Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы хлорной

    Сплав свинца с приблизительно 10% натрия и небольшим количеством магния расплавляют в чугунных ящиках в атмосфере азота. Затем этот сплав дробят на куски размером с горошину и загружают в автоклавы, где под повышенным давлением при 50—75° проводят реакцию с хлористым этилом. В большинстве случаев добавляют также катализатор, например хлористый алюминий или хлорное железо. К концу реакции температуру повышают до 100°. После сброса давления в автоклаве тетраэтилсвинец отпаривают водяным паром для удаления газообразных углеводородов и избытка хлористого этила [182]. Как видно из уравнения реакции, в тетраэтилсвинец превращается лишь около 25% свинца остальное количество после переработки возвращается в процесс. [c.213]


    Для перекачивания сильноагрессивных жидкостей и газов — таких как хлориды, сухой хлор с содержанием воды не менее 0,0130, влажный хлор и растворы хлорных соединений (хлорит и гипохлорит натрия при температуре, близкой к точке кипения), азотная кислота концентрацией до 99,8%, сероводород, расплавленная сера, диоксид серы, растворы для электролитических н травильных ванн, применяют центробежные химические насосы, детали которых изготовляют из титана и сплавов на его основе. [c.38]

    Практическое использование в хлорной промышленности МИА получили после разработки окиснорутениевых анодов [171, 172], в которых основой электрода служит титан. Возможно также применение тантала, ниобия, циркония или их сплавов, однако из-за высокой стоимости этих металлов нашел применение только титан. На титановую основу электрода различными способами наносится смесь окислов рутения и некоторых Неблагородных металлов (Ti, Fe, Pb, Со, Mo и др.) [120-124]. [c.79]

    Электролиз ведут из растворов, подкисленных серной (35—100 г/л) или хлорной кислотой [98 ] и содержащих сульфат аммония или натрия (40—70 г/л). Эти добавки, по-видимому, препятствуют окислению поверхности катода либо способствуют растворению окислов с катода и тем самым облегчают восстановление рения 1 115]. В качестве катода используют тантал или нержавеющую сталь, в качестве анода — платину. Рений при электролизе получается в виде порошка (насыпная масса 8 г/см ) или чешуек. Электролитный рений, полученный даже из растворов перрената калия, по чистоте не уступает рению, полученному восстановлением перрената аммония. Крупнокристаллическая структура электролитного рения мешает его переработке на компактный металл металлокерамическим способом. Более мелкий порошок (98% < 56 мкм) можно получить при электролизе с применением тока переменной полярности (импульсный ток), а также на установке с вращающимся барабанным катодом [89, с. 101] но и такие порошки не годятся для металлокерамики. Порошок рения,полученный электролитическим путем, применяется для приготовления сплавов и других целей. [c.314]

    В производствах натрия, калия не допускается наличие сточных вод, кроме небольшого количества от дегазации хлорных абгазов. Гашение отходов металлов осуществляется в специальных помещения с последующим использованием полученных щелочных растворов. В производстве тройного сплава очистка абгазов, содержащих аэрозоли свинца, осуществляется сухим способом с окончательной очисткой выбросов в атмосферу пропусканием их через фильтры Петрянова, после которых содержание свинца соответствует нормам жилого помещения. [c.255]


    Хлорную кислоту используют при анализе сплавов платиновых металлов [5.1308, 5.1309] осмий и рутений выделяют из хлорнокислых растворов дистилляцией в виде тетраоксидов. Разработана методика растворения платиновых металлов нагреванием под давлением с хлорной кислотой в запаянных стеклянных трубках [5.1310]. При обработке вольфрама и его сплавов хлорной кислотой образуется умеренно растворимый ШО, который можно перевести в раствор с помощью фосфорной кислоты. Смесь хлорной и фосфорной кислот применяют для растворения сплавов олово—свинец—сурьма. [c.220]

    Из цветных сплавов важное значение имеют сплавы меди (латуни, бронзы). Определение главных составных частей этих сплавов также было описано в предыдущих параграфах. Медь и свинец чаще всего определяют электролитически, как указано в 55 и 56. Для определения олова обычно пользуются йодометрическим методом, подробно описанным ниже. Подготовка сплава меди к определению олова состоит в растворении навески в смеси азотной и соляной кислот и отделении олова от меди двукратным осаждением гидроокисью аммония в присутствии хлорного железа (коллектор). Осадок гидроокисей железа и олова (и др.) растворяют затем в соляной кислоте, восстанавливают четырехвалентное олово до двухвалентного каким-нибудь металлом (железом, свинцом или др.) и титруют рабочим раствором йода. [c.456]

    Для определения фосфора сплав меди растворяют в азотной кислоте и из полученного раствора осаждают фосфат-ион молибденовой жидкостью. В случае присутствия олова при растворении сплава в азотной кислоте образуется оловянная кислота, адсорбирующая из раствора фосфорную кислоту (см. 43). Тогда азотнокислый раствор сплава предварительно выпаривают несколько раз досуха, добавляя каждый раз соляную кислоту для удаления большей части олова в виде летучего хлорного олова, после чего осаждают фосфат-ион обычным способом. [c.456]

    Две навески сплава по 0,1—0,25 г растворяют каждую в 10 мл соляной кислоты и раствор упаривают до небольшого объема (- 1 мл), затем добавляют 30 мл хлорной кислоты и вновь упаривают на водяной бане до удаления паров соляной кислоты. Раствор переносят в мерную колбу емкостью 50 мл и доводят объем раствора до метки хлорной кислотой. Переносят в кювету аликвотную часть (15—20 мл) и проводят титрование точно в условиях, указанных для определения циркония в растворе его чистой соли. [c.229]

    Для борьбы с микробиологической коррозией оборотную воду хлорируют в градирнях, где она охлаждается, жидким хлором или хлорной известью из расчета 2—6 г/м активного С1 в зависимости от окисляемости оборотной воды. Для борьбы с обрастанием ракушечником в градирни подают медный купорос в количестве до 10 г/м . Для повышения коррозионной стойкости латунных конденсаторов в воду периодически вводят концентрированный 21 %-ный раствор сульфата железа из расчета 5 г/м железа [2]. Присутствие ионов железа в охлаждающей воде способствует образованию на поверхности сплавов меди плотной и прочной оксидной пленки. [c.33]

    При использовании воды с высоким содержанием органических веществ (окисляемость более 10—15 мг/л О2) интенсивно протекает биообрастание трубок. Для борьбы с этим явлением применяют хлорирование дозу хлорирующего агента (хлорной извести, свободного хлора) следует подбирать так, чтобы в воде, выходящей из конденсатора, содержание активного хлора не превышало 0,5 мг/л. Практикующееся на ряде электростанций добавление сухой хлорной извести в поток охлаждающей воды не обеспечивает нужного режима хлорирования и отрицательно влияет на коррозионную стойкость медных сплавов. [c.203]

    Чистый металл используют для восстановления соединений s, Rb, Сг, U, Zr, Th, V до металлов, для раскисления сталей. В технике применяют антифрикционные сплавы К. со свинцом. Широко применяют минералы К. Так, известняк используют в производстве извести, цемента, силикатного кирпича и непосредственно как строительный материал, в металлургии (флюс), в химической промышленности для производства карбида кальция, соды, едкого натра, хлорной извести, удобрений, в производстве сахара, стекла. Практическое значение имеют мел, мрамор, исландский шпат, гипс, флюорит и др. См. также кальция соединения. Кальцинированная сода — см. Сода. [c.61]

    Разработка способов изготовления МИА с использованием в качестве активного слоя вместо платины или сплава ее с родием более дешевого и менее дефицитного рутения создало дополнительные стимулы для применения МИА в хлорной промышленности. На окиснорутениевых аиодах перенапряжение выделения хлора невелико, напряжение на электролизере и удельный расход электроэнергии снижается по сравнению с этими же показателями на графитовых анодах [53, 54].  [c.154]


    Для растворения большого числа сплавов можно использовать соляную кислоту с добавлением окислителя, а также хлорную и серную кислоты. [c.353]

    Существенным недостатком хлорного синтеза глицерина является также наличие стоков, загрязненных хлоридами кальция и натрия, а также необходимость применения коррозионно-устойчивой аппаратуры из дорогостоящих металлов и сплавов вследствие агрессивности реакционных сред некоторых стадий. [c.10]

    Наиболее пригодной средой является хлорная кислота. Однако при низком содержании цинка сплав в этой кислоте не растворяется. Поэтому его сначала растворяют в НС1, и после окончания реакции раствор упаривают с хлорной кислотой до паров последней. [c.215]

    Наиболее часто стали и сплавы кобальта растворяют в соляной или серной кислоте и смеси этих кислот с азотной кислотой. Рекомендуется применять хлорную кислоту в смеси с азотной, в частности, в тех случаях, когда сталь содержит хром или ванадий, и если предполагают кобальт титровать раствором феррицианида калия. Смесь азотной и хлорной кислот окисляет хром и ванадий до высших степеней окисления, чем устраняется их мешающее влияние при титровании кобальта феррицианидом. Высоколегированные стали с высоким содержанием хрома растворяют в разбавленной серной кислоте или [c.185]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Нитриды некоторых примесей, например Ti, Nb, W (в особенности в сплавах), медленно реагируют с кислотами в обычных условиях для их разложения требуется нагревание с хлорной или фосфорной кислотой. [c.381]

    Выполнение, определения. Аликвотную часть раствора щелочного сплава, содержащую 50 — 800 мкг Ru(lll), приливают к 3 мл щелочного 1 10 М раствора реагента, нейтрализуют хлорной кислотой до pH 11,0 — 12,0 переносят в мерную колбу вместимостью 25 мл, доливают водой до метки и через 15 — 20 мин измеряют оптическую плотность при 850 нм относительно воды. [c.43]

    Вещества, вызывающие полимеризацию окисн этилена, можно в основном разделить на две группы вещества основного характера (едкие щелочи, гашеная известь, метил- и этиламины, эта-ноламин, триэтилфосфин, металлические калий, натрий и их сплавы, амид натрия и др.) вещества кислотного характера и нейтральные соли (кислые сульфаты калия и натрия, хлорное олово, хлорид цинка, фтористый бор, карбонат стронция и др.). [c.85]

    В качестве каталиватора можно применять сплав из хлорного железа и хлористого калия. Достоинством процесса являются малые затраты тепла и электроэнергии, использование газообразных исходных продуктов. Существенный недостаток-получение загрязненного, разбавленного хлоргаза. [c.40]

    Колбу, закрытую пробкой с клапаном или снабженную другим приспособлением, нагревают на плитке до начала выделения крупных пузырьков газа. После этого колбу в течение 20—25 мин. нагревают почти до кипения. Горячий раствор отфильтровывают через хлопчатобумажную вату от выделившихся металлических сурьмы и меди в коническую колбу емкостью 750 Л1Л и промывают вату горячим 5%-ным раствором соляной кислоты. К фильтрату приливают 50 мл разбавленной (1 1) соляной кислоты снова туда опускают железную спираль, закрывают колбу пробкой с клапаном и нагревают еще 20—25 мин. Вторичное нагревание с железной проволокой необходимо для того, чтобы обеспечить полное восстановление хлорного олова, так как во время фильтрования часть двухвалентного олова окисляется. Затем, вынув пробку, разбавляют содержимое колбы 100 мл холодной воды, насыщенной углекислым газом, и, наклонив колбу, осторожно опускают в нее по стенке кусочек мрамора, после чего снова закрывают колбу иробкой. Охладив колбу струей воды, вынимают пробку с клапаном и железную спираль, споласкивают спираль водой, вливают в колбу 1 мл раствора крахмала и титруют двухвалентное олово 0,2 н. раствором йода до появления синей окраски. Исходя из количества миллилитров раствора йода, затраченного на титрование, вычисляют процентное содержание олова в сплаве. [c.459]

    Навеску йодоформа HI3 сплавили с твердым КОН, плав растворили. К полученному раствору KI добавили кислоту и действием хлорной воды окислили ионы I"" до 105 . Избыток хлора удалили кипячением, затем в раствор ввели KI и выделившийся I2 оттитровали 23,22 мл раствора тиосульфата натрия с 7" (N328203/12) = 0,02560. Какая масса йодоформа была взята для анализа Ответ 0,1025 г. [c.305]

    Наряду с исследованием металлических сплавов в конце XIX в. и начале XX в. стали развиваться работы по физико-химическому анализу водных соляных систем. В этой области особое значение имеют работы голландской школы физико-химиков, в частности Г. Розебома и Ф. Шрейнемакерса, осуществивших первое оригинальное исследование систем из воды и двух электролитов с общим ионом (система вода — хлорное железо — хлористый водород) и Я- Вант-Гоффа, который совместно с многочисленными сотрудниками изучил ряд водно-солевых многокомпонентных систем, образованных солями Страссфуртского месторождения. [c.167]

    Никелевое, в том числе Сталь, медь и ее сплавы, алю- Железо хлорное 300 30 Появление розового л(гтна [c.58]

    Азот. Проще всего азот определять количественно по способу Дюма (см. ниже). Однако, если почему-либо требуется качественное обнаружение, можно открыть азот по реакции Лассеня. В открытой пробирке к пробе вещества примерно в 0,01 г прибавляют кусочек металлического натрия примерно в 0,05 г. По окончании реакции (если реакция идет) пробирку нагревают, сначала осторожно, потом докрасна, невзирая на горение натрия. Когда горение окончено, дно раскаленной пробирки опускают в фарфоровую чашку, в которую налито 3—5 мл воды. Конец пробирки лопается и сплав попадает в воду. После того как остаток натрия прореагирует с водой, полученный раствор, содержащий цианистый натрий, образованный азотом, фильтруют и добавляют к нему каплю разбавленного раствора железного купороса, подкисляют соляной кислотой до кислой реакции, затем прибавляют каплю раствора хлорного железа. Посинение вследствие образования берлинской лазури указывает на наличие азота. Эта проба очень чувствительна и дает положительный результат с большинством типов азотистых соединений, но пе со всеми. Легко разлагающиеся ароматические диазосоединения выделяют азот в газообразном состоянии и не образуют в описанных условиях цианида. Поэтому часто заменяют качественную пробу на азот количественным определением по Дюма (или Дюма — Преглю, см. ниже). [c.46]

    Установка работает следующим образом. Коническую часть замочного чана заполняют аэрированной водой температурой 18— 24°С и засыпают зерно. Через 15—20 мин после отмокания грязи зерно промывают, подавая чистую воду с низу чана и через сетчатую трубу и удаляя промывную воду и сплав, как обычно, добавляют хлорную известь и воду спускают. [c.128]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    Романушкина А.Е., Полякова К.К. Тантал и тантал-ниобиевые сплавы -коррозионностойкие материалы для хлорной промышленности. - Хим. пром-сть. 1959, № 6, с. 547-552. [c.117]

    На анодных поляризационных кривых для сплавов никеля с 5-30 ат.% железа в серной и хлорной кислотах в области активного растворения наблюдаются два тафелев-ских участка [57] подобно тому, как это имеет место для чистого никеля [42]. [c.13]

    В — при 40°С. И — резервуары, трубы, аппараты для ацетили-рования в смеси уксусной кислоты, бензола и следов хлорной и серной кислот автоклавы из алюминиевых сплавов или углеродистой стали, покрытые алюминием, покрытия для центрифуг при производстве ацетилсалициловой кислоты конденсаторы для чистого уксусного ангидрида, покрытие стальных реакторов для каталитического окисления уксусного альдегида, а также охлаждающих змеевиков. [c.455]

    Хлорная кислота в горячем состоянии обладает сильными окислительными, а также водоотнимающими свойствами. При выпаривании трехвалентный хром окисляется до хромовой кислоты, вольфрам— до вольфрамовой кислоты. Кремневая кислота, пятиокись ниобия и тантала практически полностью выделяются из раствора. Хлорная кислота не мешает титрованию раствором перманганата. Ее широко применяют при анализах металлического хрома и хромовых сплавов для удаления хрома в виде хлористого хромила СГО2С12, а также при анализе ферровольфрама и феррониобия. [c.44]

    За счет высокой коррозионной стойкости детали арматуры из титана (корпуса, втулки, штоки, сальники, золотники) противостоят коррозии в 15—26 раз дольше, чем нержавеющие стали (Х18Н9Т). Коррозионные свойства сплава АТ-3 испытаны во многих средах, в том числе в среде, содержащей раствор серной кислоты при 350 °С. В течение длительного времени при испытаниях в условиях радиации на образцах сплава не было признаков коррозии, а также коррозионного растрескивания под напряжением. Высокой коррозионной стойкостью сплав обладает в едком натре, в водном растворе аммиака, в азотной, хлорной, уксусной кислотах и средах, содержащих серу при 50 °С. [c.74]

    Бензантрон обычно получается нагреванием продукта восстановления антрахинона с серной кислотой и глицерином или с одним из производных глицеринаили с акролеином. Обычно антрахинон восстанавливают в растворе серной кислоты непосредственно перед реакцией с помощью сернокислого анилина железа или меди Однако имеются указания, что одновременно проводимые восстановление и конденсация дают лучший выход Бензантрон был также получен дегидрогенизацией хлористым алюминием или хлорным железом фенил-а-нафтил-кетона, дегидратацией 1-фенилнафталин-8-карбоновой кислоты и нагреванием цин-намалантрона со сплавом хлористого алюминия и хлористого натрия [c.83]

    Тетраэтилстаннан был получен из сплава олова с натрием и йодистого этила из сплава олово — натрий — цинк и бромистого этила и из хлорного олова и бромистого этилмагния [c.59]

    Азотная кислота пассивирует поверхность компактного тория и предотвращает его растворение. Однако в присутствии незначительных концентраций фторида или фторосиликата (0,01—0,03 М) процесс растворения в 8—16 N HNO3 идет до конца [1804, 1873]. Следы ионов фтора каталитически влияют и на растворение сплавов, а также окиси и других труднорастворимых соединений тория. Ионы фтора могут быть прибавлены в виде плавиковой кислоты или фторида натрия. Серная кислота взаимодействует с торием медленно. Сплавление небольших количеств образца с KHSO4 способствует растворению металлического тория [309]. При нагревании с фосфорной кислотой и последуюн ем упаривании металлический торий растворяется полностью, однако процесс растворения происходит чрезвычайно медленно. Действие концентрированной плавиковой кислоты на металл незначительно [1907]. Концентрированная горячая хлорная кислота медленно взаимодействует [c.17]

    Около 200 мг образца нагревают в течение одного часа с 20 мл 6 N раствора НС1 и 20 мл концентрированной HNO3, затем добавляют 7 мл концентрированной H IO4 и нагревают еще в течение часа. Если сплав не растворился полностью, то добавляют 0,1 мл концентрированной HF, продолжая нагревание до появления паров хлорной кислоты. Раствор разбавляют водой если необходимо, то фильтруют. Молибден определяют в аликвотной части раствора в присутствии урана п плутония колориметрически с роданидом аммония. [c.356]

    Хлорная кислота в виде 30- или 70%-ного раствора применяется для растворения многих соединений, металлов и сплавов, особенно для разложения хромовых руд и фторидов. Эта кислота в концентрированном виде является окислителем вследствие высокой температуры кипения она при нагревании вытесняет все прочие кислоты, кроме серной кислоты. Почти все соли хлорной кислоты (кроме КСЮ4) весьма хорошо растворимы в воде. Благодаря этим ценным свойствам НСЮ4 в последнее время находит широкое применение в аналитической химии. [c.123]

    Активирование контактной массы. С целью улучшения контактных свойств сплава, увеличения выхода продуктов синтеза и смещения реакции в сторону преимущественного образования более ценных веществ (RgSi la, RSiH lg) контактную массу подвергают дополнительному активированию. Существует несколько методов активирования. Одним из наиболее распространенных является термическая обработка контактной массы в токе водорода и.т1и в смеси водорода с азотом при 1050 °С в течение нескольких часов. Второй способ активирования контактной массы состоит в том, что сплав на 1 мин погружают в 30%-ный раствор хлорной меди при этом она переходит в однохлористую  [c.38]

    Виго (1457, 1497, 1498) определял 0,06—10% Мо в сплавах титана в виде роданидных соединений. 50 мг сплава растворяют во фтористоводородной кислоте, раствор выпаривают с хлорной кислотой до па ров, прибавляют растворы Ре(СЮ4)з, ЗпСЬ и роданида, измеряют оптическую плотность раствора. Мешает вольфрам, если нужно определять менее 1 % Мо. [c.215]

    Если сплав содержит большое количество углерода, то после разложения образца смесью соляной и азотной кислот вводят 15 мл 70%-ного раствора хлорной кислоты и выпаривают до появления паров последней. Раствор охлаждают, прибавляют 50 мл воды, кипятят и отфильтровывают остаток. Последний сжигают в платиновом тигле, далее сплавляют с пиросульфа-том калия, плав растворяют в растворе серной кислоты, раствор фильтруют и анализируют, как указано выше. [c.195]


Смотреть страницы где упоминается термин Сплавы хлорной: [c.417]    [c.630]    [c.837]    [c.285]    [c.35]    [c.127]    [c.458]   
Методы разложения в аналитической химии (1984) -- [ c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Хлорное олово, действие на никель и его сплавы дей ствие на тантал

Хлорное олово, действие на никель и его сплавы действие на тантал



© 2025 chem21.info Реклама на сайте