Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкости закон Рауля

    Положительные и отрицательные отклонения реальных растворов от закона Рауля обусловлены разными факторами. Если разнородные молекулы в растворе взаимно притягиваются с меньшей силой, чем однородные, то это облегчит переход молекул из жидкой фазы в газовую (по сравнению с чистыми жидкостями) и будут наблюдаться положительные отклонения от закона Рауля. Усиление взаимного притяжения разнородных молекул в растворе (сольватация, образование водородной связи, образование химического соединения) затрудняет переход молекул в газовую фазу и поэтому будут наблюдаться отрицательные отклонения от закона Рауля. [c.192]


    Величины общего давления р в этих системах изменяются монотонно с изменением величины X. Если отклонения от закона идеальных растворов велики, то кривая общего давления пара проходит через максимум или минимум. Чем ближе между собой давления насыщенного пара чистых жидкостей, тем меньшие положительные или отрицательные отклонения парциальных давлений от закона Рауля вызывают появление экстремума на кривой общего давления. [c.192]

    Жидкости, смешивающиеся во всех отношениях. В зависимости от характера и степени отклонения парциальных давлений компонентов и суммарного давления паров раствора от закона Рауля различаются три типа реальных растворов веществ, неограниченно растворимых друг в друге. [c.36]

    Полученные таким путем константы равновесия основаны на предположении, что газовая и жидкая фазы являются идеальными растворами и известны как идеальные константы равновесия [7, 41] следует иметь в виду, что при вычислении идеальных констант равновесия не делается допущение о подчинении газов законам идеальных газов и о подчинении жидкости закону Рауля. Было найдено, что значения идеальных констант являются вполне удовлетворительными для большинства случаев при давлениях до 15— [c.101]

    Газо-хроматографическое исследование растворения газов и паров в подвижных жидкостях позволяет легко и очень точно (точнее, чем в статических методах) определить коэффициенты активности растворов. Рассмотрим здесь простейший пример определения предельного (ири малых концентрациях) значения коэффициента активности данного летучего компонента, растворимого в неподвижной жидкости, путем исследования отклонения реальной кривой равновесия газ—раствор от закона Рауля. Согласно закону Рауля давленне р пара данного компонента над раствором равно  [c.592]

    Идеальные растворы жидкостей. Закон Рауля 80 [c.397]

    Растворение данного газообразного компонента в жидкости будет происходить до тех пор, пока парциальное давление его в газовой фазе сравняется с парциальным давлением в жидкости (закон Рауля), т. е. [c.46]

    ВЗАИМНАЯ РАСТВОРИМОСТЬ ЖИДКОСТЕЙ ЗАКОН РАУЛЯ [c.156]

    На протяжении нескольких десятилетий проводил плодотворные исследования в области физической химии концентрированных неводных растворов Гильдебранд. Им была создана весьма стройная теория регулярных растворов, разработаны теоретические аспекты растворимости газов в неводных растворителях, а также сформулированы физические условия подчинения смеси двух жидкостей закону Рауля. [c.14]


    Эта зависимость, известная нам как закон Рауля, позволила приблизительно подсчитать относительное число частиц (атомов, молекул или загадочных ионов) растворенного вещества и растворителя (жидкости, в которой растворено данное веш,ество). [c.119]

    Парциальное давление рал компонента а в жидком слое А, представляющем однородный, насыщенный разбавленный, раствор компонента т в а, определится согласно закону Рауля как произведение из мольной концентрации компонента а в жидкости на упругость Р его насыщенных паров при данной температуре  [c.156]

    Вообще говоря, закон Рауля справедлив только в случае разбавленных растворов, однако он может быть применим к растворам любых концентраций при условии, что растворение (смешение) жидкостей не сопровождается изменением объема и значительным тепловым эффектом. [c.176]

    Во многих случаях давления пара растворителя при малых концентрациях остальных компонентов следуют закону Рауля и в растворах, не являющихся идеальными, т. е. в Рис. VI, 3. Составы жидкости и па- СИЛЬНО разбавленных раствора бинарного идеального раство- очевидно, вы- [c.190]

    Распределение вещества в системе жидкость — газ определяется в идеальном случае двумя предельными законами. Распределение растворителя определяется законом Рауля, а распределение газа — законом Генри, которые соответственно формулируются в виде  [c.96]

    Идеальные системы могут быть определены так же, как системы, для которых оправдывается закон Рауля. Закон Рауля устанавливает линейную зависимость между содержанием летучего компонента в жидкости, находящейся в равновесии с паром и его парциальной упругостью над смесью  [c.16]

    Следует отметить, что ассоциация молекул растворителя в жидкости и присоединение их к молекулам растворенных веществ (сольватация) не препятствует определению молекулярного веса растворенного вещества в разбавленных растворах. Ассоциация растворителя в паре мешает определению молекулярного веса вещества, растворенного в жидкости, так как все коллигативные свойства разбавленных растворов связаны с законом Рауля, который не выполняется, если пар растворителя ассоциирован. Примером такой жидкости может являться уксусная кислота, пар которой в значительной степени диме-ризован (ассоциирован в двойные молекулы). [c.248]

    Первые работы Дж. Гильдебранда связаны с обоснованием закономерностей идеальных растворов. Им показано, что если при образовании раствора теплота растворения кристаллов соответствует скрытой теплоте плавления и растворы образуются без изменения суммы объемов, растворы следуют закону Рауля [61]. Рассматривая механизм внутримолекулярного взаимодействия в растворе, Дж. Гильдебранд ввел понятие о внутреннем давлении. Жидкости с равными внутренними давлениями образуют идеальный раствор. Жидкости с близкими внутренними давлениями и близкой полярностью взаимно растворимы в широком диапазоне концентраций. Для оценки энергии связи сил межмолекулярного взаимодействия им использованы величины скрытой теплоты испарения. Растворы с дисперсионными силами взаимодействия, у которых теплоты, смешения имеют низкие значения, а изменение энтропии происходит по закону идеальных газов, были выделены в отдельный класс, полу- [c.213]

    Количественные закономерности, учитывающие отклонения свойств реальных растворов от свойств идеальных растворов, могут быть пока найдены лишь для отдельных классов растворов. Например, такие закономерности удалось установить для растворов неполярных неассоциированных жидкостей, для которых характерны небольшие отклонения от закона Рауля, а также для растворов, теплота образования которых нз компонентов равна нулю, и некоторых других растворов. [c.248]

    Растворы с такими идеальными свойствами получаются при смешении жидкостей с очень близкими свойствами, в которых взаимодействия между молекулами одного сорта и взаимодействия между разносортными молекулами практически одинаковы. В качестве примера можно привести смесь бензола и толуола на рис. 18-8 изображены графики парциальных давлений и суммарного давления растворов этих жидкостей друг в друге. Поведение других растворов может отличаться от описываемого законом Рауля. Если разносортные молекулы взаимодействуют между собой слабее, чем молекулы одного сорта, то вклады в давление пара от каждого компонента будут больше, чем предсказывается законом Рауля. Замена молекул А вокруг молекулы А на молекулы типа В должна повысить шансы молекулы А перейти в паровую фазу. Следовательно, в данном случае вместо закона Рауля должны выполняться соотношения [c.136]


    Кривые аа и рр показывают, как изменяются парциальные давления паров компонентов по мере изменения состава раствора. Так, например, пока добавки жидкости В к жидкости А невелики, парциальное давление пара А постепенно падает, довольно точно подчиняясь закону Рауля. Над растворами же, в которых А является лишь добавкой к веществу В, парциальное давление пара А подчиняется закону Генри. Иными словами, в обоих случаях парциальное давление пара А пропорционально концентрации А в растворе, только коэффициенты пропорциональности различны, поскольку жидкая фаза в первом случае состоит в основном из А, а во втором случае—в основном из В. Той же закономерности подчиняется и парциальное давление пара компонента В. Опытные кривые парциальных давлений нанесены на рис. XIV, 4 сплошными линиями. Сплошные линии обрываются при концентрациях двух равновесных насыщенных растворов, составы которых равны Хд и х . [c.400]

    Если изомеризация алкена проводится в жидкой фазе, рассмотренный метод расчета должен быть дополнен анализом равновесия между жидкой и газовой фазами. Простым приемом, позволяющим перейти от равновесия в газовой фазе к равновесию в жидкой фазе, является следующий. Предположим, что изомеризация в газовой фазе доведена до равновесия. Тогда находящаяся в равновесии с этой фазой жидкость также, очевидно, будет термодинамически равновесной. Поскольку давление пара компонента над идеальным раствором связано с составом раствора законом Рауля, получаем такую зависимость равновесного парциального давления /-компонента Я, и его равновесной мольной доли в жидкой фазе уу. [c.14]

    При расчетах процессов массообмена под высоким давлением, проведенных по законам Рауля и Дальтона, получаются отклонения, так как эти законы справедливы только для идеальных газов. Напомним, что по условию равновесия двухфазной системы жидкость — иар общее давление насыщенных паров жидкой фазы должно быть равно общему давлению в паровой фазе. [c.262]

    Аккомодационные соотношения (1.46), (1.47) требуют определения парциальных удельных энтальпий компонентов в фазах при равновесии. Для смеси газов (паров) при невысоких давлениях, а также для жидких растворов, теплота смещения компонентов в которых мала, парциальные характеристики смеси близки к соответствующим характеристикам чистых компонентов. Однако в неидеальных смесях (т. е. значительно отклоняющихся от закона Дальтона — для газов или от закона Рауля — для растворов жидкостей) парциальные характеристики зависят от состава смеси и представляются в виде [39] [c.52]

    Уравнения закона Рауля и Дальтона можно использовать для расчета систем, работающих под высоким давлением, если в эти уравнения внести соответствующие поправки. Давление насыщенных паров жидкости заменяется исправленным давлением паров, называемым фугитивностью жидкости, а общее давление системы — [c.262]

    Расчет равновесия в газожидкостной системе (олефин и альдегид — жидкие, СО и Нг —газообразные) можно выполнить методами, описанными в гл. II. В каждом конкретном случае необходим специальный расчет, для которого требуется информация о растворимости газов в жидкости, летучестях компонентов и т.д. Поэтому ниже ограничимся рассмотрением случая, когда раствор можно считать идеальным, давление пара жидкого компонента над раствором подчиняется закону Рауля, а растворимость газа — закону Генри. Даже в этом случае расчет равновесия газожидкостной реакции по равновесию реакции в газовой фазе (см. гл. II) затруднен отсутствием или ненадежностью данных о растворимости Нг и СО в жидкой фазе, содержащей олефин, альдегид и катализатор. Нетрудно, однако, получить соотношение, указывающее на характер изменения состава газожидкостной реакции (Л , — мольная доля 1 в жидкости) по сравнению с составом газофазной реакции N1 — мольная доля I в равновесной газовой фазе). Величины [c.330]

    При перегонке двух смешивающихся жидкостей давление паров смеси равно сумме парциальных давлений паров отдельных жидкостей, а парциальное давление наров каждой жидкости определяется ао закону Рауля  [c.206]

    В теории растворов существует понятие идеальной растворимости. Для двух жидкостей это состояние равнозначно неограниченной их растворимости друг в друге и может сравниваться с растворимостью идеального газа в жидкости. В связи с этим идеальная растворимость двух жидкостей имеет место в системе, к которой применим закон Рауля, определяющий давление пара растворенного вещества над растворителем  [c.12]

    Во время этого процесса вновь прибавляемые молекулы должны разрушать существующие ассоциации растворителя. Чем сильнее водородные связи в растворителе, тем труднее происходит образование новых ассоциаций и тем хуже растворимость. Этот принцип положен в основу подразделения жидкостей на пять классов [251, дающего возможность предсказать, как будет изменяться растворимость соединений по отношению к идеальной растворимости, характеризуемой законом Рауля. Эта классификация представлена в табл. 1-1. Поведение соединений разных классов при смешивании показано в табл. 1-2. [c.13]

    Жидкость начинает кипеть, когда давление ее насыщенного пара становится равным внешнему давлению. Так как пар раствора нелетучего вещества содержит лишь чистый растворитель, то, в соответстйии с законом Рауля, давление насыщенного пара такого раствора будет всегда меньше давления насыщенного пар а чистого растворителя при той же температуре. На рис. VI, 10 схематически изображены зависимости давления насыщенного пара чистого растворителя АВ) и растворов разной концентрации А В и А В") от температуры. Как видно из рисунка, температура кипения раствора Т, отвечающая точке С пересечения кривой А В с изобарой внешнего давления ро, всегда выше температуры кипения растворителя при том же давлении (точка С). Разность ДТ—Г—Tq, очевидно, тем больше, чем больше мольная доля X растворенного вещества в растворе. Пусть раствор настолько разбавлен, что он подчиняется закону Рауля (предельно разбавленный раствор). Найдем количественную зависимость АТ от концентрации раствора при давлении насыщенного пара раствора, равном постоянному внешнему давлению Pi=p°iX =P — = onst. Логарифмируя и затем дифференцируя это уравнение, получаем (при Рп=1 атм)  [c.198]

    Как следует из уравнения (125), при разделении бинарной системы с большими отклонениями от закона Рауля третий компонент в определенном диапазоне концентраций может действовать как разделяющий агент даже в том случае, когда Л1р—Лгр<0. Из уравнения (123) вытекает, что эффективное действие таких разделяющих агентов возможно в тех случаях, когда отношение давлений паров компонентов заданной бинарной системы достаточно велико. Указанные разделяющие агенты могут быть применены в частности для разделения систем, компоненты которых, несмотря на большую разницу температур кипения, образуют азеотропы или в определенной области концентраций имеют состав пара, мало отличающийся от состава жидкости. Отсюда вытекают следующие положения, на основании которых должен производиться выбор разделяющих агентов. [c.43]

    Выбор разделяющих агентов с помощью данных о равновесии между жидкостью и паром заключается в сравнении на основании этих данных величины отклонений от закона Рауля в бинарных системах, образованных предполагаемым разделяющим агентом и каждым компонентом заданной смеси. По уравнениям (58) или (62) с помощью данных о равновесии можно рассчитать коэффициенты активности или их отношение, что дает возможность определить значения функций Ф для бинарных систем. Далее по уравнению (121) можно рассчитать среднее увеличение коэффициента относительной летучести, вызываемое прибавлением рассматриваемого вещества. Таким образом, по данным о равновесии между жидкостью и паром можно дать не только качественную, но и количественную оценку эффективности предполагаемого разделяющего аген га. [c.46]

    В реальных растворах жидкостей в жидкостях, в которых заметно различаются силы взаимодействия между частицами, и в растворах конечных концентраций твердых веществ в жидкостях закон Рауля не соблюдается. Чтобы учёсть отклонения от [c.36]

    При 1 1,[соких даплениях закон Рауля-Дальтона применим к реаль-1ГЫМ га ам п жидкостям, если давлеппе паров жидкости и давление систем),I заменить соответственно фугаспостью жидкости и фугас-иостью паров. [c.188]

    Пример 1.4. Четыреххлористый углерод и бензол — это жидкости неограниченно смешивающиеся друг с другом форма изобарных и иаотерми ческих кривых кипения и конденсации данного раствора идентична форме этих кривых, идеального раствора. Однако расчет условий парожидкостного равновесня для веей системы по уравнениям, основанным на законах Рауля п Дальтона, был бы неточен. В табл. 1.3 приведены опытные данные, полученные путем измерения действительного суммарного давления рд паров системы СС14—С,На при постоянной температуре 50 °С и при различных составах равновесных фаз. [c.44]

    На фиг. 8 представлены кривые парциальных давлений одного из компонентов бинарного неидеального раствора в функции мольного состава жидкой фазы для различных положительных отклонений от закона Рауля. При некоторых определенных значениях величин отклонений от свойств идеального раствора и, в частности, для систем, компоненты которых имеют близкие температуры кипения, кривая общего давления паров системы может иметь экстремальную точку. В этом случае раствор, состав которого отвечает максимуму или минимуму суммарной упругости паров, называется азеотропи-ческим раствором и характеризуется тем, что жидкость кипит при постоянной температуре и находится в равновесии с паром одного и того же с нею состава [7]. [c.17]

    Оценку эффективности различных растворителей для экстракционной перегонки можно произвести различнымт способами. Предварительный отбор может быть выполнен путем измерения температур кипения смесей углеводородов и растворителя. Хороший растворитель должен обладать значительно более низкой экспериментально измеренной температурой кипения смеси, чем температура, рассчитанная на основе линейной зависимости между составом и температурой кипения. Это иллюстрируется графиком (рис. 5), выражающим зависимость температуры кипения смеси метил-циклогексана с анилином от состава [11]. Экспериментальная кривая, выражающая зависимость температуры кипения от состава смеси, расположена значительно ниже пунктирной линии, соответствующей линейной зависимости между температурой кипения и составом. Это показывает, что образуются неидеальные растворы, для которых отклонения от закона Рауля имеют положительное значение. Экспериментальные данные по равновесию пар—жидкость показали, что в качестве растворителей для [c.100]

    Абсорбционные масла, приготовляемые из парафинистых нефтей, имеют лучшие абсорбционные свойства, чем полученные из нефтей других типов. Из закона Рауля о понижении давления пара следует, что из двух абсорбентов лучшим будет тот, чей молекулярный вес меньше. Однако было найдено, что закон Рауля не всегда справедлив для реальных жидкостей [43]. Вилсон п Уайлд (Wilson and Wylde [44]) нашли (для четырех растворителей), что по мере уменьшения молекулярного веса увеличивались отклонения от закона Рауля. Наблюдаемые отклонения были достаточно велики, чтобы частично компенсировать влияние изменения молекулярного веса. Эти авторы использовали фракции смазочных масел нефтей из Калифорнии, Мексиканского залива, Пенсильвании и касторовое масло (молекулярный вес в этом ряду растет). Значительное влияние оказывает также давление. Теория соблюдается до давлений 7 ат, при давлениях 35—55 ат отклонения достигают 70 % н становятся равными 100 % при 105 ат [45]. [c.470]

    Уравнение (121) показывает, что удельный удерживаемый объем уменьшается с ростом молекулярного веса неподвижной жидкости М и с ростом давления пара Рд чистого жидкого компонента. При данном Ро (т. е. для данного компонента) и при данной температуре Т колонки для увеличения удерживаемого объема надо выбрать растворитель, в котором данный компонент растворяется, давая большие отрицательные отклонения от закона Рауля (т. е. 7о<1)> и, наоборот, для уменьшения значения (газ-жидкость) при ТОМ жб Ро И при ТОЙ жс темперзтуре надо выбрать растворитель, в котором данный компонент растворяется, давая большие положительные отклонения от закона Рауля. [c.594]

    Для растворов, которые точно подчиняются закону Рауля, кривые температура — состав могут быть построены по расчетным данным. Если же смесь дает отклонения от закона Рауля, то кривая может быть построена по опытным данным. Однако, если отклонения эти очень велики, то на кривых давление пара — состав (или температура кипения —состав) может появиться максимум или минимум в зависимости от того, положителынз1е или отри-[[ательные отклонения проявляют эти растворы. В точках максимума или минимума кривая жидкости обязательно коснется кривой пара. Такая точка, в которой состав пара и состав жидкости одинаковы, называется азеотропной точкой. Смесь кипит как одно целое, и разделить смесь иа составные части путем перегонки оказывается невозможным. [c.200]

    Закон Рауля в таком виде относптся к так называемым идеаль-ны.м жидкостям, но во многих практических случаях на его основе можно проводить расчеты, дающие вполне приемлемые результаты. Для нефтепродуктов при давлении до 4—5 ат расчеты по закону Рауля можно проводить с точностью 90—95%. При более высоких давлениях отклонения составляют большую величину и требуются-другие методы расчета (см. главу двенадцатую). [c.146]

    Когда чистая жидкость В находится в равновесии со своим паром, свободная энергия жидкого и парообразного вещества В должна быть одинаковой. Испарение и конденсация происходят с одинаковой скоростью. Если к жидкости добавляется небольшое количество нелет чего растворенного вещества А, свободная энергия или способность к испарению вещества В в растворе понижается, поскольку некоторая часть молекул раствора, достигающая поверхности раздела жидкости и газа, относится к веществу А, а не к В. Однако обратная тенденция, конденсация пара в жидкость, остается неизменной, потому что в паровой фазе отсутствуют молекулы типа А, которые могли бы помещать молекулам типа В конденсироваться. При постоянной температуре частота, с которой молекула жидкости достигает поверхности с достаточной кинетической энергией, чтобы перейти в паровую фазу, одинакова в чистом веществе Вив растворе, если считать, что раствор обладает идеальными свойствами (рис. 18-11). Однако предполагается, что растворенное вещество А является нелетучим. Поэтому не все молекулы, достигающие поверхности с указанной энергией, могут на самом деле покинуть жидкость. Если 1% молекул в растворе принадлежит к типу А, то давление пара В составит лишь 99% давления пара чистого вещества В. Это утверждение основано на законе Рауля  [c.139]

    Содержание разделяющего агента в паровой фазе Ур зависит от его концентрации в жидкости и летучести по отношению к компонентам заданной смеси р. Величина р, как и для любой нендеальной смеси, является функцией состава. Вверху колонны разделяющий агент находится в смеси с отгоняемыми компонентами, с которыми он образует системы с наибольшими отклонениями от закона Рауля. По мере приближения к кубу возрастает концентрация компонентов, с которыми разделяющий агент образует системы с наименьшей степенью неидеальности. Соответственно с этим при малом различии температур кипения чистых компонентов исходной смеси р уменьшается по высоте колонны от ее верха к кубу. Если отгоняемый компонент имеет более низкую температуру кипения, чем остающийся в кубе, то коэффициент относительной летучести разделяющего агента может изменяться в обратном направлении. При небольшом из-мeнeнliи р, имеющем обычно место при большом различии температур кипения компонентов заданной смеси и разделяющего агента, для расчетов может использоваться усредненное значение р. Например, при концентрации разделяющего агента л р = 0,7 мол. доли и изменении р от 0,15 до 0,1 величина 1/(1—//р) изменяется от 1,35 до 1,24, что отвечает отклонению от средней величины 1,295, равному 4,2%. [c.222]


Смотреть страницы где упоминается термин Жидкости закон Рауля: [c.15]    [c.47]    [c.200]    [c.201]    [c.205]    [c.30]    [c.58]   
Физическая и коллоидная химия (1960) -- [ c.116 ]




ПОИСК





Смотрите так же термины и статьи:

Рауль

Рауля закон



© 2025 chem21.info Реклама на сайте