Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метанол ассоциация

    Ассоциированными называют жидкости, в которых имеются значительные межмолекулярные ассоциации, обусловленные наличием водородных связей. Примером может служить метанол. [c.67]

    Теплота адсорбции метанола в первом случае из-за образования водородных связей с кислородными комплексами на поверхности сажи велика. Благодаря кислотному характеру этих комплексов теплота адсорбции метанола вначале выше теплоты его конденсации и, постепенно уменьш аясь с ростом заполнения поверхности, приближается к теплоте конденсации сверху. Такая зависимость теплоты адсорбции от заполнения поверхности типична для неоднородной поверхности. В отличие от этого на ГТС, не содержа щей кислородных поверхностных соединений, теплота адсорбции метанола гораздо меньше теплоты конденсации и при увеличении заполнения поверхности постепенно возрастает вследствие ассоциации молекул спирта с образованием межмолекулярных водородных связей адсорбат — адсорбат и приближается к теплоте конденсации снизу. [c.16]


    Ассоциация спиртов резко повышает их плотность, температуры кипения и плавления, поэтому все спирты — жидкости с = 65 °С (метанол), 78 °С (этанол), 97 °С (и-пропанол), 117 °С ( -бутанол), у фенолов температуры кипения и плавления еще выше. Так, фенол имеет , = 41 °С и / п = 182 °С, что отвечает более высокой прочности водородной связи (40 кДж/моль), чем в спиртах. [c.421]

    А. Если при интерпретации кривых распределения за основу принять модель ассоциации молекул метанола (рис. 9.8), то можно выделить три существенно различных состояния молекул  [c.238]

    Предположения, на которые опирается уравнение (74), подтверждаются и следующими соображениями. Нитро метай имеет диэлектрическую проницаемость 39, что больше, чем 33 у метанола, но не обладает такой выраженной способностью к сольватации анионов, как гидроксилсодержащие растворители. Из данных по электропроводности следует, что в нитрометане константа ассоциации бисульфата пиридиния равна 600 [62]. При такой константе степень диссоциации ионных пар в 0,1 М растворе будет составлять только 15%. Это и не удивительно, так как в похожем растворителе — нитробензоле, диэлектрическая проницаемость которого всего на 3 единицы мень- [c.392]

    Физические свойства спиртов зависят от строения углеводородного радикала, количества гидроксильных групп и их положения. Первые представители гомологического ряда спиртов — жидкости, высшие — твердые вещества. Метанол и этанол смешиваются с водой в любых соотношениях. С ростом молекулярной массы растворимость спиртов в воде падает. Высшие спирты практически не растворимы в воде. Спирты обладают аномально высокими температурами кипения по сравнению с углеводородами, что объясняется сильной ассоциацией молекул спирта в жидком состоянии за счет образования достаточно прочных водородных связей. [c.351]

    С развитием техники эксперимента и инструментальных методов анализа стало возможным экспериментальное определение константы равновесия. Например, константа равновесия реакции 1.1 определена на проточно-циркуляционной установке прп атмосферном давлении на катализаторе СНМ-1 [30]. По- лученные значения удовлетворительно совпадают с расчетными, вычисленными из термодинамического уравнения с учетом теплового эффекта ассоциации молекул метанола в состоянии насыщенного пара  [c.43]

    В связи со сказанным нами были рассчитаны константы ассоциации в ряду нивелирующих растворителей (метанол, этанол и другие спирты) и в ряду дифференцирующих растворителей (нитрометан, нитробензол, ацетон и другие). Расчеты были произведены по методу Фуосса и Крауса по данным Вальдена, Хартли и других (табл. 25). [c.257]


    Исследования ассоциации метилового спирта в четыреххлористом углерода, произведенные Малышевым, показали, что полоса ОН группы, характерная для чистого спирта, превращается в резкую линию, характерную для паров метанола в его разведенных растворах, т. е. в этих растворах метанол находится в виде мономерных молекул. Но уже в 5-процентном растворе, наряду с резкой линией, наблюдается шч- [c.463]

    ИКС ассоциация в парах метанола, 3 мк. [c.431]

    Следует отметить, что с уменьшением степени ассоциации в жидкости при переходе от воды к метанолу и этанолу численные значения в их смесях с ацетоном уменьшаются (рис. 20), что является следствием ослаб- [c.48]

    Для растворов тетраалкиламмониевых солей (табл. 14) величины 72 быстро уменьшаются с ростом концентрации, что характерно для электролитов с высокой степенью ассоциации в растворе. Меньшие значения для 72 растворов электролитов в этиловом спирте могут быть связаны с тем, что этанол имеет меньшую диэлектрическую проницаемость, чем метанол, и ионная ассоциация в нем проявляется сильнее, о чем свидетельствуют также данные об электропроводности [71]. [c.186]

    Область малых концентраций. Водные растворы неэлектролитов представляют обширный класс жидкостей, структура и свойства которых изучаются различными методами. При исследовании рассеяния рентгеновского излучения смесями метилового спирта с водой И. В. Радченко и Ф. К. Шестаковским обнаружено, что присутствие в воде молекул метанола укрепляет ее структуру, вызывая образование более прочных молекулярных ассоциаций, чем в чистой воде. М. Ф. Букс, и А. В. Шурупова, изучая рассеяние света растворами спиртов в воде, обнаружили узкий максимум интенсивности в области малых концентраций спирта. Проведенный ими теоретический анализ концентрационного рассеяния света показывает, что наблюдаемый максимум интенсивности при малых концентрациях спирта не связан с флуктуациями концентрации. Теоретическая кривая светорассеяния проходит через экспериментальные точки во всей области концентраций выше 0,1 мольных долей спирта. При концентрации (0,05 0,7)т на экспериментальной кривой выделяется узкий максимум, которого нет на теоретической кривой. Можно предположить, что этот максимум интенсивности светорассеяния при малых концентрациях спирта обусловлен флуктуациями структуры раствора, связанными со стабилизацией структуры воды. [c.298]

    Табл. 4.1.2 содержит также данные, позволяющие сравнить стерические характеристики гидроксильной и других групп. Хотя гидроксильная и метильная группы обладают близкими объемами Ван-дер-Ваальса, эффективный размер гидроксильной группы, не имеющей сферической симметрии, меньще (в отсутствие ассоциации за счет водородных связей). Больщая конформационная свобода гидроксильной группы отражается также в относительно низком вращательном (С—О) барьере для метанола. К существованию преимущественной конформации могут приводить также такие взаимодействия [3], как наличие внутримолекулярных во- [c.17]

    На взаимную растворимость жидкостей при постоянных температуре и давлении влияют посторонние примеси. Растворимость тем больше, чем слабее межмолекулярные силы между одноименными молекулами, ее можно повысить при увеличении энергии взаимодействия между разноименными молекулами. В системе н-СбНи—СНзОН метанол сильно ассоциирован при комнатной температуре, поэтому взаимная растворимость компонентов мала и заметно повышается с ростом температуры в результате распада ассоциатов метанола. Ассоциацию СН3ОН можно изменять, добавляя небольшое количество третьего компонента, который не взаимодействует с гексаном. Так, при добавлении небольших количеств воды ассоциация метанола усиливается, а при добавлении бензола ослабляется. В зависимости от этого повышается или понижается критическая температура расслоения системы. [c.79]

    Ассоциация молекул и структура жидкостей и твердых тел. Молекулы таких жидкостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)з, (Н.,0)2, (СНзОН)2, трнмеры, тетрамеры и т. д., пока тепловое движение не разрушит образовавшегося кольца или цепочки молекул. Когда тепловое движение понижено, через водородные связи создается кристаллическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две докорные Н-связи и через два атома Н —две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты, и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (ближний порядок). Эта структура делает воду уникальным по свойствам растворителем. Ассоциация через водородные связи приводит к аномально высоким значениям диэлектрической проницаемости таких жидкостей, как НС , НзО, метанол и др. Водородные связи типа —СО...Н—N1 — [c.139]


    Все реальные растворы в той нли иной степени отличаются от идеальных, следовательно, при любых давлениях дают отклонения от закона Рауля. Наиболее приближаются к идеальным растворам системы, составленные из компонентов сходного хими1еского строения (гомологов), при смешении которых не происходит ассоциации молекул или распада ассоциированных компонентов в таких системах образование растворов из компонентов не сопровождается заметным изменением объема или тепловым эффектом. Примерами могут служить двухкомпонентные растворы бензол — толуол, н-гексан — н-гептан, метанол"— этанол и др. [c.251]

    Как уже было сказано, связь между средним квадратом флуктуаций плотности <С(Др) > и ассоциацией или комплексообразованием существует. Но она не проста. В общем, появление устойчивых ассеци-атов и комплексов, рост ассоциации сопровождаются уменьшением изотермической сжимаемости и, следовательно < (Ар) >. Увеличиваются критические температура и давление Например, вода более ассоциирована, чем метанол. Изотермическая сжимаемость воды при 20°С равна 4,7-10 Па" а метанола 12,1-10" Па , соответственно критические температуры и давления воды = 374,2° С, / к = = 222-10 Па, метанола Г = 240° С, Я, ==79,7-10 Па. Другой пример — третичный бутанол значительно слабее ассоциирован, чем нормальный бутанол. В соответствии с этим у третичного бутанола Гд = 235°С, а у нормального == 287,0°С. У органических соединений и других молекулярных жидкостей энергия взаимодействия молекул, как правило, не превышает 10—20 кДж/моль, поэтому и сжимаемость таких жидкостей вдали от критического состояния при одннако- [c.138]

    Теплота смачмания полярными жидкостями [117, 118] понижается по мере дегидроксилирования поверхности кремнезема. Даже в случае метанола теплота смачивания на полностью дегидроксилированной поверхности составляет 75 эрг/см по сравнению со значением 50 эрг/см2 для воды. По-видимому, теплота смачивания зависит от возникающих ассоциаций, в которых объединяются полярные группы органической молекулы и полярные силанольные группы на поверхности, и ассоциаций. [c.894]

    Растворитель может оказывать очень сильное влияние на константы скорости реакций между ионами и органическими молекулами, будь то нуклеофилы или основания. Например,, при переходе от воды к ацетону константа скорости второго порядка реакции между хлорид-ионом и метилиодидом возрастает приблизительно в 10 раз. Другой пример — рацемизация оптически активного 2-метил-З-фенилпропионитрила под действием метоксид-иона. Скорость этой реакции в диметилсульфоксиде в 10 раз больше, чем в метаноле [8]. Эти эффекты ускорения могут быть отчасти обусловлены влиянием диэлектрической проницаемости среды, однако в основном они определяются специфическим действием растворителя. Как указывалось выше, наибольшие различия замечены между протонными и апротонными растворителями. Переход от протонного растворителя к апротонному может приводить к последствиям двоякого рода с одной стороны, к смещению равновесия между ионными парами и свободными ионами, а с другой — к изменению специфической сольватации ионов, которая обычно является более сильной в среде протонного растворителя. Важнуку роль процесса ассоциации ионов в определении кажущейся нуклеофильности можно проиллюстрировать на примере галогенидов лития и тетра- -бутиламмония. В реакции с -бутил-п-бромбензолсульфонатом в ацетоновом растворе эти соли соотносятся по реакционной способности следующим образом (все соли берутся в концентрации 0,04 моль/л)  [c.49]

    В метаноле или в нитрометане константа ассоциации бромида тетрабутиламмония в ионную пару слишком мала для прямых измерений (т. е. меньше 10), но в нитробензоле она равна 56 [31]. Различие между метаноль-ными и нитробензольными растворами можно объяснить образованием водородной связи между метанолом и бромид-ионом, однако не очевидно, может ли нитрометан вообще в значительной степени ассоциироваться с каким-нибудь ионом. Хайн [32] предполагает, что нитробензол сдецифически взаимодействует с ионной парой. Все три растворителя имеют примерно равные диэлектрические проницаемости. [c.296]

    Молекула метанола имеет дипольный момент, равный 1,7060 она склонна к ассоциации, которая объясняется возможностью присоединения водорода гидроксильной группы к неподеленйой гаре электронов кислорода другой молекулы с образованием водородной связи. Показатель преломления при 20 °С равен 1,3286 и при 45°С—1,3188 [ПО]. [c.125]

    Другие исследователи применяют неводные растворы, особенно метанол и (в меньшей степени) нитрометан, и экстраполируют полученные результаты на случай воды. Однако неблагоприятные свойства воды не отсутствуют полностью и у других растворителей. Многие из растворителей полярны (например, спирты), и можно указать иа некоторые факты, свидетельствующие о метанолизе комплексов [132]. Далее, ассоциация ионов более существенна в растворителях с 1шзкой диэлектрической проницаемостью, а в смешанных растворителях может происходить предпочтительная гидратация ионов. Очевидно, что ни воду, ни неводные растворители нельзя рассматривать как нейтральные при реакциях комплексных ионов, и ири интерпретации кинетических результатов это обстоятельство следует принимать во внимание. [c.108]

    В растворах с Н-связями плотность часто превышает среднее арифметическое, рассчитанное по плотностям компонентов [2019]. Здесь опять-таки следует сначала уточнить, какие ассоциаты присутствовали в компонентах до и после смешения. Можно ожидать, что плотность будет в общем следовать той же зависимости, что и теплота смешения,— уменьшаться при разрыве Н-связей и увеличиваться при их образовании. Иногда, разумеется, пространственные препятствия ведут к отклонениям от этого простого правила. Изменения плотности применялись для обнаружения ассоциатов. Одним из ранних примеров работы, в которой ассоциация была привлечена для объяснения отклонений в растворах фенолов, является работа Брэмли [263]. См, также работы Мэдсена 1314 (толуол — метанол), Васенко и Дубровского [2104, 2105] (вода — амид, смеси амидов) и Такета [1992, 1993] (чистые оксикислоты). Обычно исследуют несколько физико-химических свойств, в том числе и плотность.  [c.54]

    Томас опубликовал интересную работу [2021] о влиянии Н-связи на вязкость автор подчеркивает, что его трактовка носит приближенный характер. Он скомбинировал видоизмененное уравнение Андраде для зависимости вязкости от температуры с соотношением между давлением пара и скрытой теплотой испарения, а также с функцией, устанавливающей зависимость между теплотой образования Н-связи и степенью ассоциации. Отсюда он вычислил приближенную величину скрытой теплоты испарения и сравнил ее с соответствующим значением для неассоциированной жидкости, воспользовавшись модифицированным математическим выражением для правила Троутона. Можно допустить, что разность между этими величинами равна теплоте образования Н-связи при температуре кипения . Ясно, что такая комбинация эмпирических соотношений позволяет сделать только оценку, Томас и не претендует на большее. Интересно, что он получил в среднем значение 5 ккал/моль для нормальных спиртов от метанола до октанола и 3,8 ккал/моль для спиртов с разветвленной цепью. [c.61]

    Исследованию ионной ассоциации в неводных растворителях посвящено значительное число работ, но политермических исследований с охватом области низких температур очень мало. В работе [72] исследовали температурные зависимости констант ассоциации ионов в ряду алифатических спиртов и нашли для NaJ и KJ положительные значения Д//°ас и Д5ас, которые возрастают с увеличением углеводородной цепи спирта (исключение составляют растворы NaJ в метаноле и этаноле, для которых Д// с < О-Увеличение численных значений А ас с температурой было обнаружено в пропаноле для других солей щелочных металлов (K IO4, KJ, Li l) [73, 74]. [c.186]

    Другие возможные области применения данного источника — это исследование короткоживущих промежуточных продуктов или определение компонентов смесей, содержащихся в очень малых количествах, поскольку наложением пиков молекулярных ионов можно пренебречь. Гомер и Инграм [767] использовали этот метод для обнаружения метильного радикала в продуктах фотодиссоциации ацетона. Источник также применим для изучения ассоциированных соединений, которые не могут быть введены в обычную нагретую ионизационную камеру следует отметить его успешное использование для изучения паров воды, метанола и смесей этих веществ [149]. Продукты ассоциации метанола представляют собой ионы (СНзОН)ж, где х составляет от 1 до 4. В водном растворе метанола наблюдались ионы (НзО) , (СНдОН) и [( Hз0H)y(H20)x.yl  [c.134]

    Исследовались ионно-молекулярные реакции в системах метан, метанол, вода, аргон и криптон с иодом [237], галогенными солями щелочных металлов [354], азотом, кислородом, окисью углерода, двуокисью серы, двуокисью углерода, карбонилсульфидом и сероуглеродом [89] натрий, калий, рубидий и цезий с водородом, дейтерием и кислородом [79]. Исследовалось взаимодействие атомов аргона с одно- и двузарядным неоном и аргоном [5] водород, кислород, вода и их бинарные смеси [144] триэтилалюминий и октен-1 [387] атомы азота с озоном, молекулярные ионы водорода с водородом, азотом гелием, аргоном и криптоном [391]. Гиз и Майер [210] исследовали ионно молекулярные реакции в приборе, в котором первичный пучок пересекал продольно ионизационную камеру. Ирза и Фридман [269] изучали диссоциацию НВ", вызванную столкновением. Филд [173] описал ионно-молекулярные реакции высшего порядка и получил масс-спектр этилена при сверхвысоком давлении. Бейнон, Лестер и Сондерс [45] исследовали ионно-молекулярные реакции разнообразных органических кислород- и азотсодержащих соединений они установили, что наиболее значительными пиками в их масс-спектрах являются пики с массой на единицу больше молекулярной. Беккей [34] исследовал ассоциацию воды и ионно-молекулярные реакции, используя ионный источник с ионизацией на острие. Хенглейн и Мучини [238] проанализировали значение ионно-молекулярных реакций в радиационной химии. [c.664]


Смотреть страницы где упоминается термин Метанол ассоциация: [c.441]    [c.149]    [c.105]    [c.153]    [c.81]    [c.122]    [c.154]    [c.35]    [c.154]    [c.77]    [c.513]    [c.51]    [c.464]    [c.262]    [c.58]    [c.147]    [c.50]    [c.166]    [c.71]    [c.226]   
Основы общей химии Том 2 (1967) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация



© 2025 chem21.info Реклама на сайте