Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ван-дер-Ваальса взаимодействия структура

    При переходе вниз по группе температуры и энтальпии плавления и кипения простых веществ возрастают, что объясняется усилением межмолекулярных взаимодействий (силы Ван-дер-Ваальса) в структурах кристаллической и жидкой фаз при увеличении массы и размера атома. Энтропии плавления благородных газов почти не изменяются, но энтропии испарения (при температуре кипения) возрастают при переходе вниз по группе, что также свидетельствует об усилении межмолекулярных взаимодействий. [c.13]


    В базисной плоскости соседние атомы углерода удерживаются химическими связями, а сами плоскости образуют кристаллиты, связанные силами Ван-дер-Ваальса. Такая структура обусловливает анизотропию свойств графита. Электропроводность, сжимаемость-, тепловые свойства, способность к взаимодействию с различными химическими реагентами и другие свойства значительно зависят от направления воздействия на слои графита. [c.215]

    В веществах с молекулярной структурой проявляется межмолекулярное взаимодействие. Силы межмолекулярного взаимодействия, называемые также силами Ван-дер-Ваальса, слабее сил, приводящих к образованию ковалентной связи, ио проявляются они на больших расстояниях, В их основе лежит-электростатическое взаимодействие молекулярных диполей. [c.71]

    Молекулы веществ, находящиеся в твердом, жидком и газообразном состоянии, взаимодействуют друг с другом с разными по энергии силами — силы Ван-дер-Ваальса, водородная связь, химическая связь и др. Такое взаимодействие определяет конденсированное состояние вещества. Эти силы приводят к появлению в жидкостях и газах сольватов и ассоциатов, обусловливают диссоциацию молекул и других частиц в любых агрегатных состояниях вещества, они же характеризуют появление структуры (полиэдры, ансамбли полиэдров или кластеры) в веществе в разных его агрегатных состояниях, определяя аморфную или кристаллическую структуру. Межмолекулярное взаимодействие частиц в системе приводит к отклонению их свойств от идеальных. Такие системы называют неидеальными или реальными. Свойства индивидуальных реальных систем (веществ в чистом виде) могут быть рассчитаны с помощью уравнений состояния вещества. Этих уравнений в литературе приведено несколько сотен. Свойства же смесей расчету пй уравнениям состоянию не поддаются. Это определяется сложностью изменения свойств смесей с изменением их состава. [c.220]

    Высвобождение из комплекса при его дроблении некоторой части входящих В него молекул также подтверждает физическую природу комплексообразования. Некоторые исследователи [5, 15] считают, что взаимодействие карбамида с н-алканами аналогично взаимодействию их с цеолитами. Однако точка зрения на структуру комплекса как на физическое явление не подтверждается величиной энергии связи углеводорода с карбамидом, приходящейся на каждую группу СН2. Установлено [I, 15], что она равна 6,7 - 11,76 кДж, в то время как силы Ван-дер-Ваальса равны всего 4,19 кДж на каждую СН2. Другие исследователи [25, 2б] относят кристаллические комплексы углеводородов и их производных с карбамидом к чисто химическим соединениям, поскольку реакция комплексообразования подчиняется общим законам течения химических реакций, в частности закону действующих масс. Изменение условий комплексообразования оказывает влияние на равновесие, скорость образования комплекса, эффективность разделения и на другие пока- [c.36]


    На первой стадии (слабые взаимодействия) надмолекулярные структуры (центры кристаллизации) формируются за счет сил Ван-дер-Ваальса. В зависимости от природы ВМС нефти и величины сил взаимодействия молекул для каждого вида ВМС образуется свой тип надмолекулярных структур, обладающих определенными физико-химическими свойствами (асфальтеновый, парафиновый и другие ассоциаты). Парафиновые надмолекулярные структуры при повышении температуры дезагрегируются полностью или подвергаются одновременно дезагрегированию и химическому разрушению. Асфальтеновые ассоциаты с повышением температуры склонны к физическому и далее к химическому агрегированию. [c.158]

    Описанная структура полимера ведет себя подобно коагуляционной структуре. Сходство в поведении этих структур заключается в том, что для них характерны химические связи внутри частиц и на порядок меньше межчастичные взаимодействия. С увеличением полярности макромолекул уменьшается их гибкость, а для межмолекулярных взаимодействий становятся характерными все три типа сил Ван-дер-Ваальса. Наличие таких функциональных групп, как 0Н, —СООН, —ЫНг, обусловливает возникновение более прочных водородных связей. С ростом межмолекулярного притяжения полимер превращается в более твердое, менее эластичное и даже хрупкое вещество, теряющее плавкость и растворимость. Полимеры с химическими связями между макромолекулам (пространственные) нерастворимы и неплавки при нагревании. По свойствам они соответствуют конденсационным структурам. [c.391]

    Низкотемпературные агрегативные комбинации наблюдаются при низких температурах, когда преимущественно на физическом уровне взаимодействуют надмолекулярные структуры, включающие парафиновые и асфальтеновые фрагменты. При понижении температуры межмолекулярные взаимодействия обусловлены силами Ван-дер-Ваальса. Формируются обратимые низкотемпературные комбинации высокомолекулярных соединений нефти — парафиновых, ароматических углеводородов, смол, асфальтенов. [c.52]

    В молекулярных кристаллах (рис. 1.9, г) присутствуют молекулы, связь между которыми осуществляется силами межмолекулярного взаимодействия, называемыми силами Ван-дер-Ваальса (см. разд. 1.10). Силы эти гораздо слабее сил, рассмотренных ранее, и энергия связи в решетке молекулярного типа составляет всего лишь 8—12 кДж/моль. Тела с такой структурой обычно очень мягкие, обладают низкой температурой плавления, высокой летучестью, низкими тепло- и электропроводностями, а также хорошей растворимостью, особенно в родственных растворителях. В качестве представителей веществ, образующих кристаллы молекулярного типа, можно назвать диоксид углерода, аргон и большинство органических соединений. [c.37]

    Высокая упорядоченность расположения молекул многих жидкостей, например воды, фтороводорода, аммиака и спирта не может быть объяснена только действием сил Ван-дер-Ваальса. Для объяснения структуры жидкости используется представление о водородной связи. Образование этой связи обусловлено тем, что электронная орбиталь атома водорода имеет сферическую симметрию и формирует одну связь в результате перекрывания с орбиталью другого атома, при этом у атома водорода остаются возможности для взаимодействия с другими атомами и образуется водородная связь. [c.74]

    Взаимодействие между частицами, приводящее к образованию полимерных молекул и структур. Так, в результате действия сил Ван-дер-Ваальса между атомами благородных газов или между молекулами О2, N2, СЬ и другими эти вещества могут существовать в жидком состоянии. Энергия этих взаимодействий может достигать 20 кДж/моль. [c.120]

    Взаимодействие между образовавшимися молекулами в конечном итоге приводит к образованию фаз (см. 1.7, 2.1), которые в зависимости от агрегатного состояния, состава и структуры веществ обладают определенными индивидуальными свойствами. Для объяснения свойств реальных газов Ван-дер-Ваальс впервые (1873) стал учитывать их возможное межмолекулярное взаимодействие (см. 1.9). Межмолекулярные силы поэтому называют обычно силами Ван-дер-Ваальса. Природа этих сил определяется электростатическим взаимодействием диполей (см. 5.4), механизм возникновения которых для разных веществ индивидуален. [c.125]

    Очевидно, при полном развитии адсорбционных пленок и гидратных оболочек структура массы приобретает наиболее ярко выраженные механические свойства предельно концентрированных суспензий. В массе полностью завершается процесс самопроизвольного диспергирования. Число контактов, по которым действуют силы Ван дер Ваальса, молекулярно взаимодействуя между частичками, достигает своего максимального значения. Одновременно полное развитие гидратных оболочек улучшает деформационные свойства массы. [c.240]

    Степень протекания химических сольватационных процессов зависит от электронной структуры молекул и частиц компонентов растворителя и растворенного вещества, способности частиц к ком-плексообразованию, диссоциации, ассоциации, образованию ионных пар и т. д. При сольватационных близкодействующих взаимодействиях их энергия достигает 400 кДж/моль. К дальнодействующим силам взаимодействий относят электростатические взаимодействия между ионами, металлическую связь и силы Ван-дер-Ваальса. Молекулы растворителя ориентируются в структуры различной устойчивости вокруг растворенных частиц с образованием сольватных оболочек. Число частиц растворителя в первой сольватной оболочке определяют как координационное число сольватации (гидратации) Пс- Значение Пс в водных растворах достигает 6—8. [c.91]


    Сжиженные инертные газы неон, аргон, криптон и ксенон являются простейшими по своим свойствам и типу межатомного взаимодействия жидкостями. Интерес к изучению их структуры связан с необходимостью дальнейшего развития теории жидкого состояния. Для этих веществ теоретические расчеты физических величин можно сделать более количественными, чем для других жидкостей. Притяжение атомов у сжиженных инертных газов описывается дисперсионными силами Ван-дер-Ваальса. Эти силы имеют квантовую природу. Своим существованием они обязаны нулевой колебательной энергии атомов. Не будь ее, нельзя было бы осуществить сжижение инертных газов, не существовало бы в природе парафинов, полимеров и многих других веществ с неполярными молекулами. Предпосылкой для появления дисперсионных сил является динамическая поляризуемость атомов и молекул, возникновение у них мгновенных диполей благодаря вращению электронов вокруг ядра. Электрическое поле такого диполя одной молекулы индуцирует дипольный момент в окружающих молекулах, что и приводит к появлению сил притяжения. [c.152]

    Все эти изменения являются результатом возникновения контактов между двумя глинистыми минералами, наглядно демонстрируя основную закономерность образования их коагуляционных структур, которая может быть сформулирована следующим образом. При соударениях глинистых частичек в пространственный каркас силами Ван-дер-Ваальса — Лондона связываются наиболее эффективные в данных условиях контактные участки, т. е. происходит избирательное образование контактов. Ими могут быть наиболее прочные контакты типов угол — угол, ребро — ребро и их производные, максимально вытесняющие водную прослойку из зазора, если устойчивость суспензии зависит от прочности ее структуры, или наиболее эластичные, когда силы взаимодействия связывают между собой плоскости и грани кристалликов через более толстые гидратные оболочки, если устойчивость суспензии определяется ее эластическими свойствами. [c.25]

    Заканчивая изложение материала о соединениях с не-валентными связями, следует отметить, что слабые взаимодействия атомов и молекул в отличие от валентных имеют место в любых химических соединениях между любыми частицами, расположенными достаточно близко друг к другу. Это обстоятельство заставляет учитывать силы Ван-дер-Ваальса во всех случаях, когда необходим достаточно строгий расчет энергии химической связи в молекулах, жидкостях и кристаллических структурах. [c.359]

    Считают, что на прочность и развитие вторичной структуры оказывают значительное влияние функциональные группы, образующиеся на поверхности сажевых частиц, содержащих водород и кислород. Взаимодействие функциональных групп может приводить к образованию водородных связей между частицами, более прочных, чем силы взаимодействия Ван-дер-Ваальса. В настоящее время установлено, что эти функциональные группы играют важную роль во взаимодействии сажи с каучуком. Вторичная структура сажи сильно разрушается при смешении, но в отличие от первичной структуры она может восстанавливаться при смешении и вулканизации, а также при < отдыхе резиновых смесей и вулканизатов. [c.159]

    Межмолекулярные взаимодействия склонных к структурированию ВМС приводят к образованию пространственных надмолекулярных структур, состоящих из множества макромолекул. В зависимости от характера связей надмолекулярные структуры делят на физические ассоциаты, в которых действуют силы Ван-дер-Ваальса, и на физико-химические комплексы с более прочными химическими связями. Физические ассоциаты способны при определенных условиях переходить в комплексы (кристаллиты). Число мак- [c.11]

    Глобула формируется слабыми взаимодействиями — силами Ван-дер-Ваальса (см. 4.3), водородными связями (см. 4.4), электростатическим притяжением противоположно заряженных ионогенных групп (солевые связи). Особое значение имеют гидрофобные взаимодействия, рассматриваемые далее подробно. Сложная игра всех этих сил приводит к образованию плотной глобулы с устойчивой регулярной структурой в водном растворе при физиологических значениях pH и ионной силы. Для образования глобулы существенны как энергетические, так и энтропийные факторы. Если участки полипептидной цепи обладают достаточной жесткостью (например, а-спиральные участки), то образование элементов компактной структуры возможно и в отсутствие энергетических взаимодействий. Эта ситуация была рассмотрена Флори [75] применительно к взаимодействию цепей [c.221]

    В зависимости от того, является ли изменение свойств полимера под воздействием влаги обратимым пли необратимым после удаления влаги из материала, зюздействие воды на полимер определяют как физическое или химическое. Необратимые изменения свойств материала при химическом воздействии соировоя даются изменением химической структуры полимера. Физическое воздействие вызывает обратимые изменения свойств полимера при этом физическое воздействие может быть как поверхностным, так и объемным. Следствием проникновения воды в полимер в процессе объемной диффузии при обратимом воздействин является уменьшение взаимодействия мегкду макромолекулами, связанными друг с другом силами Ван-дер-Ваальса, что, в свою очередь, снижает прочность материала, увеличивает гибкость макромолекулярных цепей, в результате чего снижается температура стеклования и температура хрупкости, создаются условия для ускоренного протекания релаксационных процессов. [c.73]

    Упорядоченная структура белка обеспечивается системой взаимо действий, составляющих третичную структуру молекулы. К этой системе относятся взаимодействия между фрагментами молекулы за счет сил Ван дер Ваальса, агломерация лиофобных боковых цепей при отталкивании молекул растворителя, нехарактерные водородные связи, межконные взаимодействия (рис. 21). Энергия каждой из этих сил невелика, однако их суммарное действие значительно. Так, энергия вандерваальсовского взаимодействия, приводящего к глобулярному свертыванию белковой молекулы, достигает 2100 — 2500 кДж/моль. [c.172]

    По ряду основных признаков физическая адсорбция имеет определенное схо,1ство с конденсацией газов (паров) обратимость и сравнительно большая скорость достижения равновесия, близкие энтальпии процессов. Это объясняется общностью природы межмо-лекулярных взаимодействий, приводящих к конденсации и к физической адсорбции — в обоих случаях главную роль играют нековалентные по природе силы Ван-дер-Ваальса и в некоторых случаях— водородные связи. Природа этих сил определяет еще одну очень важную особенность физической адсорбции — неспецифич-ность. Один и тот же газ практически одинаково адсорбируется на поверхности различных веществ, при этом он практически никак не влияет на структуру поверхностного слоя твердого адсорбента, а сами молекулы адсорбата сохраняют свою индивидуальность и десорбируются неизменными. [c.317]

    Свойства полимеров определяются не только гибкостью макромолекул, но и их взаимным расположением, т. е. структурой. Для полимерных веществ с линейными и разветвленными макромолекулами характерны два типа связей. Между атомами в цепных молекулах действуют прочные ковалентные химические связи длиной 0,1 0,15 нм. Взаимодействие между цепными молекулами осуществляется за счет сил Ван-дер-Ваальса, проявляющихся на расстоянии 0,3 0,4 нм. Иногда между макромолекулами возникают и водородные связи. Энергия межмолекулярного взаимодействия на 1—2 порядка меньше энергии химической связи. Например, энергия химической связи С—Н (в углеводородах) составляет 415, С—С-связи — 332 кДж/моль, а энергия взаимодействия между молекулами углеводородов — приблизительно 4,18кДжна группу СНз.При увеличении молекулярной массы вещества (например, у полимеров) суммарный эффект межмолекулярных сил резко возрастает. [c.327]

    Убедительным примером применимости теории регулирования механических свойств дисперсных структур могут быть водные гели и органогели гуминовых веществ — природных ионсобменников и структурообразователей почв. Так, структурно-механический анализ дисперсий гуминовых кислот и полученных на их основе гуматов кальция, магния и кобальта показал, что в этих системах при малом содержании твердой фазы (5—10%) образуются типичные коагуляционные структуры со всеми присущими им упруго-пластично-вязкими свойствами и способностью к тиксотропному упрочнению. Установлено, что наибольшая склонность к структурообразованию среди образцов гуминовых веществ (гуминовые кислоты, гуматы металлов) выражена у гуминовых кислот, о объясняется тем, что в гуминовых кислотах, в отличие от гуматов кальция, магния, кобальта и др., функциональные группы свободны , а поэтому их дисперсные частички легко взаимодействуют друг с другом не только за счет сил Ван дер Ваальса, но и по водородным связям. [c.253]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    При магнитной обработке водных сред, по мнению А. X. Мир-заджанзаде, С. Н. Колокольцева, А. Л. Бучаченко, Р. 3. Сагдеева, К. М. Салихова, сравниться с энергией теплового движения и упорядочить внутреннюю структуру могут только структурные химические связи, которые характеризуются взаимодействием двух или нескольких атомов. Они обусловливают образование устойчивой многоатомной системы и сопровождаются существенной перестройкой электронных оболочек связывающих атомов. При этом необходимо учитывать динамику процесса, ведь все электронные орбиты, составляющие оболочку, непрерывно совершают колебательные движения. Чтобы существовала устойчивая и стабильная связь атомов, необходима определенная корреляция в движении электронов, то есть колебания электронных орбит взаимодействующих атомов должны быть синхронны. Синхронность колебаний электронов в атомах свидетельствует о наличии дисперсионного взаимодействия между атомами. Дисперсионные силы имеют электромагнитную и квантовую природу и являются одной из разновидностей межмолекулярного взаимодействия, называемого силами Ван-дер-Ваальса. Дисперсионные силы возникают в результате колебаний электронов соседних атомов или молекул в одинаковой фазе, при этом взаимное притяжение приводит к сближению этих атомов или молекул и образованию между ними связи. [c.36]

    В структурах некоторых молекул можно заметить удивительное постоянство так называемых 1,3-контактов. Символ 1,3>< означает, что взаимодействие относится к двум атомам в молекуле, разделенным третьим атомом. Приближенное равенство таких расстоя1шй между валентно-несвязанными атомами в молекуле ОКРз -особый случай. Обычно же наблюдается постоянство определенных 1,3-расстояний в последовательности родственных молекул. Существенно и то, что такое постоянство 1,3-расстояний может сопровождаться значительными изменениями длин связей и валентных углов внутри рассматриваемой тройки атомов. Внутримолекулярные 1,3-взаимодействия были также вызваны внутримолекулярными взаимодействиями Ван-дер-Ваальса, для которых Бартелл [53] по аналогии постулативно ввел систему внутримолекулярных 1,3-радиусов. Эти 1,3-радиусы для валентно-не-связанных атомов по величине занимают промежуточное положение между соответствующими ковалентными и традиционными вандерва-альсовыми радиусами для некоторых элементов эти данные приведены в табл. 3-5. [c.138]

    П. образуются и разрушаются в узких интервалах изменения внеш. условий-т-ры, состава р-рителя, pH, ионной силы р-ра и др., т.е. р-ции носят ярко выраженный кооперативный характер. Изменение внеш. условий сопровождается смещением равновесия, при этом изменяется соотношение между структурами а тл 6. Именно благодаря кооперативному взаимод. между макромолекулами П. оказываются весьма устойчивыми соед. даже в тех случаях, когда своб. энергия взаимодействия отдельных звеньев комплементарных цепей мала (всего неск. десятков Дж/моль). Так, известны П. (стереокомплексы), образованные цепями изо- и синдиотактич. полиметилметакрилатов, к-рые удерживаются силами Ван-дер-Ваальса, П., стабилизированные межмол. водородными связями и (или) гидрофобными взаимод.. П., в к-рых полиионы противоположного знака заряда соединены ионными связями (т. наз. полимер-полимерные соли, или полиэлектролитные комплексы). [c.14]

    Теоретические исследования жидкого состояния посвящены в основном различным проявлениям межмолекулярных сил к сожалению, существующие теории жидкого состояния настолько сложны, что из них нельзя извлечь модельного представления о структуре жидкостей. Одним из немногих эффективных представлений о жидком состоянии, позволяющим объяснить различные его свойства, является так называемый свободный объем. Это представление может быть использовано также и для рассмотрения структурных особенностей других агрегатных состояний вещества. Например, в применении к газам свободный объем может рассматриваться как объем, не занятый молекулами, что соответствует члену V— Ь в уравнении Ван-дер-Ваальса. При сжатии газа его свободный объем уменьшается в соответствии с законом Бойля — Мариотта. Хотя плотность жидкости намного больше плотности газа, в ней сохраняется предположительно 3% свободного объема. При повьш1ении температуры жидкости кинетическая энергия ее молекул увеличивается, и это приводит к ее расширению в результате возрастания свободного объема. Увеличение объема сопровождается увеличением среднего расстояния между молекулами и, следовательно, уменьшением сил межмолекулярного взаимодействия. Подвергая жидкость постепенно увеличивающемуся сжатию, можно уменьшить ее первоначальный объем до 97%. Для дальнейшего уменьшения объема жидкости требуются гораздо большие давления (рис. 11.2). [c.188]

    Среди факторов, в значительной степени определяюших физикохимические и технологические свойства нефтяных дисперсных систем, особое место занимают размер и структура дисперсных частиц (в литературе они называются сложными структурными единицами, ассоциатами, везикулами, неоднородностями, флуктуациями и пр.). Механизм и кинетика процессов, приводящих к образованию и преврашению этих частиц, зависят от межмолекулярных взаимодействий в системе (сила Ван-дер-Ваальса, водородные связи, химические взаимодействия и пр.). Регулируя межмолекулярные взаимодействия (через размеры и Сфуктуру дисперсных частиц), можно управлять свойствами нефтяных дисперсных систем. [c.162]

    Введение чужих молекул в любые жидкости должно сопровождаться нарушением синхронизации колебаний электронов в атомах, определяющих дисперсионное взаимодействие Лондона. Однако радиус действия сил Лондона определяется величиной обратно пропорциональной шестой степени межмолекулярного расстояния и сравнительно невелик. В связи с этим существенные нарушения структуры растворителя будут иметь место, когда средние расстояния между молекулами растворяемого вещества будут порядка радиуса действия сил Ван-дер-Ваальса. При этих расстояниях, однако, сами растворенные молекулы уже начинают взаимодействовать друг с другом, так как радиусы Ван-дер-Ваальса для разных неполярных молекул мало отличаются друг от друга по порядку величины. Таким образом, в таких растворах нарушение дисперсионного взаимодействия растворителя растворенными молекулами и установление дисперсионого взаимодействия растворенных молекул между собой через растворитель как среду осуществляются приблизительно при одних и тех же концентрациях молекул. [c.92]

    Силы Ван-дер-Ваальса определяют характер взаимодействия поверхностей трения с химически инертными компонентами смазочной среды, т. е. адсорбционный эффект. Они определяют структуру и свойства граничных смазочных пленок на поверхностях трения. Особенностью взаимодействия сил Ван-дер-Ваальса является слабая энергия связи, которая на два-три порядка ниже энергии химических связей. Поэтому все структуры, обусловленные этой связью, малоустойчивы и имеют сравнительно низкие температуры плавлсг ния. [c.9]


Смотреть страницы где упоминается термин Ван-дер-Ваальса взаимодействия структура: [c.37]    [c.75]    [c.127]    [c.212]    [c.161]    [c.176]    [c.342]    [c.485]    [c.37]    [c.37]    [c.43]    [c.81]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.151 , c.215 , c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Ваальса

Ван-дер-Ваальса взаимодействия кристаллическая структура

РНК взаимодействие структура



© 2025 chem21.info Реклама на сайте