.201]

    Подобный подход в подготовке зол нефтей к анализу использован в [292]. Тонко измельченную золу ( 300 меш.) смешивали с угольным порошком в соотношении 1 2 и наносили на диск из полистирола диаметром 36 мм и прессовали под давлением 300 кг/см . Ввиду трудностей, связанных с получением большого количества золы нефтей, особое внимание уделяли разработке приемов анализа из малых навесок. Анализ проводили на двухканальном рентгеновском спектрометре Х2-736 с трубкой из вольфрамового анода (50 кВ, 40 мА). Двухканальная система спектрометра позволяет регистрировать излучение образца сравнения и анализируемой пробы, которые располагают в про-бодержателях под окном рентгеновской трубки. Для определения элементов от алюминия до хлора использовали кристалл ЕДДТ, а для более тяжелых элементов — ЫР. В качестве детекторов применяли пропорциональные счетчики. Инструментальная ошибка составляла менее 0,1%. Содержание алюминия, кремния, фосфора, хлора, калия, кальция, титана, бария, ванадия, марганца, железа и других элементов до молибдена включительно устанавливали по линиям /Са-серий, а более тял елых [c.72]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    В обычном ходе анализа сера не создает затруднений, если только она не связана с такими элементами, как барий, свинец или стронций, (которые образуют нерастворимые сульфаты) или не присутствует в больших количествах совместно с кальцием. В первом случае, особенно при наличии бария, сера выпадает в осадок в виде сульфата бария вместе с кремнекислотой. Присутствие сульфата бария в остатке кремнекислоты узнается по характеру этого осадка и по размерам и внешнему виду нелетучего остатка после обработки кремнекислоты фтористоводородной и серной кислотами. Если обработка НР -Ь Н2804 опускается, то естественно результаты определения кремнекислоты будзгг повышенными. Если же эта обработка проводится, получаются пониженные результаты для кремне- кислоты, так как при том интенсивном прокаливании, которое требуется для обезвоживания кремнекислоты перед первым взвешиванием, образуется силикат бария. В результате обработки остатка фтористоводородной и серной кислотами перед вторым взвешиванием силикат бария снова переходит в сульфат. [c.793]

    Максимова Н. В. и Ц устер Т. Л. Колориметрическое определение двуокиси кремния в породах, содержащих фтор и барий. Бюлл. Всес. н.-и. ин-та-минерального сырья. (М-лы научно-методические и производ. лабор. геол. управлений М-ва геологии [СССР]). 1952, ЛЬ 6 (110), с. 20—27. Библ.  [c.184]

    Уникальными возможностями обладает атомно-абсорбционный/плазменно-эмиссионный спектрометр, который был недавно выпущен в США (Aurora Instruments). Этот прибор (рис. 1II.11) оснащен оригинальной графитовой печью, которая позволяет достичь очень низких Сн при определении таких традиционно сложных в определении элементов, как молибден, барий, алюминий или кремний. [c.243]

    Если в методе молибденовой сини не применять экстракцию, гопределению мешает большое число ионов, в частности, кремний (IV), германий(IV) и мышьяк (V). Мешающее влияние кремния можно устранить увеличением кислотности растворов или введением цитрата. Ниобий(V), тантал(V), олово (IV), вольфрам (VI), титан (IV), цирконий(IV) и висмут мешают определению, так 1 ак в условиях анализа образуют осадки, сорбирующие фосфат. Барий(II), стронций(II) и свинец(II) в сульфатных растворах осаждаются. Большие концентрации меди(II), никеля(II) и хрома (III), образующие окрашенные растворы, искажают результаты определения фосфата. Ванадий (V) мешает, так как образует ванадомолибдофосфатный комплекс. Влияние ванадия можно устранить, если его восстановить до ванадия (IV) перед введением молибдата аммония. Железо можно перевести в яон железа (II). Мешающее влияние нитрата устраняют при [c.459]


Смотреть страницы где упоминается термин Барит, определение кремния: [c.136]    [c.515]    [c.52]    [c.13]    [c.879]    [c.317]    [c.232]    [c.90]    [c.412]   
Фотометрический анализ методы определения неметаллов (1974) -- [ c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний определение



© 2024 chem21.info Реклама на сайте