Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции химические выход продукта

    Связь между константой химического равновесия Кр и равновесным выходом продукта для некоторых типов реакций [c.300]

    Значения 0(298) реакций (2), (3) и (5) практически равны значениям Д С (298), и выход продуктов при равновесии равен единице. Для реакций (1) и (4) Д О(298) близки к нулю, и выход продуктов очень мал. Однако химическое сродство определяет только возможную глубину процесса, но не характеризует полностью реакционную способность системы. Примером этого является смесь Нг и Оа, для которой Д О(298) л ДгО°(298) = —228,61 кДж, следовательно, реакция должна идти практически до конца. Опыт же показывает, что смесь На и Ог при нормальных условиях может существовать практически неограниченно долгое время без заметного образования воды. Таким образом, реакционную способность химической системы нельзя характеризовать только значением А Т). Термодинамическое условие протекания реакции Д С < О при постоянных Р и Т можно принять как термодинамический критерий реакционной способности химической системы. Это условие является обязательным, но не достаточным. Если в смесь На и Ог ввести катализатор в виде платиновой черни, то реакция заканчивается в течение долей секунды. Это указывает на то, что есть еще какие-то факторы, которые ускоряют химический процесс и тем самым дают возможность за короткий отрезок времени проявиться химическому сродству, или, наоборот, затрудняют реакцию, и термодинамические возможности не реализуются. Что же можно выбрать в качестве характеристики кинетического критерия реакционной способности химической системы Наиболее общим кинетическим критерием реакционной способности химической системы является скорость реакции. [c.523]


    Не следует противопоставлять химическую кинетику и химическую термодинамику. На основе термодинамических закономерностей проектировщик, инженер или исследователь устанавливает в целом наиболее благоприятную, с точки зрения выхода целевого продукта, область протекания химических реакций. Химическая же кинетика позволяет в термодинамически разрешенной области рассчитать концентрации (не равновесные, а кинетические) продуктов реакций, материальный баланс, геометрические размеры реакционных аппаратов и оптимизировать технологические параметры процессов. [c.15]

    Химическая кинетика устанавливает законы, определяющие скорость химических процессов, и выясняет роль различных факторов, влияющих на скорость и механизм реакций. Практическое значение ее очевидно, ибо только зная законы кинетики и механизм реакций можно управлять химическими процессами. От скорости химической реакции зависит выход продуктов, т. е. производительность труда и аппаратуры. [c.260]

    Горение серы представляет собой сложный процесс в связи с тем, что сера имеет молекулы с разным числом атомов в различных аллотропных состояниях и большой зависимостью ее физико-химических свойств от температуры. Механизм реакции и выход продуктов изменяется как от температуры, так и от давления кислорода. [c.93]

    Управлять течением химического процесса и проводить его так, чтобы обеспечить максимальную скорость желаемой реакции, максимальный выход продуктов и минимальные затраты сырья, можно, только зная точно, какая из указанных выше причин преобладает. Если при заданных условиях реакция не идет в данном направлении из-за незначительных ее термодинамических возможностей или близости системы к истинному химическому равновесию (при котором ЛС имеет небольщую абсолютную величину), то для ее осуществления следует изменить условия (например, температуру, концентрации исходных веществ и давление) таким образом, чтобы термодинамические возможности реакции возрастали в нужном направлении. Из энергий Гиббса и констант равновесия можно определить окислительно-восстановительные потенциалы. И наоборот, из истинных окислительновосстановительных потенциалов двух пар можно найти АО для реакции между ними и, следовательно, константу равновесия. [c.219]

    Химическая кинетика. В химической кинетике изучаются основные закономерности скорости химических реакций и зависимость их от условий, а также механизм реакции. Это позволяет сознательно регулировать течение химических реакций и выход продуктов реакции. [c.8]


    Помимо квантового выхода существует химический выход фотохимических реакций. Химическим выходом называется отношение количества образовавшегося продукта к количеству прореагировавшего исходного соединения. Следовательно, химический выход тем выше, чем выше селективность реакции (квантовый выход при этом может быть невысоким). [c.233]

    Может возникнуть вопрос, как могут весьма слабые взаимодействия заметным образом сказаться на кинетике химических реакций, на выходе продуктов реакций. [c.10]

    Уравнение (98) получило очень широкое применение в практике техно-химических расчетов, так оно дает возможность рассчитывать максимальный выход продуктов реакции, т. е. выход их в момент равновесия, процент превращения исходных веществ в конечные продукты реакции и другие показатели производственного процесса. [c.175]

    Если у низкомолекулярных соединений от полноты обратимой реакции зависит выход продукта, определяемый состоянием равновесия, то у целлюлозы полнота химического превращения (как в обратимых, так и в необратимых реакциях) определяет не выход продукта, а его степень замещения. На выход же производного целлюлозы по отношению к исходному сырью, кроме степени замещения, значительное влияние оказывают побочные реакции деструкции. [c.546]

    Скорости химических реакций и выходы продуктов превращений в значительной мере обусловлены природой среды, в которой протекает химический процесс. Известно, что кинетика химического превращения зависит от агрегатного состояния реакционной среды. Переход от газообразной к жидкой или твердой фазе не только изменяет скорость данной химической реакции, но может влиять и на направление химического процесса. Подобное действие оказывает полярность реакционной среды и изменяет более или менее специфическим образом течение реакции. [c.3]

    Особенности строения циклогексана, в сочетании с немногочисленностью и относительной простотой основных продуктов радиолиза, сделали его одним из наиболее изученных объектов радиационно-химических исследований. Основное внимание уделяется установлению связей между элементарными физическими и химическими процессами радиолиза и радиационно-химическими выходами продуктов. Дан обзор накопленных экспериментальных результатов, полученных при облучении циклогексана как без добавок, так и в их присутствии, и указаны возможные пути объяснения этих результатов. Радиолиз чистого жидкого циклогексана, влияние температуры и агрегатного состояния на радиолиз связываются с реакциями электронов и ионов в облученном углеводороде. Радиолиз смесей циклогексана с насыщенными углеводородами, циклогексана при наличии галогенсодержащих молекул, растворов циклогексена и бензола в циклогексане разобраны с точки зрения вероятных элементарных реакций (гл. 4). [c.6]

    Химическая кинетика. В химической кинетике изучается скорость химических реакций в зависимости от природы компонентов, концентрации реагирующих веществ и условий протекания реакций. Познание механизма и факторов, влияющих на скорость реакции, позволяет сознательно регулировать течение реакций и выход продуктов реакции. Особенно большой интерес представляют разнообразные каталитические реакции, протекающие в природе, реализуемые в лабораториях, в технологии и в процессе жизнедеятельности живых организмов (ферментативные каталитические реакции). [c.7]

    Необходимость в различных теориях кислот и оснований обусловлена тем, что природа многогранна, каждое, даже самое элементарное явление имеет много сторон и особенностей. В одних задачах важны одни детали химического взаимодействия, в других — другие. Теории кислот и оснований, даже в том кратком и элементарном виде, в котором они здесь представлены, полезны для химика потому, что во многих случаях они позволяют предвидеть, какие вещества будут реагировать друг с другом как кислоты и основания. Кислотно-основные реакции имеют ряд специфических черт, которые обусловливают важность и широкое применение этих процессов. Такие реакции, как правило, идут быстро даже при низкой температуре, не сопровождаются побочными процессами, не требуют для своего проведения катализаторов и часто протекают полностью, давая 100%-ный выход продукта. Ясно, что совокупность этих особенностей во многих случаях имеет большое значение. Если какая-либо теория систематизирует подобные процессы и позволяет предвидеть новые, то она полезна. [c.253]

    Радиационно-химический выход продуктов реакций зависит от отношения скорости их образования и разложения [30, 31], поэтому энергетический выход имеет наибольшее значение на начальной стадии реакции, когда обратные процессы происходят еще незначительно. В таких условиях выход продуктов реакции зависит только от кинетики прямой реакции. [c.97]


    Работа этим способом проводится с неподвижным железным катализатором п с отводом тепла реакции через вмонтированный внутрь печи охладитель. Поддержание необходимой температуры регулируется давлением пара в охлаждающем агрегате. Выход продукта составляет 185 г на 1 смеси СО/Нг, включая фракцию Сз. Это соответствует выходу около 90% от теоретического. Здесь также содержание олефинов исключительно высокое и (что особенно важно при использовании их в химическом направлении) олефины очень равномерно распределены но всем фракциям. Их содержится около 75% во фракции Сд и 62% во фракции С . В среднем у 70% олефинов двойная связь находится у конца молекулы. Степень разветвленности углеводородной смеси, кипящей в интервале кипения среднего масла, составляет около 25%. [c.32]

    Третий закон термодинамики — закон об абсолютном значении энтропии, который был сформулирован уже в начале XX столетия. Третий закон термодинамики позволяет вычислить константу равновесия химической реакции, а следовательно, и максимально возможный выход продукта реакции, не прибегая к опытному ее определению ни при одной из температур. [c.181]

    Каталитические превращения в системе газ — твердое тело (контактные процессы). Условие промышленного использования химической реакции — достижение большого выхода продукта за возможно меньшее время проведения этой реакции. Однако можно привести много примеров реакций, которые с термодинамической точки зрения должны в определенных условиях проходить с большим выходом продукта, но в действительности протекают очень медленно. Это связано с большим значением энергии активации таких реакций. [c.271]

    Исследования и усовершенствования катализаторов, по-видимому,—непрекращающийся и бесконечный процесс. Даже незначительное снижение рабочей температуры или давления, или увеличение выхода продукта и улучшение его качества могут дать крупный экономический эффект в промышленном масштабе. Основные свойства катализаторов и некоторые принципы, которыми руководствуются в настоящее время при выборе катализаторов для конкретных химических реакций, были рассмотрены выше. Хотя ценность руководящих научных принципов все возрастает, однако до сих пор эффективный катализатор является в большой мере произведением искусства и значительная часть вдохновляющих идей должна черпаться из данных практики. [c.323]

    Изучение изменений внутренней энергии прн химических превращениях имеет большое значение для развития теоретических основ химии, так как является одним из основных путей для изучения энергии отдельных химических связей в молекуле и количественного познания прочности этих связей и реакционной способности молекул. Кроме того, изменения внутренней энергии при реакции (или теплота реакции) являются необходимыми исходными величинами для термодинамических расчетов химических реакций (определение константы равновесия, выход продуктов реакции), имеющих большое значение для химических исследований и в химико-технологической практике. [c.56]

    Выше были рассмотрены равновесия нескольких химических реакций, протекаюш,нх в идеальных или предельно разбавленных растворах из опытных данных можно было вычислить константы равновесия и, зная величины констант, провести обратный расчет выхода продуктов реакции. [c.288]

    Здесь вход в реактор представляется источником усилия и потока йе/(11) процессу перемешивания соответствует узел смешения 02 выход продуктов с заданными объемной скоростью и концентрацией отражается стоком усилия и потока 8е/(1г) эффект химической реакции изображается источником потока 8/(15) элемент Схе отражает эффект аккумуляции вещества в реакторе  [c.243]

    При выборе подходящего катализатора необходимо учитывать нежелательные побочные реакции, которые он может ускорять. Важно изучить химические свойства продукта, чтобы установить, будет ли оп устойчив в условиях реакции при наличии данного катализатора. Иногда на катализатор сильнее воздействуют именно те вещества, которые он не превращает. Например, хороший катализатор селективного окисления дает высокий выход целевого продукта при незначительном образовании диоксида углерода и воды дая е в присутствии очень большого избытка кислорода. [c.10]

    НОСТЬ ДОЗЫ рентгеновских лучей составляла 3,8-10 эв1мл-сек, мощность дозы быстрых электронов — 3—6-10 эв мл-сек. Окисление проводили при комнатной температуре (25° С) в условиях, когда цепи практически не могут развиваться из-за низкой температуры. Окисляли следующие углеводороды н.гептан, изооктан, циклогексан, толуол, бензол, а также этиловый спирт и уксусную кислоту. В результате окисления образуются перекиси, кислоты, карбонильные соединения. Радиационно-химический выход продуктов реакции невелик — G 2,4. При радиационно-химическом окислении углеводородов образуются три вида перекисей перекись ROOR, гидроперекись ROOH и перекись водорода H Oj [21]. Соотношение между количествами различных перекисей зависит от типа окисляющегося з глеводорода (табл. 41). [c.195]

    Радиационно-химический выход продуктов при низких температурах (О—60° С) не зависит от температуры, что указывает на отсутствие цепей в этих условиях. При окислении н.гептана и н.нонана под действием рентгеновского излучения с мощностью дозы 10 — 8-10 эв мл-сек [26] в широком интервале температур (от —80 до +130° С) оказалось, что выход перекисей не заврюит от температуры вплоть до +40°, а затем растет с ростом температуры. Это указыв т на то, что ниже 40° С реакция идет радикальным путем, а выше 40° С начинают развиваться цепи. Температурному ходу скорости окисления соответствует энергия активации 15+2 ккал1молъ. Скорость окисления при высоких температурах растет с увеличением дозы по закону — У7, где I — мощность дозы. Это свидетельствует о цепном характере реакции и квадратичном обрыве цепей. [c.196]

    Р. Бек И Н. Миллер (84] определили начальные радиационно-химические выходы продуктов радиолиза ряда алифатических углеводородов (табл. 14). Выходы. водорода и ненасыщенных углеводородов оказались заметно выще, чем в работах, проведенных при значительных дозах поглощенной энергии, и следовательно, больших глубинах лревращения. Не наблюдалось также образования заметных количеств жидкости или полимера, установленного ранее (85]. Влияние природы излучения на соотношение выходов продуктов радиолиза не имеет общего характера и заметно лишь для отношения 0(СН4)/ / (На). При радиолизе углеводородов С4—Се это отношение больше в случае действия рентгеновских лучей, чем при действии а-излучения. Авторы предположили, что указанное различие связано с протеканием реакций разложения близ поверхности и большей ролью диффузионных процессов в случае действия а-лучей. [c.65]

    Известно, что механизм и кинетика химических реакций изучаются, как правило, в изотермических условиях в замкнутых сосудах и при интенсивном пере-метпиваиии газов или жидкостей. Между тем химикотехнологические процессы в большинстве случаев сопровождаются значительным выделением или поглош е-пием тепла, что создает большие градиенты темиера-туры в условиях быстрых турбулентных потоков и при наличии твердых катализаторов, нередко находящихся во взвешенном состоянии. При реакциях обычно происходят изменения числа частиц, взаимная диффузия исходных и конечных продуктов и т. д. Макрокинетика — это кинетика реакций с учетом физических и гидродинамических факторов (градиенты температуры, концентрации, турбулентность, размеры и форма аппаратуры), воздействующих на скорость реакций и выход продуктов. [c.26]

    Хй.мическ ий и квантовый выходы характеризуют разные стороны фотохимической реакции. Химический выход показывает вклад побочных реакций и конечную эффективность превращения начального вещества в продукт независимо от числа поглощенных квантов света. Квантовый выход позволяет судить [c.186]

    К сожалению, большинство фотохимических процессов пока еще невыгодно применять в промышленном масштабе избирательность реакций и выход продуктов малы, а затраты на внедрение велики. И все-таки считается, что в дальнейшем эти трудности будут преодолены, и фотохимия займет далеко не последнее место в химической промышленности. Прежде всего мы имеем неиссякаемый источник фотохимически действующего излучения-солнечного света. Некоторые авторы в связи с этим высказывают мнение, что целесообразно размещать крупные химические установки в пустынях-наиболее инсоли-руемых участках земной поверхности. Другие придерживаются своей точки зрения, приводя контраргументы таких территорий на планете не так уж много, и к тому же промышленное производство не должно зависеть от капризов погоды. С позиции технологии, по их мнению, лучше применять искусственные источники излучения. Предполагается также, что весьма перспективными окажутся создание избирательных методов синтеза, основанных на поглощении излучения определенной длины волны, и использование в качестве рабочего инструмента лазерного луча. Правда, необходимые для этого затраты энергии могут в какой-то мере ограничить внедрение подобных методов и повлиять на их рентабельность. Что ж, поживем-увидим. [c.144]

    Шателье если на систему, находящуюся в состоянии химического равновесия, оказывается внешнее воздействие, положение равновесия смещается в такую сторону, чтобы противодействовать эффекту этого воздействия. Если прямая реакция в равновесной химической системе является экзотермической, то при повышении температуры уменьшается если прямая реакция является эндотермической, то при повышении температуры Кравн увеличивается. Равновесный выход продуктов можно увеличить путем повышения температуры только для реакции, идущей с поглощением тепла. Чтобы не ошибаться, следует всегда записывать уравнение в полном виде с учетом теплового эффекта, как будто он является одним из продуктов реакции [c.191]

    Влияние условий процесса в основном хорошо согласуется с поженными выше его химическими особенностямя. Повышение давления водорода, облегчая стабилизацию радикалов (реакция Щ должно тормозить реакции конденсации типа J0, 11. Поэтому ц Ги-меняются повышенные давления, но так, чтобы пе уменьшить селективность Повышение температуры увеличивает выход продуктов деметилирования как в каталитических, так и в термических процессах. Однако одновременно растет выход продуктов конденсации и усиливаются отложения кокса на катализаторе. Поэтому для каждого катализатора подбирается оптимальная температура, составляющая для хромового и молибденового катализаторов на активированном угле 535—550 °С, для окисного алюмокоТбальтмояиб-денового катализатора — 580—600 °С, для хромового катализатора без носителя — 600—650 °С. Во многих процессах в сырье вводят водяной пар, что уменьшает образование продуктов конденсации и кокса. Такое действие пара объясняют ассоциацией молекул воды с радикалами, что снижает реакционную способность радикалов, но не в такой мере, чтобы препятствовать реакции 2. [c.333]

    Следует отметить, что существует ряд процессов с применением многофункциональных катализаторов, для которых полезно отравление чрезмерно активных центров или центров одного рода. Это позволяет ингибировать одни реакции и тем самым увеличить выход продуктов других реакций. Блокирование - процесс дезактивации катализаторов, природа которого носит либо физический, либо химически й характер. Вероятно, чаще всего имеет место дезактивация катализаторов путем блокировки, а не путем его отравлен1ля. Наиболее типичным процессом, приводящим к блокировке актив1яых центров является отложение на катализаторе углеродсодержащих соединений (кокса). Эти соединения образуются на большинстве катализаторов, которые используются во вторичных процессах переработки нефтяных фракци Й или в процессах органического катализа. [c.93]

    НЫ которого ОТ температуры показана на рис. 15. Сырьем служила смесь равных количеств вакуумного газойля и рециркуля-та реактора каталитического крекинга в кипящем слое. Остальные условия были следующими объемная скорость жидкости 2 ч , общее давление 750 фунт/дюйм , скорость подачи водородсодержащего газа 2000 ст. фут баррель. Из рис. 15 видно, что при этих условиях с ростом температуры степень гидрирования проходит через максимум, соответствующий 370°С, так же, как это наблюдалось при гидрировании ароматических углеводородов в керосине и реактивном топливе (см. рис. 14). При 370°С степень извлечения серы составляет более 95%, а общая степень извлечения азота — около 55%. На рис. 16 показана зависимость от температуры количества вступивщего в реакцию водорода. Как и следовало ожидать, кривые очень похожи на полученные для гидрирования полиядерных ароматических углеводородов. Связывание водорода сырьем каталитического крекинга служит лучшей мерой повышения его качества. Наконец, для сравнения эффективности каталитического крекинга гидрообработанного и необработанного сырья были проведены испытания микроактивности. Зависимости выхода продуктов крекинга от количества химически связанного водорода показаны на рис. 17 и 18. [c.105]


Смотреть страницы где упоминается термин Реакции химические выход продукта: [c.147]    [c.68]    [c.83]    [c.190]    [c.223]    [c.12]    [c.176]    [c.399]    [c.246]    [c.11]    [c.8]    [c.104]   
Процессы и аппараты нефтегазопереработки Изд2 (1987) -- [ c.340 ]




ПОИСК





Смотрите так же термины и статьи:

Выход при химической реакции

Выход продукта

Выход продукта реакций

Продукты реакции



© 2025 chem21.info Реклама на сайте