Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы электрохимические и физико-химические

    Закономерности электрохимической кинетики, т. е. кинетики процессов. протекающих на границе фаз электрод — электролит, изучают в целях совершенствования и интенсификации электролиза, установления оптимальных условий электрохимического получения чистых продуктов электродных реакций — химических веществ, ряда цветных, легких, благородных, редких металлов и сплавов. Эти исследования способствуют предотвращению коррозионного разрушения металлоконструкций, использованию наиболее эффективных методов электрохимической защиты изделий, осуществлению оригинальных электрохимических, физико-химических, аналитических методов изучения продуктов реакций и т. п. [c.18]


    Как известно, ЭХГ включает в себя батарею ТЭ, системы подготовки и подачи топлива и окислителя, отвода продуктов реакции и тепла. В целом ЭХГ является очень сложной системой, в которой наряду с электрохимическими, физико-химическими и химическими процессами имеют место процессы переноса заряда, массы и тепла. При разработке ЭХГ наряду с электрохимическими проблемами возникают проблемы тепло- и массо-обмена, гидравлики, электротехники, управления, надежности и другие. Обшая теория ЭХГ даже применительно к конкретным энергоустановкам не разработана. Имеются экспериментальные и теоретические работы, посвященные проблемам отвода продуктов реакции, терморегулирования и т. п. Одиако анализ и рассмотрение этих работ выходят за рамки настоящей книги. Здесь приводится краткое описание систем ЭХГ и некоторые расчеты ЭХГ, основанные, в основном, на законах электрохимии. Подготовка и подача реагентов рассмотрены ранее. [c.57]

    Несмотря на большое разнообразие химических производств, большинство процессов химической переработки сырья и полупродуктов производства осуществляется а) методами термической обработки исходных материалов (обжиг, плавка, крекинг, термическое разложение и т. п.), б) каталитическим путем (синтез, контактное окисление и т. п.), в) электрохимическим путем (электролиз растворов и расплавленных солей), г) физико-химическими методами (выщелачивание и кристаллизация, сжижение и ректификация, экстрагирование и перегонка и т. п.), д) сочетанием одного из указанных методов с другим (каталитический крекинг, гидрирование жидкого топлива и полимеризация и т. п.). [c.263]

    Применение смазочных материалов с высокой химической активностью способствует образованию вторичных структур, благоприятствует появлению хемо-механического эффекта, выражающегося в изменении физико-химических свойств и тонкой структуры твердого тела под влиянием химических (электрохимических) реакций, протекающих на его поверхности. В процессе этих реакций образуется дополнительный поток дислокаций. [c.249]

    Электрическая энергия, вырабатываемая элементом (или цепью элементов), равна полезной работе А суммарного процесса, протекающего в элементе, который мы рассматриваем как термодинамическую систему. Полезная работа Л, процесса максимальна н равна убыли изобарного потенциала системы —AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и др.), протекающими обратимо. В том случае, когда процесс является обратимым, можно, заставляя элемент работать при почти полной компенсации его э.д.с. внешней разностью потенциалов, т. е. заставляя его находиться бесконечно близко к равновесию (этому состоянию и соответствует измеренная величина ), вычислить изменение изобарного потенциала системы AG через измеренную э.д.с..  [c.527]


    Таким образом, измерение э.д.с. электрохимических элементов и цепей является простым и точным методом вычисления термодинамических характеристик химических реакций и некоторых важных физико-химических процессов в растворах. Этим методом можно пользоваться, безусловно, только в тех случаях, когда интересующий исследователя процесс можно осуществить обратимо в электрохимическом элементе, разбив процесс на две части, соответствующие двум обратимым электродным процессам. [c.530]

    Химия в последнее время стала играть весьма значительную роль и в самих технологических процессах машиностроения. Наряду с чисто механическими методами обработки металлов в технологию внедряются химические и электрохимические процессы. Благодаря электромеханической обработке металлических изделий достигаются их высокая точность и чистота их поверхности. Значительно шире используются сварка и пайка, которые являются сложными физико-химическими процессами. В классических технологических методах обработки металлов, какими являются литье, ковка, штамповка и прокат, химия также стала играть весьма значительную роль, поскольку осуществление этих методов в широком диапазоне температур, давлений, составов среды и лро-Ч1 1Х условий осложняется параллельно текущими физико-хими-мсс кими процессами, которые необходимо тщательно регулиро-ва 1 ь, [c.8]

    Известно, что многие физико-химические свойства вещества, в том числе и важные для катализа, определяются в конечном счете электронной структурой входящих в его состав атомов (ионов). В то же время электронная структура атома определяется положением элемента в Периодической системе элементов. Таким образом, сопоставление каталитической активности металлов с их положением в Периодической системе элементов до определенной степени позволяет, с одной стороны, предсказывать каталитические свойства еще не изученных металлов (и их соединений), с другой — судить о механизме элементарных актов каталитических и электрохимических процессов, протекающих на поверхности этих металлов. [c.33]

    Успешное решение проблемы группового анализа сернистых соединений Б таких нефтепродуктах, по-видимому, может быть достигнуто комбинированием химических и физико-химических, в частности электрохимических, методов анализа, которые позволяют быстро и достаточно точно определять искомый компонент при совместном присутствии с другими. Электрохимические методы могут быть положены в основу схем полуавтоматического и автоматического дистанционного заводского контроля, регистрации и управления технологическими процессами переработки сернистых нефтей. Такие работы давно ведутся в США и других странах. Разработанные электрохимические методы анализа отдельных классов сернистых соединений могут послужить основой для физико-химического метода группового анализа. [c.427]

    Коррозия металлов под защитными пленками, как и без них, протекает в соответствии с электрохимическим механизмом. Электрохимические реакции при наличии покрытий могут протекать в местах сквозных пор, отслоившегося покрытия или при ионной проницаемости защитного слоя. Несмотря на общность механизма коррозии на неизолированном и изолированном металле, в последнем случав скорость электрохимических процессов становится функцией физико-химических свойств покрытий. [c.22]

    Электрохимическая коррозия - это физико-химический процесс взаимодействия металла с коррозионной средой, причем ионизация атомов металла и восстановление окислительного компонента среды протекает по-стадийно, и их скорости зависят от электродного потенциала металла. [c.55]

    К физико-химическим процессам относятся такие, при которых изменяются физико-механические и механические свойства материалов и их внутренняя структура (собственно-химические процессы, тепловые, диффузионные, плавильные, электрохимические и др.). [c.13]

    Скорость протекания всего процесса в целом контролируется стадией, сопровождающейся наибольшими торможениями. Причинами торможения могут быть замедленная доставка разряжающихся ионов к катоду — концентрационное перенапряжение (1-я стадия) замедленный разряд ионов, который обусловлен медленным переносом заряда через двойной электрический слой и связанным с этим изменением физико-химического и энергетического состояния ионов (дегидратация, десольватация, распад комплексных ионов и др.) — электрохимическое перенапряжение (2-я стадия) трудности, связанные с построением кристаллической решетки замедленная диффузия ад-атомов (ад-ионов) по поверхности катода к местам роста кристаллов, задержка при вхождении атомов в кристаллическую решетку или при образовании двух- или трехмерных кристаллических зародышей, т. е. то, что характеризует так называемое кристаллизационное перенапряжение (3-я стадия). Величина последнего сравнительно невелика и зависит от природы металла и от состояния поверхности катода, которое в ходе электролиза меняется в результате адсорбции посторонних ионов, молекул и органических веществ. [c.335]


    Наиболее общей является классификация по природе процессов разделения химические и физико-химические (экстракция, сорбция, соосаждение, электрохимические методы и др.) и физические (испарение, зонная плавка, направленная кристаллизация и др.). [c.308]

    Цель работы—ознакомление с процессом электрохимического никелирования исследование качества (по внешнему виду) и некоторых физико-химических свойств никелевых покрытий и КЭП на основе никеля изучение особенностей процесса никелирования в электролизере барабанного типа. [c.39]

    Несмотря на одинаковый результат, физико-химические явления, сопровождающие электрохимические реакции, существенно отличаются от явлений, сопровождающих чисто химические процессы. Так, для электрохимического механизма важную роль играет строение границы раздела между металлом (электродом) и раствором, а также направлен-ность потоков реагирующих веществ (в данном примере Ре (И) и Се (IV)) к поверхности электродов, а продуктов реакции — от электродов в объем раствора. Важным следствием этих различий является то, что большая часть химической энергии в условиях электрохимического механизма превращается в электрическую энергию, тогда как в усло- [c.5]

    На основании вышесказанного можно сделать вывод, что исследование кинетики и механизма многостадийных электродных процессов с участием органических соединений в общем случае представляет собой весьма непростую проблему. Многочисленность принципиально реализуемых в данной системе химических и электрохимических стадий и неоднозначность пути реакции выдвигают на первый план задачу выяснения химизма изучаемых процессов, т. е. установление природы их основных и побочных конечных продуктов, обнаружения и идентификации возможно большего количества нестабильных промежуточных продуктов реакции (интермедиатов). Решение такой, по существу, чисто химической задачи должно предшествовать решению вопросов физико-химических определению лимитирующих стадий процесса и их кинетических характеристик, нахождению связи между теми или иными параметрами и кинетикой суммарной реакции и ее отдельных стадий. [c.194]

    В области электрокаталитических процессов необходимы активные поиски новых каталитически активных электродных материалов и разработка теории предвидения электрокаталитической активности. Решение этих задач требует привлечения комплекса методов (физических, физико-химических, аналитических и т. д.) для всестороннего изучения структуры и состояния поверхности электрода-катализатора, роли адсорбционных и хемосорбционных явлений в формировании активного поверхностного слоя. Электрокаталитические процессы лишь в последние годы стали изучать квантовохимическими методами, поэтому теория элементарного акта таких процессов пока еще развита в меньшей степени, чем для электрохимических реакций. [c.305]

    Коррозией называется процесс разрушения металлов в результате физико-химического воздействия окружающей среды. Различают химическую и электрохимическую коррозию. [c.260]

    Использование химических реакций в ряде производственных процессов позволяет резко повышать производительность труда и качество продукции, получать новые материалы. В качестве примера можно привести применение электрохимической обработки металлов в машиностроении, физико-химических методов получения полупроводников и микросхем, используемых в электротехнике, микроэлектронике, радиотехнике, вычислительной технике и других отраслях. [c.8]

    В основе процессов глубокой очистки веществ лежат методы, использующие какой-либо разделительный эффект, обусловленный различием свойств основного компонента и примеси, например разными энергией связи, летучестью, растворимостью и т. п. Для получения веществ высокой чистоты применяют химические, физико-химические, электрохимические, хроматографические, дистилляционные, кристал-лизационные и другие методы. При этом, за редким исключением  [c.314]

    К электрохимическим, или гальваническим, элементам относятся системы, в которых химическая энергия определенного физико-химического процесса превращается е полезную электрическую работу. Обратный процесс — химическое превращение, на возбуждение и поддержание которого расходуется электрическая энергия, — происходит в электролизерах, или электролитических ячейках. [c.280]

    Поскольку вода является полноправным участником процесса твердения вяжущих веществ, ее свойства оказывают значительное влияние на характер взаимодействия в системе твердое — жидкость (Т — Ж). Возможны различные способы воздействия на структуру воды химический (введение в воду водорастворимых добавок), физический (тепловой, магнитный, ультразвуковой и др.), физико-химический (электрохимическая обработка, обработка нерастворимыми веществами). [c.85]

    В основе процессов глубокой очистки веществ лежат методы, использующие какой-либо разделительный эффект, обусловленный различием свойств основного компонента и примеси, например разными энергиями связи, летучестью, растворимостью и т. п. Для получения веществ высокой чистоты применяют химические, физико-химические, электрохимические, хроматографические, дистилляционные, кристаллизационные и другие методы. При этом, за редким исключением, перечисленные методы комбинируют в виде многоступенчатых процессов. Лишь такой подход позволяет получать вещества заданной степени чистоты. [c.345]

    Многообразие технологических процессов и широкий ассортимент выпускаемых промышленностью органического синтеза химических товаров в определенной степени предопределяет использование всего многообразия физико-химических методов анализа. Однако в настоящее время три метода хроматографический, спектральный и электрохимический — нашли наиболее широкое применение и имеют большую перспективу. [c.60]

    Физико-химические процессы на кремниевом аноде. Процесс анодного оксидирования возможен тогда, когда продукты окисления не удаляются с поверхности электрода растворением в электролите. Пассивация поверхности происходит, если образующийся оксид формируется в виде плотной малопористой пленки, достаточно прочно связанной с поверхностью подложки. Это явление наблюдается только тогда, когда электрод выступает в качестве активного компонента электрохимического взаимодействия. В присутствии кислорода по-вер.хность кремния уже покрыта тонким оксидным слоем. Эта хемо-сорбционная пленка служит барьером для диффузии кислорода и предохраняет кремний от полного окисления при комнатной температуре. Преодоление этого барьера возможно или термическим путем, поскольку коэффициент диффузии экспоненциально растет с температурой, или созданием в окисле электрического поля. Одним из путей полевого ускорения диффузии и является анодное оксидирование кремния. [c.115]

    Таким образом, измерение ЭДС электрохимических элементов является простым и точным методом вычисления термодинамических характеристик химических реакций и некоторых важных физико-химических процессов в растворах. Методом ЭДС для измерения и расчета указанных характеристик можно пользоваться только тогда, когда процесс можно осуществить обратимо в электрохимическом элементе, разбив этот процесс на два, протекающих обратимо на двух электродах. [c.246]

    Основы физической и коллоидной химии позволяют заложить фундамент развития качественных и количественных представлений об окружающем мире. Эти знания необходимы для дальнейшего изучения таких специальных дисциплин, как агрохимия, почвоведение, агрономия, физиология растений и животных и др. Современное состояние науки характеризуется рассмотрением основных физико-химических процессов на атомно-молекулярном уровне. Здесь главенствующую роль играют термодинамические и кинетические аспекты сложных физико-химических взаимодействий, определяющих в конечном счете направление химических превращений. Выявление закономерностей протекания химических реакций в свою очередь подводит к возможности управления этими реакциями при решении как научных, так и технологических задач. Роль каталитических (ферментативных) и фотохимических процессов в развитии и жизни растений и организмов чрезвычайно велика. Большинство технологических процессов также осуществляется с применением катализа. Поэтому изучение основ катализа и фотохимии необходимо для последующего правильного подхода к процессам, происходящим в природе, и четкого определения движущих сил этих процессов и влияния на них внешних факторов. Перенос энергии часто осуществляется с возникновением, передачей и изменением значений заряда частиц. Для понимания этой стороны сложных превращений необходимо знание электрохимических процессов. Зарождение жизни на Земле и ее развитие невозможно без участия растворов, представляющих собой ту необходимую среду, где облегчается переход от простого к сложному и создаются благоприятные условия для осуществления реакций, особенно успешно протекающих на разделе двух фаз. [c.379]

    Большое внимание уделено методике электрохимических намерений и использованию их в физико-химических и электрохимических исследованиях. Обсуждаются условия появления и строение двойного электрического слоя. Рассмотрены адсорбция органических соединений на электродах, механизм электроосаждения и ионизации металлов, явление пассивности и коррозии, особенности процессов окисления и восстановления с выделением газообраз ных веществ на электродах. Специально обсуждаются вопросы применения электрохимической теории к решению некоторых современных проблем технической электрохимии. [c.2]

    Когда окисление металла необходимо для осуществления какого-либо технологического процесса, термин коррозия не употребляют. Например, нельзя говорить о коррозии растворяемого анода в электрохимической ванне, поскольку для протекания электролиза анод должен растворяться, посылая свои ионы в раствор. Аналогично нельзя говорить о коррозии алюминия при осуществлении алюмотер-мического процесса. Но физико-химическая сущность изменений, происходящих с металлом во всех подобных случаях, одинакова металл окисляется. Поэтому термин коррозия прочно внедрился как в фундаментальные научные работы, так и в техническую литературу. [c.6]

    При электрокоагуляции сточных вод, содержащих тонкодиспергированные примеси, протекают и другие электрохимические, физико-химические и химические процессы 1) электрофорез 2) катодное восстановление растворенных в воде органических и неорганических вещеста или их химическое вбсстановление, а также образование катодных осадков металлов 3) химические реакции между ионами Ре + или А1 +, образующимися при электролитическом растворении металлических анодов, и некоторыми содержащимися в воде ионами (5 -, РО и др.) в результате этих реакций образуются нерастворимые в воде соли, выпадающие в осадок 4) флотация твердых и эмульгированных частиц пузырьками газообразного водорода, выделяющимися на катоде (этот процесс обычно называют электрофлотацией). Кроме того, происходит сорбция ионов и молекул растворенных примесей, а также частиц эмульгированных в воде примесей на поверхности гидроокисей железа и алюминия, которые обладают значительной сорбционной способностью, особенно в момент образования. [c.97]

    При электрокоагуляции загрязненных жидкостей могут протекать и другие электрохимические, физико-химические и химические процессы, происходящие в следующей последовательности электрофоретическое концентрирование, т. е. направленное движение дисперсий как свободно заряженных частиц и концентрирование их у поверхности электродов электролитическое растворение анодов и образование гидроксидов металла поляризационная коагуляция дисперсных частиц упаковка первичных агрегатов и флокуляционная коагуляция флотация образовавшихся агрегатов пузырьками электролитических газов [20]. Все эти процессы могут обеспечит ёыоокую стедей Щ1ЬШСтки жидкостей, со- [c.17]

    Если электрохимический акт ограничивает скорость всего электродного процесса, то наблюдающееся смещение потенциала под током называется часто либо перенапряокением замедленного разряда (замедленной ионизации), либо, особенно в последнее время, перенапряжением переноса заряда. Однако сущность собственно электрохимической стадии не сводится только к изменению валентного состояния частиц (акты разряда и ионизации) или только к переносу заряда через границу раздела электрод — электролит. Приобретение (или потеря) частицей электрона ириводит одновременно к изменению ее физико-химического и энергетического состояния. Так, например, в ходе реакции [c.345]

    Как уже отмечалось (см. гл. 16), электродные процессы часто связаны с фазовыми превращенпями. В результате появления или исчезновения фаз резко меняются многие важные физико-химические свойства электрохимической системы — электродные потенциалы, электрическое сопротивлсзние и т. д. Эти изменения свойств в ходе фазовых превращений используются в интеграторах, элементах памяти — мемистерах и других хемотронах. Принцип действия интегратора дискретного действия, основанного на электродных фазоЕ.ых превращениях, состоит в том, что металл, предварительно осажденный на одном из электродов, переносят на другой электрод. Реакция в хемотроне сводится к перемещению металла М с электрода I на электрод И  [c.385]

    Поэтому мы здесь не будем останавливаться на всем многообразии расчетов производственных процессов в химической промышленности. Рассмотрим лишь типовые и наиболее распространенные в промышленной практике материальные и тепловые расчеты производственных процессов, как то а) термическую обработку некоторых видов органического и минерального сырья (газификация и коксование угля, газификация торфа, обжиг железного колчедана, электротермическое получение карбида кальция, ферросилиция и окиси азота), б) каталитические процессы синтеза и окисления аммиака, конверсии окиси углерода и окисления сернистого газа, в) электрохимические производства, г) один из наиболее слолсных физико-химических методов промышленной переработки сырья —сжижение и ректификацию газовых смесей в( частности воздуха). Приведенные расчеты производственных процессов охватывают собой значительную и наиболее сложную и важную часть процессов химической технологии. Освоение этих расчетов дает возможность технологу методически правильно подойти к расчету материального и теплового баланса почти любого химического производства. [c.265]

    П1ЮЦСССЫ бактериальной коррозии могут протекать в аэробных и анаэробных условиях. Наиболее характерные случаи усиления коррозии железных конструкций под влиянием жизнедеятельности бактерий наблюдаются в анаэробных условиях. Микроорганизмы могут оказать непосредственное влияние на катодные или анодные электрохимические процессы, могут изменить физико-химические свойства грунта и, следовательно, ее агрес-сивчость, а в некоторых случаях могут разрушать защитные по-КрЬ1ТИЯ. [c.189]

    На лабораторных занятиях студенты знакомятся с современными способами изготовления печатных плат (ПП) и протекающими при этсм химическим и электрохимическими процессами. При анализе физико - химических процессов большое внимание уделяется теоретическим основам химического меднения, активации поверхности, особенностям применяемых растворов, получению защитного рельефа, в том числе использования различных фоторезистов [c.50]

    В этой связи для оценки и прогнозирования коррозионной стойкости обсадных колонн в условиях физико-химического воздействия на пласт на лабораторной установке бьши исследованы статические и динамические процессы электрохимического воздействия материала обсадной колонны с раствором соляной кислоты, кислым диспергатором-растворителе.м и пластовой водой с ко.мпрессорной станции Канчуринского подземного хранилища газа. [c.218]

    Под коррозией понимают физико-химическое или химическое взаимодействие между металлом и средой, приводящее к ухудшению функциональных свойств металла, среды или включающей их технической системы. Химическое взаимодействие определяет, главным образом, химическую коррозию, характеризующуюся непосредственным взаимодействием реагирующих частиц металла и среды без возникновения электрического тока. Физикохимическое взаимодействие характерно для электрохимической и механо-химической коррозии, сопровождающейся возникновением электрического тока (ток коррозии). При механо-химической коррозии (коррозионно-меха-ническом изнашивании) электрохимические процессы накладываются на механическое взаимодействие трение, напряжение, циклическое давление и др. В зависимости от вида коррозийной среды и условий протекания коррозионного процесса различают около 40 видов коррозии атмосферная, газовая, подземная, биокоррозия, контактная, коррозия при трении, щелевая и др. [c.365]

    Если в дополнение к естественному процессу газообразования (за счет световой энергии и кислорода воздуха, возможных анаэробных процессов гниения под покрытием) на локальных участках организовать интенсивную обработку осадка (электрохимически, плазмохимически, погружным горением, электродуговым методом и т.д.), то в дополнение к общему обычному газоотводу понадобятся и автономные для подачи газов на утилизацию. Отсасываемые из-под покрытия газы, в зависимости от их состава, количества, физико-химических характеристик, а также от мест расположения хранилища могут утилизоваться сжиганием, абсорбцией, адсорбцией или любым другим способом. Целью обработки отходов является, применяя различные, уже известные технологии, максимально возможная их деструкция, то есть в данной технологии можно применить методы деструкции органосодержащих отходов различной интенсивности. Учитывая большую площадь иловых карт можно было бы иметь достаточно много превращенного сырья даже при малых скоростях деструкции. Причем деструкцию можно вести на любом участке хранилища, вплоть до всей его площади (зависит от наличия энергоресурсов , [c.29]

    Наиболее перспективными из физико-химических методов являются обратный осмос, ультрафильтрация, тонкопленочное испарение или электрохимические методы разрушения эмульсионных СОТС, а также совмещение их с реагентными способами [92, 289]. Представляет интерес способ интенсификации технологии мембранного разделения, основанный на магнитоожижении магнитных металлокерамических тел, устанавливаемых в канале трубчатых элементов, что способствует более высокому концентрированию маслопродуктов и повышению производительности ультрафильтрации в 1,1 —1,3 раза. С целью сокращения расхода энергии и увеличения производительности процесса изучена возможность применения цилиндрического вращающегося модуля ультрафильтрации. За рубежом ультрафильтрацию особенно широко используют в автомобильной промышленности. [c.326]

    Моделирование ТЭ. Для создания высокоэффектив1ШХ ТЭ необходимо детальное моделирование сложнейших электрохимических, каталитических, транспортных (тепла и массы), электрических процессов. Нахождение оптимального химического состава катода, электрода, электролита, вспомогательных материалов, оптимальной пористой структуры этих материалов требует привлечения специалистов в области физики, материаловедения, катализа, электрохимии, электричества, инженерии, В настоящее время в различных странах мира ведется многочисленные работы по моделированию ТЭ с использованием методов математической статистики, нейронных сетей, нечетких множеств. Однако наиболее перспективным представляется применение методов системного анализа и математического моделирования, базирующегося на построении феноменологических моделей, включающих всю совокупность явлений катали гической, электрохимической и физикохимической природы. Для моделирования ТЭ мы используем трехфазную гомогенную модель, включающую систему уравнений, описывающих электрохимическую реакцию и транспортные процессы, а также электрическую составляющую процесса. [c.64]

    Электрохимия — раздел физической химии, в котором изучаются физико-химические свойства ионных систем (растворов, расплавов или твердых электролитов), а также явления, возникающие на границе двух фаз с участием заряженных частиц (ионов и электронов). В двухфазной электрохимической системе одна из фаз — чаще всего металл или полупроводник, другая — раствор или расплав электролита. В этом случае электрохимию определяют как науку, изучающую взаимодействие зарядов металла или полупроводника с ионами и молекулами раствора или расплава. Если система неравновесна, такое взаимодействие сопровождается возникновением в цепи, содержащей фазы, электрического тока. Учитывая это, дают еще более узкое определение электрохимии как науки, изучающей физико-химические процессы, сопровождающиеся появлением электрического тока или происходящие под действием на химические соединения электрического тока. [c.139]

    Электрохимические реакции, протекающие на iлpalHИlцe раздела двух фаз, совершаются при наличии двойного электрического слоя из зарядов, находящихся в металле, и ионов другого знака в растворе. Подобные ионные двойные слои, возникающие на границе соприкосновения фаз, приводят к глубоким изменениям физико-химических свойств поверхностных слоев. Процесс ионного обмена протекает таким образом, что значение электродного потенциала отвечает термодинамическому равновесию между металлом и электролитом. [c.6]

    Электрохимические элементы часто применяют для того, чтобы определить изменение изобарного потенциала химической реакции. Электрическая энергия, вырабатываемая элементом, работающим обратимо, равна полезной работе суммарного процесса, протекающего в элементе, который рассматривается как термодинамическая система. Как известно, полезная работа обратимого процесса является максимальной и равна изменению изобарного потенциала системы AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и т. д.), протекающими обратимо. Если процесс является обратимым, можно заставить элемент работать в условиях почти полной компенсации ЭДС элемента подключением внещ-ней разности потенциалов. При этом можно провести процесс в электрохимическом элементе бесконечно медленно, приближаясь бесконечно близко к состоянию равновесия. Такому процессу и соответствует измеренная величина , зная которую можно вычислить изменение изобарного потенциала системы AG. [c.244]


Смотреть страницы где упоминается термин Процессы электрохимические и физико-химические: [c.58]    [c.316]    [c.190]    [c.15]   
Рабоче-консервационные смазочные материалы (1979) -- [ c.29 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс электрохимический



© 2025 chem21.info Реклама на сайте