Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение вольфрама металлах

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    К числу тяжелых металлов относят хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьму, теллур, вольфрам, ртуть, таллий, свинец, висмут. Употребляемый иногда термин токсические элементы неудачен, так как любые элементы и их соединения могут стать токсичными для живых организмов при определенной концентрации и условиях окружающей среды. [c.93]

    ЛЕГИРОВАНИЕ (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю) — введение в металлы и сплавы легирующих материалов для получения сплавов заданного хим. состава и структуры с требуемыми физ., хим. и мех. св-вами. Применялось еще в глубокой древности, в России — с 30-х гг. 19 в. Л. осуществляют введением легирующих материалов (в виде металлов и металлоидов в свободном состоянии, в виде различных сплавов, напр, ферросплавов, или в газообразном состоянии) в шихту или в жидкий (при выплавке) сплав. Иногда добавки легирующих материалов вводят в ковш. В закристаллизовавшемся сплаве легирующие материалы распределяются в твердом растворе и др. фазах структуры, изменяя его прочность, вязкость и пластичность, повышая износостойкость, увеличивая глубину прокаливаемости и др. технологические св-ва. Л. существенно влияет па положение критических точек стали. Никель, марганец, медь и азот расширяют по температурной шкале область существования аустенита, причем при известных соотношениях содержания углерода и этих элементов аустенит существует в области т-р от комнатной и ниже до т-ры плавления. Хром, кремний, вольфра.м и др. элементы сужают эту область и при определенных концентрациях углерода и легирующего элемента расширяют область с>тцествоваиия альфа-железа (см. Железо) до т-р плавления. При некоторых концентрациях углерода и легирующего материала сталь даже после медленного охлаждения имеет структуру закалки. Легирующие материалы, не образующие карбидов (напр., никель, кремний и медь), находятся в твердых растворах, карбидообразующие материалы (хром, марганец, молибден, вольфрам и др.) частично растворяются в железе, однако в основном входят в состав карбидной фазы и при больших концентрациях сами образуют карбиды (напр.. [c.681]


    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Выполнение определения содержания хро-ма в присутствии ванадия. Навеску металла от 0,1 до 2 г (в зависимости от содержания хрома) растворяют в конической колбе емкостью 500 мл простые стали—в 50 мл серной кислоты 1 4 стали, содержащие вольфрам и ниобий — в смеси, состоящей из 10 мл серной кислоты (пл. 1,84), 5—7 мл фосфорной кислоты (пл. 1,7) и 40 мл воды сплавы на основе никеля растворяют в 40 мл царской водки. Растворение сначала идет на холоду, а потом при подогревании на песчаной бане. После полного растворения навески к раствору добавляют по каплям 3—4 жл азотной кислоты (пл. 1,4) для разрушения карбидов и окисления железа. Раствор кипятят до удаления окислов азота без соляной кислоты и до начала выделения паров SO3 в присутствии соляной кислоты. В сталях, содержащих большое количество карбидов, раствор лучше вначале выпарить до появления паров SO3, а затем разрушить карбиды азотной кислотой, после чего раствор вновь упарить до появления паров SO3. [c.332]

    Пластичность металла определяется способностью металла не разрушаясь деформироваться так, что деформации остаются и после окончания действия нагрузки. Пластичность металлов имеет очень большое практическое значение. Благодаря этому свойству металлы поддаются ковке, прокатке, вытягиванию в проволоку (волочению), штамповке. Смещение заполненных атомами металла плоскостей в кристалле в определенных пределах не приводит к разрушению металлической связи. Механизм образования смещений связан с появлением и движением дислокаций. Хрупкими определенное время считались титан, вольфрам, хром, молибден, тантал, висмут, цирконий. Очищенные от примесей эти металлы — высокопластичные материалы, которые можно ковать, прессовать, прокатывать. В табл. 11.3 приведены значения относительного удлинения некоторых металлов, характеризующего их пластичность. [c.324]

    Определению бора с куркумином мешают такие элементы как железо, молибден, вольфрам и ряд других, реагирующих в тех же условиях с куркумином с образованием подобного цвета комплексов. Мешают этой реакции также окислители, подвергающие куркумин окислению ГФ X допускает в препарате содержание примесей кальция, железа, тяжелых металлов, мышьяка, сульфатов в количестве, не превышающем эталоны. Чистая борная кислота должна полностью растворяться в горячей воде и спирте. [c.109]

    Тиогликолевая кислота образует с тяжелыми металлами внутрикомплексные окрашенные соединения. В кислой среде золото, серебро и медь дают устойчивые желтые комплексы. В аммиачной или слабокислой среде образуют комплексы молибден (VI), вольфрам (VI), уран (VI), никель (II), кобальт (II), висмут (III), железо (III) и марганец (II). Применяется для фотометрического определения железа (III) как добавка при определении олова (II) с дитиолом, а также для определения молибдена (VI) и рения (VII). [c.208]


    Приведенные на рис. 1 результаты показывают, что ряд ионов, например, церий (IV), теллур (VI) и вольфрам (VI), сорбируются в количествах, в 2—2,4 раза превышающих величину ПОЕ анионита. Это свидетельствует о том, что анионитом сорбируются определенные комплексы этих металлов. Используя представления (9, 10], можно, к примеру, рассчитать состав сорбированных комплексов церия (IV). В связи с тем, что ионообменные реакции эквивалентны, количество сорбированных ионов (А) в мг-экв незакомплексованных ионов (Се =") во столько раз превышает число мг-экв обменных групп, занятых комплексами (Г), во сколько раз заряд иона металла (Z = 4) превышает заряд комплексного иона, приходящегося на один атом металла в комплексе (Zi). Отсюда можно составить соотношение  [c.144]

    В чугуне углерода содержится до 1,7% и более, в стали— от 0,3%) до 1,7%), а в ковком железе — менее 0,3%. Однако существуют специальные так называемые легированные стали, в состав которых, помимо железа и углерода, входят в определенных количествах хром, никель, вольфрам, молибден, ванадий, кобальт, титан и другие металлы. Введение тех или иных металлов в железо дает возможность получать стали с нужными свойствами (повышенной тугоплавкостью, прочностью, кислотостойкостью и т. д.). Так, хром повышает твердость стали и ее химическую стойкость никель увеличивает вязкость вольфрам сильно повышает твердость ванадий (0,2—0,5%) повышает твердость и вязкость молибден (0,15—0,25%) повышает упругость и улучшает свариваемость. [c.281]

    Последовательное определение других металлов. Потенциометрическим титрованием растворами солей хрома (И) можно раздельно определять ртуть (П) и висмут (П1) [481 ртуть (II) и железо (III) 48] селен (1У) и теллур (IV) [107] ванадий (У) и титан (1У) [12] вольфрам (У1) и хром (У1) [41]. [c.179]

    Амперометрическое определение кобальта в сталях титрованием раствором 1-нитрозо-2-нафтола [938, 1390]. Методика разработана для определения кобальта в сталях, содержащих вольфрам, ванадий и молибден. Сталь растворяют в соляной кислоте, прибавляют 2 г КСЮз и раствор нагревают до полного окисления двухвалентного железа и осаждения вольфрамовой кислоты. Железо и другие тяжелые металлы осаждают суспензией окиси цинка. Аликвотную часть фильтрата нейтрализуют уксусной кислотой по метиловому оранжевому, прибавляют [c.196]

    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и определяют количество металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием нерастворимого плотного осадка, пригодного для гравиметрического определения. Примером может служить окисление свинца(П) до диоксида свинца. Кроме того, в аналитической химии электролиз можно использовать для разделений ионов известен способ, когда легко восстанавливающиеся ионы металлов осаждаются на ртутном катоде, а трудно восстанавливающиеся катионы остаются в растворе. Таким способом алюминий, ванадий, титан, вольфрам, щелочные и щелочноземельные металлы можно отделить от железа, серебра, меди, кадмия, кобальта и никеля, которые выделяются на ртути. [c.413]

    Из рассмотренных примеров фотохимического комплексонометрического титрования отдельных катионов и их смесей видно, что фотохимическое титрование можно применять для определения катионов, которые сами не способны восстанавливаться под действием света. Это значит, что можно определять очень многие элементы, как те, которые могут фотохимически восстанавливаться или окисляться (элементы с переменной валентностью), например железо, медь, серебро, уран, молибден, вольфрам, рений, таллий, золото, ртуть, ванадий, хром, мышьяк и другие, так и элементы с постоянной валентностью, способные образовывать комплексные соединения и оказывать при этом ингибирующее или сенсибилизирующее действие на фотохимические реакции. К последней группе принадлежат практически все металлы, образующие двух-, трех- или четырехзарядные катионы. [c.40]

    Спектр вольфрама состоит из большого числа близко расположенных линий, поэтому для определения примесей в вольфраме применяют особые приемы внесения анализируемого образца в источник возбуждения, физическое или химическое концентрирование, либо приборы с высокой дисперсией. Вольфрам переводят в WOa [1147], смешивают с угольным порошком для перевода вольфрама в низколетучую форму. В зоне разряда происходит восстановление вольфрама до металла или образуются труднолетучие карбиды. В некоторых случаях перевод металлического вольфрама в окись осуш ествляется прямо в зоне разряда, причем, если проба была предварительно смешана с угольным порошком, одновременно происходит перевод окиси вольфрама в труднолетучие формы [965]. [c.120]

    Атомные оптические спектры возникают при электронных переходах в валентной оболочке. Периодичность наблюдается не только в спектрах атомов, но и в электронных спектрах ионов металлов в растворах. Способность вещества в растворе поглощать свет определенных длин волн является одним из свойств химической системы, связанным с энергетической характеристикой валентных электронов атомов. Наиболее четко периодичность наблюдается у переходных металлов больших периодов. В горизонтальном направлении с увеличением заряда ядра полосы поглощения смещаются в длинноволновую область спектра. При этом максимум достигается у элементов в конце переходного периода, а у элементов следуюш,его периода начинается вновь. Так, в ряду ниобий (V) — молибден (VI) — тех-нецкий (УП) максимум полос светопоглощения изменяется от 235 до 290 мм, а в ряду тантал (V) — вольфрам (VI) — рений (УП) — от менее 216 до 226 нм. [c.8]

    НИЯ, специфических для этого металла, судят о его концентрации в пробе [282]. Сводка данных о длине волн, соответствующих специфичным полосам поглощения некоторых металлов, а также 6 чувствительности определения последних помещены в табл. 34. Как показывает таблица, наибольшей чувствительностью обладает, метод атомно-абсорбционной спектроскопии в применении к анализу хрома и марганца. Большим числом специфических полос, помимо железа, характеризуются также вольфрам, титан и др. [c.132]

    Чаще всего металлические монокристаллы получают в виде брусков или стержней методами кристаллизации или вытягивания из расплава. Иногда выращивают кристаллы из газовой фазы (например, цинк) или применяют транспортную реакцию в газовой фазе (вольфрам из его гексахлорида [12]). Чтобы получить определенную грань, кристалл обычно разрезают или обрабатывают на станке. Минимальные структурные повреждения вызывают искровая эрозия и кислотный распил, после которых обычно проводят механическое и электрополирование. Режимы электрополирования описаны в литературе [13]. Вырезанные образцы чаще всего имеют вид пластины, фольги или диска, но только весьма тугоплавкие металлы достаточно прочны, чтобы изготовленные из них пластины толщиной менее 0,5 мм обладали необходимыми механическими свойствами. [c.122]

    Метод применим к определению серы в ряде металлов, чугунов, сталей и ферросплавов. Определению серы мешает вольфрам и избыток фосфат-ионов. [c.288]

    Это позволяет проводить реакцию окисления марганца практически до конца. Титрование ионов Мп проводят с применением биметаллической пары вольфрам—платина. Большинство элементов не мешает определению, мешает ванадий и сурьма. Метод достаточно точный, быстрый и применим для определения марганца в металлах и сплавах при содержании его от 0,1 до 95%. [c.328]

    Разработан быстрый и точный спектрофотометрический метод определения 2—30 мкг мл Мо при помощи азокрасителя солохромового фиолетового R [951. Мешают шестивалентный вольфрам и трехвалентное железо. Не мешают небольшие количества двухвалентного железа, получаемого восстановлением при помощи аскорбиновой кислоты, Th, Al, Zn, d, щелочные и щелочноземельные металлы, F , небольшие количества ионов S04 . Мешают большие количества окрашенных ионов (Си, Сг , Ni и т. д.). Очень сильно мешают ионы Р04 . Оптическую плотность растворов измеряют при 565 ммк (максимум светопоглощения) в кюветах с толщиной слоя 1 см относительно раствора красителя и друпих реагентов одинаковой концентра- [c.229]

    В [54] было установлено, что такие металлы V и VI групп периодической системы, как сурьма и вольфрам, непригодны в качестве катализаторов гидрирования окиси углерода, в то время как молибден обладает заметной активностью. Определенной активностью обладает элемент VII группы периодической системы — рений [56]. [c.122]

    Этот метод применим в присутствии меди, кобальта, никеля, марганца, цинка, магния и ртути. Хорошие результаты получаются также в присутствии щелочноземельных металлов, алюминия, урана и кадмия, если осаждение проводить медленным добавлением ацетата аммония к горячему солянокислому раствору молибдена, содержащему небольшой избыток свинца. Соли щелочных металлов не препятствуют определению, за исключением сульфатов, которые должны быть удалены в случае наличия в растворе щелочноземельных металлов. В отсутствие последних небольшие количества сульфатов, такие, какие могут образоваться при растворении сульфида молибдена, не оказывают влияния на осаждение. При наличии в растворе сульфатов и хлоридов следует избегать введения в раствор большого избытка свинца. Свободные минеральные кислоты и винная кислота препятствуют количественному осаждению молибдена, а железо, хром (П1), алюминий, ванадий, вольфрам и кремний, если присутствуют в значительных количествах, загрязняют осадок. Фосфор, хроматы и арсенаты должны отсутствовать. К элементам, мешающим определению, относятся также олово, титан и другие элементы, соли которых легко гидролизуются. [c.366]

    При определении вольфрам следует по возможности избегать сплавления анализируемого материала с карбонатом натрия, перекисью натрия или с пиросульфатами щелочных металлов, так как соли щелочных металлов препятствуют количественному выделению вольфрама кислотами и замедляют его осаждение цинхонином. Это, однако, не явлдется препятствием для применения такого сплавленИя, если оно проводится в качестве предварительной операции перед определением других содержащихся в минерале элементов, например железа (содержание которого определяют в остатке после выщелачивания карбонатного нлава водой). [c.765]

    Использование пламени закись азота — ацетилен сделало возможным определение других металлов, которые входят в состав сталей. Капачо-Дельгадо и Маннинг [154] определяли ванадий в стали и не обнаружили никаких помех от других металлов. При определении ванадия в диапазоне концентраций 0,02—0,05% наблюдалось хорошее совпадение результатов со стандартными значениями NBS. Маколиф [322] определял кремкий в различных типах сталей и чугуне, используя сталь одного типа в качестве эталона. По-видимому, помехи отсутствовали. Титан, цирконий и вольфрам также могут быть определены в пламени закись азота — ацетилен. [c.177]

    Особенно широко распространены визуальные анализы по методу гомологических пар, ставящие своей задачей определение марки металла. Эти анализы используются, например, для маркировки сталей, алюминиевых сплавов, латуней, бронз и т. д. Для их проведения разработана специальная аппаратура — стилоскоп (см. 24). Исследуемый металл в виде прутка, готового изделия, детали машины и т. д., включается в качестве одного из электродов дуги вторым электродом служит обычно при анализе сталей пругок углеродистой стали, при анализе бронз и латуней — пруток из электролитической меди, и т. д. Спектр дуги рассматривается с помощью стилоскопа и наблюдатель, оценивая интенсивность выбранных для анализа линий легирующих элементов по отношению к соседним линиям основного элемента, получает возможность оценить с помощью специальных таблиц примеров содержание каждого элемента в пробе. Совокупность анализов по зсем элементам позволяет определить марку металла. В качестве примера мы приводим на рис. 169 вид одной из групп линий, используемых при анализе на хрой и вольфрам. [c.174]

    Ласснер и Шарф изучали, как мешает вольфрам определению других металлов. Особенный интерес представляет изучение влияния W на титрование Мо. Маскирование W винной кислотой [59 (3)] проходит успешно, так как тартрат-ион не мешает титрованию определяемых металлов. Следует упомянуть данные [61 (139)], указывающие, что комплекс ДЦТА с W, по-видимому, менее прочен, чем комплекс ЭДТА. Поэтому авторы рекомендуют применять первый комплексон в качестве титранта при титровании других металлов, при этом отпадает необходимость маскировать вольфрам. В качестве индикатора при прямых титрованиях используют систему Си—ПАН —ДЦТА, а при обратном титровании раствор меди с ПАН. [c.226]

    В ЭТОМ случае используют амфотерную природу некоторых металлов, таких, как цинк, алюминий, молибден, вольфрам и сурьма эти металлы, извлеченные из раствора катиоиообменной смолой, могут быть затем вытеснены из нее промывкой щелочью. Другие металлы, которые образуют нерастворимые гидроокиси, конечно, остаются на смоле. Некоторые исследователи, применившие этот метод, заявляют, что добились очень хорошего отделения молибдена и вольфрама от железа и алюминия от железа. Однако к этим сообщениям нужно относиться осторожно, так как другие исследователи получали неудовлетворительные разделения. Сейчас, конечно, слишком рано приходить к определенным выводам, но если сам принцип правилен, то, несомненно, кажущиеся расхождения в результатах найдут себе объяснение. [c.74]

    Для разложения вольфрамовых руд с низким содержанием вольфрама, а также при определении вольфрама в касситерите применяют сплавление пробы с едким натром и последуюшее выщелачивание плава водой. При этом вольфрам в виде растворимого вольфрамата натрия переходит в раствор, в котором можно определить концентрацию вольфрама фотометрическим методом. Для минералов с высоким содержанием вольфрама такой способ разложения обычно не применяют, так как ионы щелочных металлов препятствуют последующему гидролитическому выделению вольфрамовой кислоты. [c.170]

    Данные, используемые для расчета изменения площади крити ческого сечения сопла, как правило, получаются из детальног) анализа процессов теплообмена и подкрепляются огневыми испытаниями на модельных двигателях, используемых для определения баллистических свойств ТРТ. Например, в двигателе с временем горения 55 с эффекту разгара сопла были приписаны потери импульса /уд.действ до 2,5%. Такие потери связаны с уменьшением степени расширения потока и увеличением шероховатости поверхности сопла. Чтобы проверить теоретические результаты или получить исходные данные для детального анализа процессов теплообмена, проводятся испытания модельных сопел. В таких опытах используются те же ТРТ и, следовательно, те же газовые компоненты, а давление в камере и расходы соответствуют значениям, ожидаемым в полноразмерных РДТТ. Площадь критического сечения может и уменьшаться при работе двигателя, если в качестве материала вставок используются вольфрам или молибден (эти материалы могут расширяться при продолжительном нагревании), либо на стенку горловины сопла осаждается слой из оксидов металлов. [c.113]

    Наряду с графитовыми, применяются также трубчатые атомизаторы, изготовленные из фольги тугоплавких металлов. Чаще всего для этой цели применяют молибден и вольфрам. Типичные размеры таких атомизаторов внутренний диаметр 1,5-2 мм, длина 20-25 мм. Главная область применения металлических трубчатых атомизаторов — определение элементов, склонных к карбидообразованию (если только углерод не содержится в самой анализируемой пробе). Основное преимущество — возможность быстрого нагрева атомизатора (до 10 ООО град/с), что позво тяет получать сигналы поглощения в виде очень узких (по времени) резких пиков. Однако повышение чувствительности измерений в данном случае неизбежно связано с ухудшением точности измерений. Кроме того, большинство существующих спектрофотометров не обладает быстродействием, необходимым для работы с такими атомизаторами. [c.842]

    Описано много капиллярных натекателей, в которых регулирование потока осуществляется изменением разности температур между двумя частями устройства [833] или благодаря различным температурным коэффициентам расширения материалов натекателя. Использовались следующие пары материалов вольфрам и латунь [1845], платина и стекло [1316], стекло и металл [666, 1474], вольфрам и нержавеющая сталь [785]. Некоторые из этих натекателей могут быть совершенно закрыты при определенной температуре, что исключает необходимость в вентиле в системе напуска. В других типах натекателей в качестве регулирующего фактора используется удлинение проволоки при нагревании [647]. Изменение скорости натекания осуществляется также изменением частей натекателя [976, 1458]. Нир изменял скорость натекания, используя в качестве натекателя зазор между цилиндрическим стержнем и стенками цилиндрической трубки, в которую помещался стержень величина зазора изменялась парой зажимов вокруг трубки [1504]. Фон Убиш [2064] пользовался для юстировки зажимом на сплющенной части инъекционной иглы из нержавеющей стали, играющей роль натекателя. [c.143]

    Комнлексообразующее действие комплексона III успешно используется в аналитической практике для устранения-влияния посторонних элементов. Так, нанример, способность двух- и трехвалентных металлов образовывать прочные комплексные соединения с комплексоном III дает возможность осаждать уран и титан а также и бериллий (который в отличие от большинства двухвалентных металлов не образует комплексных соединений с комплексоном III) аммиаком в присутствии многих элементов, в том числе алюминия и железа, что имеет весьма важное практическое значение. Описано также применение комплексона III при определении вольфрама и молибдена осаждением оксихинолином в ацетатной среде. Установлено, что в этих условиях осаждаются только молибден, вольфрам, уран и ванадий (V) [c.158]

    Помимо приведенных выше, известен еще ряд методов определения молибдена, но они большого интереса не представляют, хотя некоторые из них, как, например, метод осаждения нитратом ртути (I) из почти нейтрального карбонатного раствора, дают весьма точные результаты при анализе чистых растворов молибдена. Нитратом ртути (I) осаждаются также хром, ванадий, молибден, вольфрам, фосфор и мышьяк, и эта реакция в отдельных случаях примейяется лишь для предварительного выделения молибдена из карбонатных растворов, получаемых в результате выщелачивания водой плава породы с карбонатами щелочных металлов [c.370]


Смотреть страницы где упоминается термин Определение вольфрама металлах: [c.738]    [c.153]    [c.20]    [c.139]    [c.111]    [c.116]    [c.56]    [c.56]    [c.132]    [c.426]    [c.352]    [c.352]    [c.169]    [c.137]    [c.669]   
Аналитическая химия вольфрама (1976) -- [ c.114 , c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам ОЦК-металлы

Определение свинца в меди, никеле, кадмии, кобальте, цинке, молибдене, вольфраме, реактивных солях этих металлов, в сплавах— медных, никелевых, цинковых и др

Определение суммы щелочных и щелочноземельных металлов в вольфраме с применением высоковольтного электродиализатора



© 2024 chem21.info Реклама на сайте