Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Набухание полимеров механизм

    Набухание полимеров сопровождается возникновением давления набухания ( 5- 10 —10- 10 Па), механизм возникновения которого подобен механизму возникновения осмотического давления. Это явление следует иметь в виду при работе с полимерами, контактирующими с растворителями. [c.296]

    Образование водородных связей приводит к усложнению структуры вещества, как, например, в полимерах. Изучение этих связей позволяет расшифровывать не только строение веществ, но и глубже понимать механизм многих физико-химических и химических процессов, особенно протекающих в водных средах — диссоциацию кислот и оснований, гидролиз веществ, набухание полимеров и пр. [c.95]


    Гибкость цепи полимера. Растворение полимера связано с гибкостью его цепи. Механизм растворения заключается в отделении цепей друг от Друга и диффузии их в растворитель. Гибкая же цепь может перемещаться по частям, поэтому отпадает необходимость разделения двух цепей по всей длине, для которого требуется затратить энергию. Если цепь гибкая, некоторые участки ее могут раздвинуться без большой затраты энергии. Последняя компенсируется нри этом энергией взаимодействия звеньев цепей с молекулами растворителя. Набуханию полимеров с Гибкими цепями способствует тепловое движение звеньев. Гибкая цепь, будучи отделена от соседней цепи, легче диффундирует в растворитель, поскольку ее диффузия осуществляется последовательным перемеш,ением группы звеньев. Поэтому полимеры с гибкими цепями, как правило, неограниченно набухают, т. е, растворяются. [c.322]

    Для подобного рода полимеров механизм растворения включает две стадии, которые, очевидно, перекрываются В первой — происходит диффузия подвижных молекул растворителя в полимер Последние, разрывая межмолекулярные водородные связи, проникают между макромолекулами, образуя между ними мономо-лекулярный сольватный слой У линейных полимеров с достаточно большим молекулярным весом в этой стадии происходит набухание, сопровождающееся уменьшением энтальпии системы Энтропия при этом остается почти неизменной или несколько уменьшается Образование мономолекулярного сольватного слоя отделяет макромолекулы друг от друга, что облегчает дальнейшее набухание полимера Когда набухание становится неограниченным, макромолекулы переходят в раствор Это вторая стадия процесса, характеризующаяся постоянством энтальпии и непрерывным возрастанием энтропии [c.265]

    Механизм равномерного объемного набухания с резким ослаблением межмолекулярного взаимодействия и равномерным продвижением границы набухания полимера на всей поверхности внутрь образца для стеклообразных напряженных полимеров маловероятен. [c.124]

    В некоторых случаях при высокой концентрации химиката-добавки изотермы сорбции могут изменять форму при этом наблюдается сильное увеличение сорбции. Такую зависимость можно объяснить набуханием полимера с соответствующим изменением его свойств и механизма сорбции [7-13]. [c.112]


    Пористость частиц полимера. В связи с медленной диффузией растворителя в полимер большое значение имеют поры в частицах полимера по ним резко ускоряется проникновение растворителя в частицы полимера в начальной стадии процесса. Однако по мере набухания полимера поры закрываются и этот механизм перестает действовать. [c.20]

    Результаты данной работы показывают, что пренебрежение изменениями свободной энергии, происходящими вследствие набухания волос во время абсорбции воды, вносит значительную ошибку в величину общего изменения свободной энергии процесса связывания воды. Существует точка зрения [3], что теория набухания полимеров Флори лучше объясняет данные по связыванию воды, чем модель, основанная на предположении о связывании воды с дискретными центрами. Такое возражение не возникало бы, если бы принималась во внимание термодинамическая работа, затрачиваемая на набухание волос. Очень низкие значения парциального молярного объема воды, найденные в настоящей работе, также заставляют предположить, что механизм существенно отличается от того, который постулирован Флори для описания набухания полимерных гелей [8]. [c.313]

    На рис. 2.20 сопоставлены внутренние напряжения с соответствующими количествами поглощенного образцами н-пропанола. Хорошо видно, что количество жидкости, проникающей в поры полимера, отчетливо коррелирует с величиной напряжений, которые запасает образец при удалении из его структуры ААС, в которой проводили деформацию. Эти результаты свидетельствуют о важной роли внутренних напряжений и еще раз подчеркивают принципиальное отличие описанного выше механизма поглощения низкомолекулярной жидкости полимером от известного механизма набухания полимеров. [c.67]

    На ранних этапах развития коллоидной химии набухание представлялось довольно странным явлением, присущим только некоторым особым материалам. Понимание его сути пришло более или менее одновременно с формированием концепции о высокополимерах. С термодинамической точки зрения оказалось, что процесс набухания полимеров и хорошо известный процесс растворения низкомолекулярных веществ весьма сходны между собой. Но даже несмотря на это, при изучении влаго-поглощающих полимеров, что имело место до исследований по набуханию каучуков, все время считали, что этот процесс специфичен и скорее связан с химическим взаимодействием и образованием каких-то новых связей, чем с общим механизмом диффузии и набухания. Только в результате развития статистической теории эластичности и применения этой теории Флори и Хаггинсом к явлениям набухания и растворения каучукоподобных полимеров возникла современная трактовка этого вопроса, связывающая явление набухания с молекулярной структурой полимера. [c.213]

    Уравнения (16) и (17) содержат также параметр х, который согласно статистической теории Хаггинса — Флори характеризует взаимодействие между молекулами растворителя и звеньями полимера. Если известна степень сшивания, то может быть рассчитано и значение X- Чем больше х> тем хуже растворитель и ниже степень набухания полимера в данном растворителе. Предельное значение х Для истинных растворителей равно 0,5. Для нерастворителей х превышает 0,5. Соответственно изменяются и молекулярные механизмы набухания сшитого полимера. Приведем для иллюстрации [c.60]

    Таким образом, можно считать установленным, что механизм набухания полимеров в основном сводится к двум различным процессам к процессу сольватации—в первой стадии и к процессу распределения жидкости в полимере—во второй стадии. В первой стадии, весьма короткой по времени и протекающей с наибольшей скоростью (см. кривые набухания на рис. 42), проис- [c.187]

    Механизм образования и роста частиц полимера в каждой капле мономера схематически изображен на рис. 12. Вначале образуются в каплях мономера 1 мелкие разрозненные первичные частицы полимера 2, которые при конверсии 20—30% становятся липкими и образуют агрегаты 3. Затем образуется микроблок 4, но наряду с ним существует еще и жидкая фаза. В результате набухания полимера в мономере жидкая фаза исчезает и образуется монолитный микроблок 6, окруженный на поверхности защитным коллоидом. [c.40]

    На самом деле в процессе титрования степень набухания выделившихся частиц может изменяться, так как она зависит от состава смеси растворитель — осадитель. Кроме того, возможны агрегация и коагуляция частиц. Поэтому мутность обычно зависит от условий проведения эксперимента от скорости добавления осадителя, объема добавляемых порций, скорости перемешивания раствора и др. Ни при какой практически приемлемой скорости титрования процесс не удается провести равновесно. Тем не менее воспроизводимые результаты можно получить, если добавлять осадитель медленно, непрерывно, строго одинаковым способом, поддерживая и все остальные условия постоянными. В таком варианте метод Турбидиметрического титрования широко используется для качественной Характеристики ММР. Ценной особенностью метода является его быстрота и возможность работы с очень малыми количествами полимера. Метод оказывается полезным, в частности, при подборе систем растворитель — осадитель для препаративного фракционирования, при оценке изменений, происшедших в полимере под влиянием внешних воздействий (тепла, света, механических напряжений и др.), для качественной оценки ММР, иногда достаточной при изучении механизма полимеризации и т. д. [c.96]


    Резюмируя все вышеизложенное, следует отметить, что изучение свойств растворов высокомолекулярных соединений не только дает возможность оценивать качество полимеров и понимать сущность и механизм важнейших технологических операций (набухание, растворение, пластификация, пропитка, совмещение, проклейка и др.), но и помогает правильно определять возможное целевое назначение исследуемого материала. [c.222]

    Таким образом, вторая стадия набухания обусловлена энтропийным эффектом. Его можно моделировать различными способами, например посредством осмотической ячейки — сетки полимера, пропитанной раствором более растворимой фракции полимера (обладающей меньшим М). Вступающий в сетку растворитель (НМС) создает в ней осмотическое давление, равное, по приближенным оценкам, давлению набухания. Это давление, наблюдаемое на опыте, достигает весьма больщих величин (десятков атмосфер) и может стать причиной разрыва емкостей, заполненных набухающими материалами. Известны случаи, когда стальной корпус судна разрывался вследствие набухания ВМС, заполняющих трюм (горох, зерно и др.), при контакте с водой. Предлагались и другие модели, но наиболее общим объяснением механизма второй стадии является увеличение энтропии системы благодаря росту числа возможных конформаций. [c.314]

    Во-первых, с 1963 г., когда вышло в свет последнее издание, технология промывки ствола скважины значительно усложнилась. Например, широкое применение нашли полимеры, позволяющие получать более благоприятные свойства буровых растворов. Действительно, в настоящее время скважина может быть пробурена с использованием бурового раствора, содержащего только полимер и воду. При этом все глины и выбуренная порода удаляются из раствора на поверхности с помощью совершенных механических разделительных устройств. Еще одним примером может служить создание растворов на углеводородной основе, которые предотвращают набухание и последующее обваливание глинистых сланцев благодаря выравниванию химической активности воды в растворе и сланце. К числу других достижений можно отнести методы прогнозирования давления пластовых флюидов (это позволило улучшить программы крепления скважин и применения буровых растворов) выяснение механизма влияния свойств бурового раствора на скорость проходки математический анализ гидравлики промывки ствола скважины с учетом свойств бурового раствора и, наконец, повышение продуктивности скважин в результате использования специальных, не загрязняющих продуктивный пласт жидкостей для заканчивания и капитального ремонта скважин. Эти достижения в технологии нельзя было просто включить в издание 1963 г. при детальном их описании книга оказалась бы слишком громоздкой. [c.5]

    Напряжения при набухании бывают столь велики, что вызывают растрескивание внутренних слоев набухающей пленки, куда еще не дошел фронт растворителя Характер растрескивания и кинематика распространения зоны трещин зависят от активности растворителя В случае десорбции преобладает механизм временной зависимости коэффициента диффузии Хотя при десорбции нет подвижной границы фронта проникновения, тем не менее имеет место крутой концентрационный градиент к поверхности полимера, в особенности, на ранних стадиях процесса. Набухшие внутренние слои оказывают влияние на наружный подсохший слой, вызывая в нем дополнительные напряжения. [c.128]

    Учитывая, что релаксационный механизм процесса набухания является преобладающим, можно утверждать, что в системах с незавершенными релаксационными процессами набухание может проходить с большей скоростью и до больших равновесных значений. Чем более напряжен полимер, тем более быстрой кинетики и большей равновесной величины набухания можно ожидать, так как внутренние напряжения, действующие в полимере, облегчают разрушение межмолекулярных связей при проникновении в него молекул сорбата. При этом, если вырождаются большие времена релаксации, процесс набухания в напряженном полимере должен протекать быстрее, чем в ненапряженном. Экспериментально это было подтверждено в процессе сорбции [c.226]

    Вопрос о роли физических взаимодействий с поверхностью имеет очень большое значение для понимания механизма усиливающего действия наполнителей в полимерах. Поэтому оценка того вклада, который, вносит в эффективную плотность сетки взаимодействие с поверхностью, является необходимой. К сожалению, такая оценка пока проведена только для наполненных вулканизатов каучуков, причем густота сетки и число физических и химических связей в ней определены по данным о набухании. [c.33]

    Механизм равномерного поверхностного набухания образца в среде и дальнейшего разрушения набухшего образца под нагрузкой менее сложен для описания. Он характерен для каучуков и резин в жидких средах, физически взаимодействующих с полимером не только в напряженном, но и в ненапряженном состоянии. Этот вид разрушения подробно исследован и описан Зуевым [521. [c.123]

    Во многих случаях эти процессы протекают одновременно, что значительно усложняет анализ механизма явления. При напряженном состоянии образца поверхностно-адсорбционное взаимодействие может внешне не проявляться и не приводить к растрескиванию за измеримые промежутки времени. В то же время процессы объемного набухания и химического взаимодействия могут вызывать растрескивание и разрушение ненапряженных образцов полимеров (см. раздел 11.1). [c.133]

    Возможность образования трещин в результате неравномерности набухания жестких, застеклованных полимеров в растворителях рассмотрена выше (см. раздел IV. 1). В некоторых работах показано, что механизм растрескивания образцов в контакте с достаточно сильными растворителями отличается от механизма растрескивания в поверхностно-активных средах в основном способом инициирования первой стадии появления трещин [55, 59, 60]. Проникание растворителя в структурно ослабленные места — микродефекты образца может быть не только поверхностным, но и объемным, приводящим к ослаблению межмолекулярного взаимодействия и возникновению микротрещин на перенапряженных участках. [c.136]

    Анализ результатов количественного изучения поглощения жидкой среды при растяжении фторопластовых пленок заставляет по-новому подходить к описанию деформационных свойств кристаллических полимеров в жидких средах, не вызывающих их существенного набухания. При трактовке эффекта облегчения деформации авторы [77] не учитывали объем жидкости, поглощаемой полимером. Для адсорбционного облегчения деформации достаточно значительно меньшего количества жидкости, чем то, которое реально поглощается образцами. Большая часть жидкости, проникающая в деформируемый образец, свидетельствует о значении капиллярных сил и сил, вызывающих перемещение жидкой фазы, в механизме облегчения деформации. [c.167]

    Безотносительно к деталям действующего химического механизма (рис. 61,6) демонстрирует важность состава смешанной фазы (фаза набухшего аморфного полимера) на установление температуры плавления. На рис. 61,6 показана зависимость равновесного коэффициента набухания (при температуре плавления) от pH окружающей среды. Примечательное соответствие существует между степенью набухания и температурой плавления. [c.201]

    Механизм переноса водяных паров через полимеры зависит от размера и характера влагопоглощения. Если диффузия паров не сопровождается набуханием полимера, перенос влаги протекает аналогично переносу инертных газов. При набухании изменяется структура полимера и появляется концентрационная зависимость диффузии. Для ряда систем полимер — вода диффузия может рассматриваться как условно-фиковская в случае применения закона Фика в форме [c.245]

    Бройер и др. (18) предложили механизм набухания волоса, исходя из вклада, который дает набухание в общее изменение энергии, сопровождающее сорбцию воды. Основной термодинамической движущей силой при сорбции воды является связывание на центрах, т. е. взаимодействие с дискретными полярными боковыми цепями и пептидными связями. Но к этой движущей силе добавляются эффект капиллярной конденсации и выигрыш в энтропии при смешении воды с полимером. Механизм аналогичен тому, который описан для целлюлозных волокон 1[5]. Предложенный механизм с небольшими видоизменениями можно применить и к другим полимерам, обладающим высокой гидрофильностью и рассматриваемым в данном разделе. В результате исследования селективности пористых синтетических ионообменных смол в статье 23 сделан вывод о том, что различия в величине избыточной свободной энергии при взаимодействии иона и растворителя наибольшим образом отражаются на различиях в сродстве ионных пар к ионообменной смоле и, следовательно, на ионной селективности. [c.14]

    Полученные экспериментальные данные позволяют заключить, что жидкие среды, не вызывающие набухания полимера, ио влияющие на его механическое поведение, взаимодействуют с полимером по адсорбционному механизму. Такое взаимодействие является проявлением эффекта Ребиндера с некоторыми особенностями, которые вносит цепное строение макромолекул. Обнаруженная в работе [101] усадка полимеров после их растя-лсения в адсорбционно-активной среде обусловлена поверхностными явлениями, характерными для высокодисперсного фибриллизованного полимера и ее значение может служить критерием оценки межфазной поверхностной энергии полимера. Корреляция между усадкой и пределом вынужденной эластичности полимера в той же среде позволяет полагать, что и последний также может служить критерием оценки межфазной поверхностной энергии полимера, но в этом случае необходимо учитывать влияние кинетических факторов — скорости деформации и особенностей вязкого течения жидкой среды. [c.120]

    Механизм полимеризации в эмульсиях позволяет удовлетворительно объяснить высокую стонень дисперсности синтетических латексов. Полимеризация мономера, проходяш ая внутри мицелл, приводит к вытеснопию молекул мыла. Это нарушение состояния насыщения мономером парафиновых хвостов должно приводить к дальнейшему переходу мономера в водную фазу и в последующий полимер его, что также возможно и за счет частичного набухания полимера. Продолжепие такого роста глобул — результат того, что примеси эмульгатора препятствуют коагуляции. [c.402]

    Процесс растворения высокомолекулярных соединений своеобразен и отличается от растворения низкомолекулярных веществ. Растворению полимера предшествует его набухание. Оно характерно для всех высокомолекулярных соединений и никогда не наблюдается у низкомолекулярных веыгеств. В настоящее время благодаря работам В. А. Каргина и С. М. Липатова установлен механизм набухания. Он сводится в основном к двум различным про- [c.330]

    Большинство полимеров относится к сорбентам с расширяющейся в процессе сорбции структурой вследствие их большой склонности к набуханию в низкомолекулярных жидкостях и их парах. При этом в зависимости от химической природы сорбата и полимера — сорбента степень набухания (а) последнего может изменяться в очень широких пределах, что в свою очередь приводит к различному механизму поглощения паров жидкости полимерным сорбентом. Это можно продемонстрировать на примере сорбции наров метанола, циклогексена и бензола на сетчатом сополимере стирола с дивинилбензолом (см. рисунок). [c.92]

    С нашей точки зрения вызывает сомнение правомерность объяснения быстрого снижения сопротивления деформации под действием жидкой среды длительным процессом диффузионного заполнения молекулами среды аморфных прослоек в структуре полиэтилена. Для уточнения механизма проникания жидкой среды в кристаллический полимер при деформации мы выбрали такую систему полимер—жидкость, в которой скорость диффузионного проникания жидкости в ненапряженный полимер очень мала. Исследовали ползучесть пленки из фторопласта-42 в контакте с жидкостями различной химической природы 1,2-дихлорэтан, бензол, четыреххлористый углерод, пентан, гексан, октан, декан. Использованные жидкости, перечисленные выше в порядке увеличения мольного объема, не вызывают набухания пленки более чем на 0,5% в течение времени, необходимого для оценки величины Окр при ползучести. Изучение сорбционных процессов при растяжении пленок показало, что для фторопла ста-42, так же как и для стеклообразных фторопластов-32Л и ЗМ, характерно проникание некоторого количества жидкой среды в шейку [82]. Однако, в отличие от стеклообразных фторопластов, критическое напряжение Ок р и е акс фторопласта-42 не зависят от фазовых параметров жидкости и имеют почти одинаковые значения в таких различных жидкостях, как 1,2-дихлорэтан, бензол и пентан. Эффективность [c.171]

    Для полимеров даже сравнительно небольшое изменение температуры (20—60 °С) может привести к существенному изменению таких механических характеристик, как модуль упругости, модуль потерь и др. На зависимость этих характеристик от температуры влияет набухание образцов в жидкостях. Кинетика процессов сорбции, набухания и диффузии жидкости в полимерном материале также изменяется. Совокупность этих факторов приводит к существенному изменению характера и скорости процессов разрушения пластмасс. С повышением температуры псевдохрупкий механизм разрушения может трансформироваться в пластический, как это видно из анализа фрактограмм (рис. V.8). Указанные [c.182]


Смотреть страницы где упоминается термин Набухание полимеров механизм: [c.517]    [c.322]    [c.185]    [c.45]    [c.466]    [c.95]    [c.320]    [c.395]    [c.30]    [c.335]    [c.95]    [c.335]    [c.335]   
Высокомолекулярные соединения Издание 2 (1971) -- [ c.368 , c.369 ]




ПОИСК





Смотрите так же термины и статьи:

Набухание



© 2024 chem21.info Реклама на сайте