Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец определение кислорода

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    Иодометрический метод с помощью гидроокиси марганца (II) (Метод Винклера). Это самый старый метод. В ш елочной среде кислород быстро реагирует с гидроокисью марганца Мп 0Н)2, образуя водные окислы марганца (III) и марганца (IV). Определение надо, естественно, проводить при отсутствии кислорода воздуха. Переходя затем к кислой среде, определяют марганец (III) и марганец (IV) иодометрически. Ниже приводится простой ход анализа. [c.820]

    Присутствие в анализируемой воде ионов марганца, цинка, меди и железа завышает результаты определения жесткости. Кроме того, марганец, окисляясь в щелочной среде кислородом воздуха, мешает титрованию, создавая при концентрации 0.1 мг в пробе и выше сероватую окраску жидкости. Для устранения этой помехи вводят в титруемую жидкость несколько капель насыщенного раствора сернокислого гидразина или 5%-ного раствора солянокислого гидроксиламина, препятствующих окислению марганца. Влияние меди, цинка и железа устраняют введением нескольких капель 2%-ного раствора сульфида натрия. Растворы всех этих веществ прибавляют к анализируемой воде до аммиачной буферной смеси. [c.394]

    Сиккативы представляют собой жидкие или твердые вещества (катализаторы), ускоряющие высыхание растительных масел, красок, эмалей, и лаков, изготовленных на масляной основе. Сиккатив поглощает из воздуха кислород, который быстро переходит в масло благодаря этому сокращается время, необходимое для образования твердой пленки краски. Установлено, что лучшими сиккативами являются вещества, в состав которых входят е-таллы кобальт, марганец, свинец, цинк, кальций. При введении в состав сиккатива двух-трех металлов его действие усиливается. Многие пигменты сами являются ускорителями высыхания масел (например, свинцовый сурик и свинцовые белила, умбра, цинковая пыль), поэтому при определении количества вводимого сиккатива необходимо учитывать наличие таких пигментов в краске. Наибольшая практически необходимая скорость высыхания наблюдается при введении сиккатива в количестве 4—6% от общего объема краски. Вводить сиккатив в больших количествах ие рекомендуется по следующим причинам а) одновременно с высыханием происходит очень быстрое старение пленки покрытия, которое сопровождается появлением трещин б) при очень быстром образовании поверхностной пленки внутри покрытия долгое время сохраняется непросохшее масло, благодаря чему поверхностная пленка через некоторый период времени отсыревает и делается липкой. [c.185]

    В присутствии больших концентраций кальция выделяется гидроокись кальция, которая адсорбирует на своей поверхности марганец и железо, что исключает возможность их определения. Поэтому Плева [19] предлагает применять комплексон для связывания кальция. При окислении марганца и железа кислородом воздуха в качестве побочной реакции происходит восстановление кислорода до перекиси водорода, которая мешает определению обоих элементов. Согласно автору, перекись водорода лучше всего удалять, продержав раствор в течение 45 мин. с крахмалом. [c.232]


    Как показывает опыт, вакуумный метод применим для анализа титана и его сплавов, содержащих до 12% олова, 5% алюминия и 15% молибдена. С простыми усовершенствованиями метод можно применить для определения кислорода и водорода в сплавах, содержащих марганец большие количества алюминия, хром, медь и ванадий. [c.77]

    Метод предназначен для определения концентрации кислорода в воде до и после ее очистки, а также в воде из водоемов. Метод основан на йодометрическом определении кислорода, израсходованного на окисление двухвалентного марганца в четырехвалентный. Кислород, растворенный в анализируемой воде, фиксируют, окисляя им двухвалентный марганец в четырехвалентный в щелочной среде. Реакции протекают по следующим уравнениям  [c.256]

    Для отдельных источников и водопроводов могут потребоваться следующие дополнительные определения кислород, растворенный в воде аммиак белковый марганец Мп фенолы сероводород НаЗ и др. [c.386]

    Количественное определение кислорода в воде. Аналитическое определение кислорода в котловой воде не может быть рассмотрено здесь в деталях, однако отдельные замечания могут быть полезными. Большинство методов можно разделить на две группы. К первой относятся те методы, которые используют принцип, разработанный Винклером в этом классическом методе к воде сначала добавляется соль марганца, а затем щелочь для осаждения гидроокиси марганца, которая затем взаимодействует с находящимся в воде в свободном состоянии кислородом, образуя гидроокисные соединения, в которых марганец обладает более высокой валентностью при добавлении иодистого калия эти гидроокиси освобождают эквивалентное количество [c.411]

    В качестве примера влияния побочных процессов можно рассмотреть определение марганца, никеля пли кобальта титрованием их солей рабочим раствором окислителя в щелочной среде. При обработке растворов солей марганца, никеля или кобальта едкой щелочью и окислителем выпадают черные осадки высших окислов. Эти окислы не имеют обычно оире/гелен-ного состава например, при осаждении никеля обычно получается смесь КМ(0Н)2 и N1 (0Н)з. Кроме того, в щелочной среде марганец окисляется частично кислородом воздуха и т. д. Поэтому количество окислителя, затраченного на осаждение названных элементов в щелочной среде, не находится в точном стехиометрическом отношении к количеству никеля или марганца. В подобных случаях объемный метод, очевидно, неприменим.  [c.267]

    Определению мешает марганец, который при экстрагировании в щелочной среде каталитически ускоряет окисление дитизона кислородом воздуха. Это мешающее влияние устраняется добавлением уксуснокислого гидразина к экстрагируемой пробе. Если марганец присутствует в большой концентрации, пробу экстрагируют дважды способом, описанным выше. [c.299]

    Патент США, № 4019859, 1977 г. Предложен метод стабилизации водных растворов, содержащих сульфиты или бисульфиты щелочных металлов, и катализатора триэтилентетрамином. Сульфиты или бисульфиты щелочного металла, например, сульфит или бисульфит натрия, широко используются для химической деаэрации вследствие их низкой стоимости, хотя эти соединения не препятствуют образованию отложений. Исследования, направленные на изыскание способов ускорения реакции кислорода с сульфитом, показали, что определенные водорастворимые соединения каталитически увеличивают скорость этой реакции. Большинство таких катализаторов — это катионы тяжелых металлов, имеющие величину заряда > 2. Железо, медь, кобальт, никель, марганец являются наиболее эффективными катализаторами этой реакции. [c.47]

    Химическое определение растворенного кислорода чаще всего выполняют по методу Винклера. Этот метод основан на способности растворенного кислорода переводить марганец со степенью окисления +2 в марганец со степенью окисления -(-4 последний, реагируя с йодидом калия, выделяет из него свободный йод, который оттитровывается гипосульфитом натрия. Результат определения пересчитывают в эквиваленты кислорода и выражают в мг ОгМ. [c.142]

    Наиболее важна в практическом отношении возгонка металлов в присутствии кислорода, азота, водорода, хлоридов и инертных газов. В присутствии кислорода на поверхности возгоняемого металла образуется его окись в виде пленки, через которую при возгонке должны диффундировать металл и примеси, находящиеся в нем. В определенных случаях эта окисная пленка по отношению к некоторым примесям действует как запорный слой, не пропускающий эти примеси в газовую фазу. Так, если скорость испарения металла невелика и окисная пленка не имеет разрывов или металл по поверхности специально засыпан слоем его окисла, то металлические примеси, восстанавливающие этот окисел, задерживаются в слое окисла. Например, цинк помещают в тигель и засыпают окисью цинка, при возгонке цинка многие примеси (магний, марганец, алюминий) будут восстанавливать окись цинка и задерживаться в ней. Отделить цинк от кадмия и ртути таким путем нельзя, потому что эти металлы не взаимодействуют с окисью цинка. [c.27]


    Наиболее важные работы Шееле посвящены органической химии, основоположником которой он, по существу, и был. Он получил много органических кислот, включая щавелевую, которую применял как реагент для определения кальция [114]. Шееле открыл ряд элементов в том числе молибден [115], вольфрам [116], марганец [117] и барий [118]. Кислород, водород и азот он открыл независимо от своих английских коллег и так же, как 0] и, [c.61]

    После данного Бойлем нового определения понятия об элементе были открыты водород, кислород, азот, марганец, никель, кобальт, платина, вольфрам, теллур и хром. [c.10]

    Марганец. Промежуточные окислы реагируют подобно смеси, состоящей из окиси двуокиси последнюю определяют с щавелевой кислотой (или солью Мора) и перманганатом. Высшие окислы марганца мешают определению закиси железа и наоборот, так как они реагируют с образованием железных и марганцовистых солей, хотя избыток кислорода может быть точно определен. [c.38]

    Мы не можем касаться здесь аналитической техники определения кислорода. Из реагентов, применяемых для этих целей, можно назвать белый фосфор, органические поглотители кислорода (такие, как пирогаллол или лейкосоединения красителей), медь, гипосульфит натрия и хлористый хром. Для растворов самым распространенным является, повидимому, метод Винклера в нем кислород используется для освобождения эквивалентного количества хлора (через промежуточную систему двухлористый марганец — треххлористый марганец), который легко может быть определен путем титрования иодистым калием и тиосульфатом. Если для определения кислорода применяются пирогаллол или лейкосоединения красителей (белое индиго, лейкометиленовый синий), процесс освобождения кислорода может быть прослежен колориметрически или спектрофотометрически. Подобная же методика применима при превращении гемоглобина в оксигемоглобин такой метод определения кислорода был впервые введен при исследовании фотосинтеза Хоппе-Зейлером [5] и позже использован Хиллом [64, 74]. Для тех же целей Остергаут [23, 24] предложил использовать кровь краба, содержащую гемоцианин и синеющую в присутствии кислорода. [c.254]

    Экстракция оксихинолината марганца Мп(С9НбОХ)2 осуществляется хлороформом [604, 1002, 1263, 1447, 1496, 1497], четыреххлористым углеродом, бензолом [196], изоамиловым спиртом [228]. Марганец количественно экстрагируется из водной фазы 0,1 М раствором оксихинолина в хлороформе при pH 6,5—11. Уменьшение концентрации реагента в 10 раз сдвигает pH начала экстракции оксихинолината Мп (II). При более высоком значении pH оксихинолинат Мп(П) окисляется кислородом воздуха до оксихинолината Мп(1П). Для предотвращения окисления Мп(И) вводят солянокислый гидроксиламин [239, 1447]. Изучено влияние различных комплексообразователей на экстракцию оксихинолината Мп(П) хлороформом [1002, 1447] (рис. 30). Метод экстракции оксихинолината Мп(И) хлороформом нашел широкое применение для отделения и определения содержания марганца различными методами (фотометрии, нейтронной активации, пламенной фотометрии) в разных объектах [344, 684, 832, 904, 1002, 1014, 1253, 1263, 1473, 1496, 1497]. При помощи экстракции окси-хинолинатов можно разделить Ге(1П), А1(1П) и Мп(П) [1263]. Железо экстрагируется хлороформом при pH 2,8, алюминий — при pH 5,6, а марганец — при pH 10. Для отделения марганца от Ха, К, Са и Зг при анализе нефтяных продуктов на содержание марганца методом пламенной-фотометрии применяют экстракцию его оксихинолината хлороформом [903]. Экстракция марганца в виде 8-оксихинолината хлороформом была применена также для определения его в уране и алюминии [1253]. [c.123]

    В 1852 г. англичанин Э. Франкленд ввел фундаментальное для всей химической науки понятие валентности, т. е. способности атома соединяться с определенным количеством атомов других элементов. Приняв валентность водорода за единицу, удалось определить валентность всех известных элементов. При этом оказалось, что некоторые элементы (щелочные и щелочно-земельные металлы, водород, кислород, фтор) всегда проявляют постоянную валентность, в то время как другие (марганец, сера, олово, железо) проявляют различную валентность в зависимости от атомов-партнеров. [c.195]

    Марганец мешает комплексонометрическому определению кальция и магния, так как окисляется кислородом воздуха в щелочной среде до Ми (III) и Мп (IV), и образует труднораство-римые гидроокиси, которые обесцвечивают индикатор [534]. Добавление восстановителя, например, гидрохлорида гидроксил- [c.37]

    Маргапен,. В ш,елочной среде марганец выделяется в виде гидратированных окислев окисленный кислородом воздуха до четырехвалентного состояния, он разрушает индикатор, сильно влияет на переход окраски раствора в эквивалентной точке и делает невозможным комплексонометрическое определение магния. Мешают даже следы марганца [1073, 1206]. [c.81]

    Влияние марганца. С титановым желтым марганец не дает окрашенного соединения, но в незначительных количествах усиливает окраску раствора вследствие окисления Мп (ОН)з кислородом воздуха с образованием желтого раствора [591, 1028]. С увеличением количества марганца оптическая плотность раствора возрастает, после достижения максимума, с дальнейшим увеличением количества марганца она начинает быстро падать [569]. Влияние марганца сильнее сказывается при больших количествах магния. При использовании смеси поливинилового спирта и глицерина в качестве защитного колЛоида влияние марганца меньше, чем с другими защитными коллоидами. [5 9]. До 8 мкгМп/мл лишь незначительно влияют на определение 1—4 мкгМ /мл [610]. [c.122]

    На титровании марганца (III) раствором гидрохинона основан быстрый и простой непрямой метод определения растворенного кислорода и окислителей в промышленных сточных водах [70, 71] гидромшсь марганца (III), образовавшуюся при окислении гидроокиси марганца (II) кислородом в щелочной среде, подкисляют и титруют марганец (III) раствором гидрохинона потенциометрически или в присутствии ферроина [70] или дифениламина [71]. [c.258]

    Определение хрома при помощи железа (II) описано также в разделах Железо , Ванадий , Марганец , поскольку его можно определять из одной навески вместе с названными элементами. В последнее время предложено несколько видоизменений основного метода. Так, например, Хайэтт й Кобетц определяя ванадий и хром в силико-алюминиевых катализаторах крекинга, титруют сумму ванадия и хрома (оба элемента — в состоянии высшей валентности), а для определения ванадия восстанавливают хром (VI) до хрома (III) азидом натрия. А. И. Филенко пользуется методом с двумя электродами, применяя систему из одного неподвижного и одного вращающегося электрода, и определяет ванадий, хром и марганец из одной навески легированной стали. Эппль и Циттель заменяют платиновый индикаторный электрод графитовым (пиролитическим) и титруют при +1,0 в (Нас. КЭ) среда, как и в других случаях, — сернокислая, но авторы этой работы считают необходимым продувать раствор аргоном. По нашему мнению, это излишне, так как растворенный кислород при процессе анодного окисления железа (II) мешать не может, тем более на графитовом электроде. [c.341]

    В анализе имеют значение только однозамещенные дитизонаты. Дитизонаты марганца и железа практического значения не имеют, так как они образуются в узких пределах в слабощелочных растворах, а в этих условиях марганец и железо окисляются кислородом воздуха до высщих валентных форм, которые с дитизоном не реагируют. Все остальные кислые дитизонаты металлов имеют практическое значение для определения следов металлов в различных объектах. В табл. 14 представлены условия экстракции, окраска и максимумы поглощения дитизонатов некоторых металлов. [c.312]

    Проведение определения. Нейтральный раствор, содержащий марганец и кобальт, подкисляют 5—10 мл нормального раствора серной кислоты, прибавляют 10-20жл 5%-ного раствора комплексона и 10—20 мл 0,1 н. раствора бихромата калия. Нагревают до кипения и охлаждают. Потенциометрическое определение проводят в приборе для титрования в инертной атмосфере, в растворе, полученном следующим образом 20 мл 10%-ного раствора хлорида аммония смешивают с 50 лл концентрированного раствора аммиака и прибавляют 5 г твердого хлорида кальция. Раствор сохраняют под слоем бензола и последние следы кислорода удаляют пропусканием через раствор чистого азота. К раствору прибавляют затем [c.138]

    Принцип метода. Марганец в щелочном растворе триэтаноламина легко окисляется кислородом воздуха в комплексное соединение трехвалентного марганца темно-зелено го цвета. В кислом растворе он мгновенно восстанавливается йодидом калия. Выделившийся йод затем оттитровывают тиосульфатом. Этот метод сначала применили Жибо и Хэкспил [19], замаскировавшие перед подкислением раствора мешающие элементы (железо, медь) комплексоном I. Определению марганца мешает кобальт, также окисляющийся в щелочном растворе триэтаноламина с образованием комплекса трехвалентного кобальта, способного восстанавливаться йодидом калия. Мешают определению также большие концентрации хрома (больше 25 мг). [c.176]

    НИЗКИЙ оптический дихроизм хлоропластов может объясняться именно этой недостаточно строгой ориентацией. Парк и др. [251—253] определили молекулярный состав квантосом, исследуя разрушенные хлоропласты шпината. Для зеленых ламеллярных структур диаметром от 2000 до 80 нм, полученных центрифугированием при постепенно возрастающих скоростях, отношение хлорофилла к азоту было довольно постоянным. Крупные структуры были, по-видимому, лишены гран, тогда как фракция более мелких частиц содержала граны. Эти результаты служат доказательством равномерного распределения хлорофилла по всей ламеллярной структуре хлоропласта. Было высказано предположение, что обычно наблюдаемая флуоресценция одних только гран объясняется более высоким содержанием ламеллярных структур. В квантосомах были обнаружены небольшие количества трех переходных металлов — железа, марганца и меди, причём концентрация марганца оказалась наиболее низкой. Марганец необходим для выделения кислорода при фотосинтезе. Учитывая это. Парк и Пон [253] рассчитали молекулярный вес наименьшей единицы в ламелле, которая, очевидно, еще могла бы осуществлять фотосинтез, т. е. частицы, соответствующей одному атому марганца. Он оказался равным 9,6-10 . Позже [251] расчеты были проведены с учетом данных об объеме квантосом (полученных путем измерений на электронных микрофотографиях), а также результатов определений эффективной плавучей плотности разрушенных ламеллярных структур в ультрацентрифуге. Было обнаружено, что молекулярный вес квантосом равен 2-10 , что соответствует двум атомам марганца. Данные о молекулярном составе квантосом представлены в табл. 1. Мембрана толщиной 10 нм содержит 50% липида и 50% белка. Следовательно, с учетом разницы в плотности (1,0 1,4) можно считать, что на долю липида приходится около 6,5 нм толщины мембраны, а это согласуется с представлением о существовании двойного липидного слоя. [c.35]

    Вообще для определения олова(II) можно применить многие из реактивов, предложенных для титрования мышьяка(III) и сурьмы(III) бромат [3], иодат [4], хлорамин [5], иодхлорид [6], бихромат [7], разумеется в отсутствие растворенного кислорода воздуха. За последние годы было предложено несколько новых реактивов для определения олова в сложных смесях. Эти методы описаны в разделах Марганец и Висмут . Для определения олова(II) в присутствии титана(III) предложена метиленовая синяя, восстанавливающаяся на платиновом электроде [8, 9]. [c.227]

    Ход определения. Навеску удобрения 2,5 г, взятую с точностью 0,001 г, помещают в коническую колбу емкостью 250—300 ыл, смачивают несколькимп миллилитрами дистиллировапной воды, приливают 50 мл 20%-ной соляной кислоты, накрывают часовым стеклом и кипятят 30 мин. Охлажденный раствор переносят в-мерную колбу емкостью 250 мл, доводят объем водой до метки, перемешивают (солянокислотные вытяжки) и фильтруют, отбрасывая первые порции. Переносят 50 мл фильтрата в стакан емкостью 500 мл, разбавляют водой, не содержащей Og, до 350 мл, перемешивают и пропускают со скоростью 7—8 мл/мин через колонку, наполненную 40 г катионита КУ-2 в Н-форме, затем промывают с этой же скоростью катионит 250 ыл воды. Пропускают через колонку 175 мл горячей (50— G0 °С) соляной кислоты (1 2) со скоростью 7—8 мл/мин, элюат собирают в колбу емкостью 250 мл, нагревают до 70—80 °С и нейтрализуют аммиаком до pH = 7 (по универсальной индикаторной бумаге, допускается слабый запах аммиака) для удаления железа. Нейтрализацию раствора выше pH = 8 проводить не рекомендуется, так как марганец(П) в этих условиях легко окисляется кислородом воздуха. Оставляют раствор на несколько минут для коагуляции осадка, затем раствор быстро фильтруют через фильтр красная лента и осадок на фильтре промывают 5—6 раз горячим раствором хлорида аммония порциями по 5 мл. Фильтрат и промывные воды собирают в мерную колбу емкостью 250 мл, после охлаждения доводят объем водой до метки и перемешивают. Снимают полярограмму полученного раствора в области потенциалов О—1,8 В, как описано при построении калибровочного графика. [c.98]

    При анализе этих образцов необ.ходимо было определять 1) марганец и 2) активный кислород . Для определения марганца образец растворялся в серной кислоте, содержащей сульфат железа (П). Затем марганец окислялся висмутатолт натрия в азотной кислоте. Получающийся перманганат титровали раствором соли Мора. [c.419]

    Джонс и Уинн-Джонс [198], изучая процессы окисления (и восстановлеиия) с помощью электрохимических методов и путем структурных определений на различных стадиях, получили существенные данные в пользу очень простого атомного механизма. Первичным продуктом окисления является N10 (ОН) он имеет гексагональную решетку, связанную с решеткой Ы1(0Н)г, и образуется из гидроокиси никеля путем отнятия электрона (металлом) от каждого иона N1 + и протона (раствором) от половины ионов ОН . Следующая стадия—дальнейшее отщепление электронов и протонов на этой стадии фазовых изменений не происходит, так как в решетке N10 (ОН) может разместиться большое число ионов N1 + и избыточных ионов О . Конечный окисел не представляет собой, однако, чистого НЮг (его не удалось получить), но содержит никель и кислород в отношении около 0,75, что соответствует приблизительно одинаковому числу ионов N1 + и N1 + в решетке Джонс и Уинн-Джонс предполагают, что электронная проводимость тем самым повышается настолько, что наблюдаемый разряд кислорода на внешней стороне пленки становится преобладающим анодным процессом. Постулированная протонная проводимость и почти полное отсутствие деформации решетки при окислении никеля в пленке от N1 через N1 до обьясняет хорошо известную стабильность окисно-никелевых электродов при многократном их окислении и восстановлении. Гипотеза о протонной проводимости, аналогичная выдвинутой в теории стеклянного электрода и воды, была предложена Хором [199] для случая диффузии водорода через окись магния ири высоких температурах она имеет, возможно, более существенное значение, чем это принималось при исследовании электролитических процессов, протекающих в окисно-гидроокисных пленках при обычных температурах. Файткнехт и его школа [200—203] рассмотрели процесс М" (ОН),М " 0(0Н)- -Н "где М — марганец, железо, магний или никель. [c.335]

    Если в настоящее время исследования микроэлементов нефти связаны с целым комплексом вопросов, таких как происхождение микроэлементов, формы существования их з нефтях, связь с другими компонентами 1сфти и т. д., то большая серия первых по хронологии работ была посвящена лип ь определению зольности нефтей и качественному составу золы нефти. С введением в практику изучения минеральной , асти иефти количественных методов анализа резко возросло число исследований пи составу золы нефтей. Накопление достаточного экспериментального материала позволило Хекфорду [282—284] уже в начале 30-х годов нынешнего сто-лрт я выдвинуть предложение систематизировать известные в то время микроэлементы в следующем порядке (ио их ко-личестве)1ному содержанию) сера, кислород, азот, ванадий, фосфор, калий, никель, юд, кремний, кальций, железо, маг-ни)1. натрий, алюминий, марганец, свинец, серебро, медь, титан, олово, мышьяк. [c.109]


Смотреть страницы где упоминается термин Марганец определение кислорода: [c.544]    [c.169]    [c.342]    [c.78]    [c.197]    [c.45]    [c.538]    [c.229]    [c.335]    [c.49]    [c.224]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.660 , c.662 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород определение

Марганец определение



© 2024 chem21.info Реклама на сайте