Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформация поливинилхлорида

    Клейне-Альберс [220], исследуя зависимость характера деформации поливинилхлорида от температуры,-показал, что цепи макромолекул поливинилхлорида, расположенные хаотично, при растяжении полимера начинают ориентироваться относительно друг друга только при повышенных температурах. При темп, от —40 до +20° поливинилхлорид обладает только упругой деформацией и при его растяжении не наблюдается какой-либо ориентации молекул. При нагревании ненагруженного образца поливинилхлорида выше температуры стеклования ( 80°) происходит молекулярная перегруппировка и степень регулярности и компактности структуры полимера увеличивается [221]. Дифференциальным термическим анализом установлено, что при 55° поливинилхлорид имеет точку перехода, при прохождении которой наблюдается выделение тепла. При дальнейшем нагревании происходящие в полимере процессы имеют эндотермический характер вплоть до плавления полимера [222]. [c.368]


    Если заметного структурирования не происходит, деформация поливинилхлорида носит высокоэластический характер и полностью обратима. При высоких температурах (выше 170 °С) сшивание проходит глубокой наступают необратимые изменения свойств материала. Было бы заманчивым в этих условиях получить истинное течение, проходящее по классическому механизму. Очень быстро нагревая полимер до высоких температур и предотвращая структурирование, протекающее во времени, можно деформировать образцы на сотни процентов. Но после снятия нагрузки они быстро сокращаются до первоначальной длины. Не оказывает эффективного воздействия и пластификация. Лишь сильно разбавив полимер пластификатором и введя его 50 вес. ч. и даже более можно, наконец, добиться истинной текучести. И все же поливинилхлорид течет в процессе переработки. Какова природа этого течения  [c.245]

    Измерениями работы эластической деформации поливинилхлорида, пластифицированного дибутилфталатом (0—60%), нри различных температурах Джонс установил, что с повышением содержания пластификатора максимум затраченной работы сдвигается к более низким температурам, причем введение примерно 20% пластификатора смеш ает максимум на 20° С. Это смеш ение, аналогичное аномалии диэлектрических потерь поливинилхлорида, установлено нри сравнении пластификаторов различного строения и вязкости, добавляемых в количестве 60% в расчете на поливинилхлорид. Взаимосвязь между вязкостью пластификатора при 20° С и температурой максимума работы деформации приведена в табл. 115. [c.277]

    Переработка поливинилхлорида в изделия, нити, пленки сопряжена с большими трудностями, что объясняется низкой температурой термической деструкции полимера, близкой к области температур, в которой начинают появляться пластические деформации поливинил- [c.515]

    В первую группу следует включить все жесткие полимеры, неспособные к растяжению и большим упругим деформациям непластифицированные поливинилхлорид, поливинилацетат, полиметилметакрилат, полистирол, нитроцеллюлозу и др. [c.191]

    На рис. XII. 13 приведены результаты испытания образцов полиэтилена, полипропилена, поливинилхлорида и полиметилметакрилата на растяжение при различной температуре. Сравнительные характеристики показывают, что из всех приведенных материалов наиболее высокой теплостойкостью обладает полипропилен [67]. На рис. XII. 14 приведены результаты испытания полипропилена на растяжение при постоянной температуре. Они показывают, что до напряжения 300—350 кг/см полипропилен ведет себя как жесткий материал с малой деформацией. Выше этого напряжения начинается [c.788]


    Полиэтилен (политен) — полупрозрачный воскообразный материал, применяемый для тех же целей, что и поливинилхлорид. Из полиэтилена изготовляют лабораторную посуду (мерные цилиндры, стаканы, склянки для хранения реактивов, воронки, чашки и т. д.) и трубки различных диаметров. Полиэтиленовые трубки хорошо свариваются горячим воздухом, поэтому они пригодны для сборки сложных приборов, в связи с незначительной термопластичностью полиэтилена надевать изготовленные из него шланги на стеклянные трубки труднее, чем шланги из поливинилхлорида. При значительной разнице в диаметрах стеклянной и полиэтиленовой трубок последнюю нагревают на пламени. Нагревание следует проводить очень осторожно, во избежание нежелательной деформации и загорания трубки (в отличие от поливинилхлорида полиэтилен легко загорается). Следует отметить, что после охлаждения полиэтиленовая трубка пристает [c.40]

    Для выталкивания тонкостенных и глубоких изделий (вариант 1) из эластичных материалов (полиэтилен высокого давления и его композиции, поливинилхлорид пластифицированный и др.) используют разъемные матрицы, которые предотвращают деформацию и разрушение, препятствуя выпучиванию изделий под действием осевых сил. Для сталкивания изделий с очень тонкими стенками на их наружной поверхности необходимо предусмотреть кольцеобразные выступы (вариант 2)  [c.177]

    Явление вынужденно-эластической деформации полимеров было подробно изучено Лазуркиным С понижением температуры механическое напряжение, необходимое для перестройки молекул (предел вынужденной эластичности), повышается. Температура, при которой полимер начинает разрушаться при малых деформациях, а вынужденно-эластической деформации не наблюдается, представляет собой температуру хрупкости полимера. Таким образом, в стеклообразном состоянии для полимеров следует различать зону вынужденно-эластических деформаций и зону хрупкости. Температура хрупкости зависит от ме> молекулярного взаимодействия, плотности упаковки молекул, а также от молекулярного веса полимера Температуры стеклования и хрупкости высокомолекулярных стекол, определенные при одинаковых скоростях деформации, иногда образуют интервал в несколько десятков градусов. Так, если для полистирола интервал Тс—Гхр составляет около 10 °С, то для полиметилметакрилата он равен 100 °С, а для поливинилхлорида достигает даже 170 С Ч [c.124]

    В результате изменения конформации молекул при перемещении лишь малых участков длинных цепных молекул, а макромолекулы в целом не перемещаются, проявляется высоко-эластическая обратимая деформация, свойственная высокоэластичным материалам (каучукам, резинам, в известной мере поливинилхлориду и полиэтилену). Благодаря тепловому движению после снятия внешней силы молекулярные цепи постепенно переходят к исходным конформациям, определяющим наиболее вероятное равновесное состояние материала. [c.67]

    Винипласт — термопластичный м.атериал, состоящий в основном из макромолекул поливинилхлорида с молекулярной массой от 18 до 120 тыс., к которому для предотвращения термической деструкции добавлен стабилизатор. Винипласт удачно сочетает антикоррозионную способность с хорошими физико-механическими свойствами. Он не подвергается разрушению в минеральных кислотах (за исключением сильных окислителей), щелочах, в солевых растворах, во многих органических растворителях, кроме ароматических и хлорированных углеводородов. Ценным свойством винипласта является его пластичность прн нагревании, которая позволяет легко изготавливать материалы, детали и конструкции любой формы штампованием, выдавливанием и гнутьем, так же как из металлов. К тому же его можно резать, строгать, сверлить и полировать. Изделия из винипласта можно сваривать токами высокой частоты и склеивать специальными клеями. К недостаткам относятся малая термическая устойчивость (выше 50 °С), набухаемость в воде, низкая ударная вязкость, большой коэффициент термического расширения и постепенная деформация под нагрузкой. [c.142]

    Особый механизм развития необратимых деформаций наблюдается [367, с. 662] для структурированных полимеров, молекулы которых соединены в единую сетку. Так, известно, что при нагревании некоторых полимеров (в частности, поливинилхлорида) происходят химические процессы, ведущие к структурированию. При механических воздействиях, например при вальцевании, одновременно протекает механическая деструкция, т. е. разрыв [c.116]

    Другим исследованным материалом был непластифицированный поливинилхлорид [467, с. 103]. При температуре опытов 323— 328 К этот материал разрушался не как хрупкий (перед разрывом в образце развивалась вынужденноэластическая деформация). Измеряли предел вынужденной эластичности a , и остаточное удлинение образцов (последнее — после извлечения образцов из прибора). Полученные данные свидетельствуют о том, что наряду [c.170]

    Для понимания процессов деформации наполненных полимеров большое значение имеет изучение деформируемости при больших напряжениях. Для этого случая на примере наполненных стеклянными бусинками композиций поливинилхлорида было установлено [c.156]


Рис. 9.10. Развитие деформаций при ползучести (Д) и упругом восстановлении (А) поливинилхлорида при постоянном номинальном напряжении, равном 3,554-108 дин/см2 (а) и данные по ползучести при различных номинальных напряжениях X 10"в, равных (б) Рис. 9.10. <a href="/info/623251">Развитие деформаций</a> при ползучести (Д) и <a href="/info/161903">упругом восстановлении</a> (А) поливинилхлорида при постоянном <a href="/info/1431590">номинальном напряжении</a>, равном 3,554-108 дин/см2 (а) и данные по ползучести при различных <a href="/info/1431590">номинальных напряжениях</a> X 10"в, равных (б)
    Винсентом [3] значения температурных скачков, наблюдавшихся им в опытах с полиэтиленом и поливинилхлоридом. Очевидно, что эффекты, связанные с адиабатическим разогревом, становятся существенными при скоростях деформации порядка 0,1 мин . [c.271]

    До недавнего времени примерно половину мембран, используемых в промышленности, составляли ломающиеся мембраны [6], В настоящее время в ряде случаев их с успехом заменяют разрывными. Ломающиеся мембраны изготавливают из хрупких материалов чугуна, графита, эбонита, поливинилхлорида, стекла и др. Срабатыванию этих мембран не предшествуют заметные пластические деформации, поэтому они являются наименее инерционными. Ломающиеся мембраны хорошо работают в условиях динамических, пульсирующих и знакопеременных нагрузок. Изготавливают их обычно токарной обработкой, поэтому толщина, а значит и давление срабатывания, может задаваться в процессе изготовления произвольно, что совершенно исключено при выполнении разрывных мембран из стандартного тонколистового проката. [c.11]

    На рис. II 1.3 схематически показаны зависимости коэффициентов диффузии и проницаемости от степеней относительных деформаций сжатия и двухосного растяжения различных образцов. Подобные зависимости для случая сжатия получены для всех исследованных нами материалов и сред (полиолефины, поливинилхлорид, фторопласты и др.) в контакте с различными органическими и неорганическими жидкостями. [c.106]

    Основным объектом исследования был выбран поливинилхлорид, способный легко структурироваться при повышенных температурах вследствие отщепления НС1 и развития цепных окислительных процессов. Процесс вязкого течения в полимерах приводит, как известно, к появлению истинных необратимых деформаций. Интересно, что поливинилхлорид, несмотря на легкое структурирование при высоких температурах, все же при действии больших сил хорошо формуется, обнаруживая истинные необратимые деформации. В то же время при исследовании физических свойств поливинилхлорида в лабораторных условиях установлено, что все деформации обратимы и, следовательно, истинное течение полимера отсутствует. Таким образом, обнаружено странное противоречие, состоящее в том, что полимер обладает истинной текучестью при технологической переработке и нетекуч при исследовании в лабораторных условиях. [c.313]

    Поскольку лабораторное исследование температурной зависимости развития деформации полимеров осуществляется в течение длительного времени, а процессы структурообразования в поливинилхлориде протекают гораздо быстрее, необходимо было найти такие методы лабораторного исследования, при которых текучесть полимера могла бы быть обнаружена еще до образования пространственной структуры. Наиболее удобным для этой цели оказалось исследование обратимости деформации растяжения тонких пленок полимера (30—50 i), погруженных в горячую фосфорную кислоту при 160—170°. При этом пленка нагревалась уже через доли секунды, а длительность ее деформации под действием различных по величине сил не превышала нескольких десятков секунд. Развивающиеся в этих условиях большие деформации (порядка сотен процентов) оказались полностью обратимыми, и обнаружить истинную текучесть поливинилхлорида также не удалось. Следовательно, даже за такое короткое время эксперимента поливинилхлорид в какой-то степени структурируется, что исключает всякую возможность вязкого течения. [c.313]

    В то же время образцы поливинилхлорида, подвергавшиеся действию больших сил при высоких температурах в течение значительно большего времени, обнаруживали совершенно устойчивые изменения формы, т. е. необратимую деформацию. [c.313]

    Принято считать, что пьезоэлектрический эффект не имеет существенного значения в процессах электризации и что плотность зарядов, им обусловливаемая, весьма невелика [7]. Однако исследования возникновения электрических зарядов при деформации полярных полимеров полиметилметакрилата, поливинилхлорида — и неполярных полистирола, полипропилена и полиэтилена — опровергли это мнение [79]. [c.36]

    Наиболее ценными для инженерного применения являются кристаллические полимеры средней степени кристалличности. Полимеры с низкой степенью кристалличности по своим свойствам близки к аморфным слабосшитым полимерам. Кристаллические области, выполняя функции поперечных связей между макромолекулами, не позволяют развиваться необрати.мым деформациям. Однако при повышенных температурах кристаллиты плавятся и появляется способность к течению. Сюда относятся пластифицированный поливинилхлорид и некоторые виды эластичных полиамидов. Область перехода из стеклообразного в каучукоподобное или вязкотекучее состояние у таких полимеров, как правило, очень широкая. [c.116]

    Поливинилхлорид является очень реакционноспособным полимером. При температуре 150°С введение в битум добавки в количестве 1 °/о вызывает повышение температуры размягчения на 24°С, а 10-процентная добавка увеличивает ее на 63°С. Такое значительное изменение свойств битума при небольших добавках полимера указывает на протекание химической реакции. При более низких температурах совмещения (порядка 100"С) температура размягчения смеси даже при содержании поливинилхлорида 50% возрастает только на 20 °С. Введение этого полимера в битум ВИД в небольших количествах (2,5%) в виде латекса значительно повышает теплоустойчивость, адгезию и растяжимость композиции, но устойчивость ее к деформации снижается [189]. [c.71]

    Предыдущие утверждения относительно задач исследования разрушения хорошо иллюстрируются на примере твердого поливинилхлорида (ПВХ) (рис. 1.1 —1.3). Образцы труб для воды подвергаются хрупкому разрушению под действием внутреннего давления при высоком значении касательного напряжения, частично пластическому разрушению — при умеренных значениях напряжения, действующего в течение длительного времени, и разрушению, обусловленному ростом термических трещин (трещин серебра образующихся при ползучести),— при низких значениях напряжения, действующего очень длительное время. Тремя процессами, вызывающими разрушение труб в данных трех примерах, являются соответственно быстрое вытягивание дефектов, течение материала и термоактивационный рост дефектов. Во всех трех процессах элемент объема, в котором вызывается разрушение, конечен следовательно, неоднородные деформации должны быть локальными. Ниже мы рассмотрим природу подобной неоднородной деформации предположительно однородного материала и попытаемся объяснить ее. [c.10]

    Полимеры в стеклообразном состоянии обладают прочностью твердых тел если прилолсить значительную силу (при сжатии, растял ении, изгибе), они деформируются незначительно. Это объясняется тем, что в стеклообразном состоянии молекулы связаны наиболее прочно и наименее гибки. В сравнении с низко-молекулярными стеклами полимерные стекла могут несколько изменять свою форму под действием деформирующих усилий. Объясняется это тем, что часть звеньев сохраняет подвил<ность при наличии прочной связи на многих других участках макромолекулы. Низкомолекулярные стекла разрушаются без деформации или претерпевая едва заметную деформацию. В этом легко убедиться, если сравнить свойства органического стекла (поли-метилметакрилата) с обыкновенным (силикатным) стеклом. Чем нил<е температура в области стеклообразного состояния, тем меньшее число звеньев обладает подвилсностью, и при определенной температуре, называемой температурой хрупкости, полимерные стекла разрушаются без деформации, подобно низкомолекулярным стеклам. Более хрупки в равных температурных условиях стеклообразные полимеры, построенные из глобулярных частиц. Глобулярные молекулы теряют подвижность в целом, подобно молекулам низкомолекулярных соединений, и полимеры глобулярного строения раскалываются по линии раздела глобулярных частиц. Весьма валено поэтому в процессе переработки полимеров преобразовать глобулярную структуру в фибриллярную, что удается, например, при переработке поливинилхлорида. [c.17]

    По фазовому состоянию не содержащие наполнителей (ненаполненные) ТП м. б. одно- и двухфазными аморфными, аморфно-кристаллическими и жидкокристаллическими. К однофазным аморфным ТП относятся полистирол, полиметакрилаты, полифениленоксиды, к-рые эксплуатируются в стеклообразном состоянии и обладают высокой хрупкостью. По св-вам им близки стеклообразные аморфно-кристаллич. ТП, имеющие низкую степень кристалличности (менее 25%), напр, поливинилхлорид, поликарбонаты, полиэтилентерефталат, и двухфазные аморфные ТП на основе смесей полимеров и привитых сополимеров, напр, ударопрочный полистирол, АБС-пластики, состоящие из непрерывной стеклообразной и тонкоднспергир. эластичной фаз. Деформац. теплостойкость таких ТП определяет т-ра стеклования, лежащая в интервале 90-220 °С. [c.564]

    Разновидностью С. первого типа являются системы, в к-рых устойчивые контакты между макромолекулами обеспечиваются локальной кристаллизацией группы цепей. Отрезки макромолекул между кристаллич. узламй способны к таким же конформац. превращениям под действием внеш. мех. нагрузок, как и химически сшитые полимеры, но верх, предел области обратимой деформации ограничивается т-рой плавления кристаллич. узлов. Выше этой т-ры С. превращ. в обычный р-р полимера. Примером С. этого типа могут служить р-ры поливинилхлорида с невысокой степенью кристалличности, обусловленной низкой синдиотактичностью макромолекул (см. Стереорегулярные полимеры). Локальная кристаллизация в этом случае ответственна за обратимую деформацию высокопластифицир. изделий из поливинилхлорида. Аналогичные С. часто образуются из р-ров сополимеров, у к-рых в результате неоднородного распределения сомономеров в цепи возникает возможность 887 [c.448]

    При заполнении оформляющей полости находящийся в ней воздух, а также газы, выделяющиеся из полимера (особенно из поливинилхлорида, поли-метилметакрилата, сополимеров формальдегида и др.), сжимаются, препятствуя заполнению формы. При этом температура газа может достичь 300...400°С. На изделии могут появиться дефекты в виде выраженных спаев в местах встречи потоков расплава, недолива, прижога (при литье толстостенных изделий). Кроме того, происходит растворение газа в отливке, приводящее к уменьшению прочности и деформации изделий. В связи с этим для вывода газов из оформляющего гнезда в форме предусматривают вентиляционные (газоотводящие) каналы в местах, заполняемых расплавом в последнюю очередь. Как правило, это наиболе даленные от места впуска участки [c.160]

    Грибковые выталкиватели применяют в основном при необходимости увеличить площадь поверхности контакта выталки-ват с изделием для исключения пл<е ческих деформаций и разрушения то Н(ттенных изделий из материалов с малым модулем упругости (поливинилхлорид, полиэтилен и др.). [c.175]

Рис. 88. Зав41сйы0сгь относительной деформации от напряжения для поливинилхлорида при различных температурах. Рис. 88. Зав41сйы0сгь <a href="/info/263155">относительной деформации</a> от напряжения для поливинилхлорида при различных температурах.
    При производстве полимерных изделий необходимо временно ослаблять действие межмолекулярных сил, предоставлять макромолекулам возможность перемещаться относительно друг друга, сообщать полимеру текучесть. Обычно это достигается путем нагрева полимера до температуры, превышающей Гтен, которая может находиться выше температуры разложения полимера. Кроме того, многие широко применяемые в технике полимеры, такие, как поливинилхлорид, нитроцеллюлоза и полистирол, слишком хрупки для некоторых назначений. Встречаются эластомеры (каучукоподобные материалы), которые мягки, гибки и прочны при комнатной температуре, но становятся хрупкими и ломкими при сильном охлаждении, т. е. обладают низкой морозостойкостью. Для успешного формирования изделий из таких полимеров необходимо искусственно снизить теплоту активации вязкого течения и Гтек, а для расширения температурной области их эксплуатации — увеличить интервал Гтен — Гст, Т. е. область высокоэластической деформации. или хотя бы снизить температуру стеклования. Эта цель достигается при помсЗщи пластификации, под которой обычно понимают повышение высокоэластических и вязкотекучих свойств с одновременным уменьшением хрупкости. [c.509]

    Предварительно рассмотрим качественные характеристики процессов хрупкого и вязкого разрушения. В первом случае остаточные деформации малы (///о 1), а во втором велики (1/1о >1). Большинство реактопластов независимо от температуры разрушается по хрупкому механизму. То же самое наблюдается у некоторых жестких а1морфных термопластов (полистирол, полиакрилаты, поливинилхлорид и т. п.) ниже температуры стеклования, хотя локальные пластические деформации в устьях возникающих трещин наблюдаются и в этих условиях оплоть до температуры хрупкости [12]. [c.111]

    Испытание труб из различных материалов было описано Сенсоном . Одним из таких материалов является немодифици-рованный поливинилхлорид—типичный аморфный полимер. При кратковременном действии высокого давления происходит хрупкоё разрушение с небольшим относительным удлике-нием. С увеличением продолжительности испытания начинает проявляться пластический характер разрушения, которое в этом случае сопровождается значительным расширением трубы перед разрывом. Повышение температуры оказывает таксе же влияние, как и увеличение продолжительности испытаний нагляднее проявляется пластическое разрушение. Такое влияние температуры позволяет оценивать срок службы трубы, поскольку изменение размеров с повышением температуры происходит подобно развитию ползучести в течение многих лет-эксплуатации. Вероятно, хрупкое разрушение поливинилхлорида объясняется тем, что возникшие деформации приводят к разрыву химических связей до того, как начнут перемещаться отдельные сегменты полимерной цепи. При пластическом разрушении перемещение сегментов вызывает приложенная сила, поскольку продолжительность действия силы или температура достаточно велики. Задолго до того, как происходит пластическое разрушение немодифицированного поливинилхлорида, труба значительно расширяется (на 10—20%), что вызывает утечку в местах соединений. Поэтому практически срок службы труб в 2—3 раза меньше, чем экспериментально установленное время до разрушения. [c.178]

    Поскольку возникновение термических напряжений обусловлено релаксационными процессами, их значение зависит от скорости нагревания и охлаждения. Например, при быстром охлаждении поливинилхлорида внутренние напряжения оказываются в 2 раза выше, чем при медленном [82]. Термические напряжения в слоях и пленках полимеров могут быть уменьшены [83, 84] и даже сняты при термообработке вследствие релаксации, а собственные напряжения практически не релаксируют. Если в процессе повторного нагревания не происходит доотверждение или пластическая деформация пленки покрытия, форма зависимости внутренних напряжений от температуры сохраняется постоянной (рис. IV.18). Значение термических напряжений [81 85 86 87, с. 213, 389 88 89, с. 40] независимо от типа соединяемых материалов пронорциональпо разности ТКЛР (Аа), модулю упругости [c.173]

    Наблюдаемая хрупкость ПММА, полистирола и сополимеров стирола с акрилонитрилом (С/АН) связана с тем, что поглощение энергии происходит в слоях микронной толщины [18]. В упрочненных каучуком ПММА, полистироле, С/АН и поливинилхлориде деформация происходит в слоях миллиметровой толщины, что приводит к увеличению способности поглощать энергию. Образование такого слоя может быть легко обнаружено по помутнению. Доказательство возможности больших деформаций материала матрицы в сополимерах АБС основано на больших значениях удлинений, стабильности образования шейки (это требует устойчивого деформирования матрицы, так как С/АН является непрерывной фазой, заполняющей 75% объема образца) и на результатах электронномикроскопических наблюдений (рис. 1), которые обнаруживают изменение формы частиц каучука от сферической к эллипсоидальной с отношением осей 2 1 или 3 1. К аналогичным заключениям пришли Манн, Бёрд и Руни [23]. [c.141]

    В дальнейшем было опубликовано мало работ по механическому разрушению пластмасс в твердом состоянии. Ларсен и Дрикаммер [19], изучавшие упругую деформацию полиэтилена, полиметилметакрилата, поливинилового спирта и поливинилхлорида при высоком давлении, отмечали возникновение процессов разрушения. Последние наблюдаются также у полистирола, полиметилстирола и /(Мс-1,4-полиизопрена, механическая деструкция которых сопровождается процессами образования сет чатых и разветвленных полимеров. Механическое воздействие создавалось двумя металлическими плоскостями, оказывавшими давление в 50 ООО атм одна из плоскостей вращалась со скоростью 0,38 об1мин. Опыты проводились при температуре 300°. При повышении давления авторы отмечали уменьшение молекулярного веса до предельного значения. Так, у образца полистирола с исходным молекулярным весом 338 000 предельное значение 100 000 достигается при давлении 30 ООО аглг. При испытании образцов меньшего молекулярного веса при меньших значениях давлений получены меньшие пределы деструкции. Например, полистирол с М = 80 000 достигает при 10 000 йгл предельного молекулярного веса 20 ООО. [c.97]

    На основании детального анализа стерич. и электростатич. взаимодействий в полимерных цепях и соответствующих им низкомолекулярных гомологах с учетом деформации валентных углов Фордхэм рассчитал, что разность свободной энергии изо- и сикйыо-изомеров в случае поливинилхлорида составляет 5,9—8,0 кдж/моль (1,4—1,9 ккал/молъ) в пользу синдиотактич. изомера, а соответствующая разность энергий активаций равна [c.260]


Смотреть страницы где упоминается термин Деформация поливинилхлорида: [c.66]    [c.140]    [c.211]    [c.168]    [c.98]    [c.211]    [c.107]    [c.170]    [c.494]    [c.450]   
Новейшие методы исследования полимеров (1966) -- [ c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Поливинилхлорид



© 2024 chem21.info Реклама на сайте