Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Естественный нуклеиновые кислоты

    При съемке кристаллов белков, нуклеиновых кислот и других объектов с очень большими параметрами решетки, когда общее число отражений достигает нескольких десятков или сотен тысяч, а также при съемке кристаллов, нестабильных во времени или разлагающихся под действием рентгеновского излучения, возникает необходимость ускорения рентгеновского эксперимента. Один из естественных методов ускорения — повышение мощности рентгеновских трубок, в частности, использование трубки с вращающимся анодом или переход к другим источникам мощного у-излучения. Так, все шире используется синхротронное излучение, т. е. у-излуче-ние, возникающее при ускорении (устойчивом круговом движении) электронных пучков в синхротронах. Синхротронное излучение содержит у-кванты разной энергии и, следовательно, является аналогом белого спектра рентгеновской трубки. Но даже при монохроматизации посредством отражения от кристалла-монохроматора, связанной с ослаблением интенсивности на один порядок, интенсивность синхротронного излучения остается выше интенсивности характеристического излучения обычной рентгеновской трубки примерно на два порядка. [c.79]


    Исключительное биологическое значение полинуклеотидов, известных обычно под именем нуклеиновых кислот, уже было отмечено во введении к этому разделу книги. Вполне естественно поэтому стремление выяснить максимально полно строение этих высокомолекулярных веществ, являющихся, наряду с белками и полисахаридами, важнейшим типом биогенных полимеров. [c.246]

    Естествен вопрос, что же сдерживало выявление структурных черт, общих для всего класса белков. Объясняется ли длительность поиска случайным стечением обстоятельств и трудностями технического порядка или же имелись субъективные причины и продолжительность и тернистость пройденного пути были неизбежны Ведь если сравнить формулы отмеченных природных соединений, то вряд ли белки покажутся значительно сложнее нуклеиновых кислот или сахаров. Скорее наоборот, тип их химического строения скорее может удивить своей простотой. Проблема белка, как и другие проблемы естествознания принципиального характера, имеет свою судьбу. Помимо субъективного фактора, решение здесь зависит от уровня теоретического и экономического развития фундаментальных наук и объема накопленных знаний, актуальных именно для данной проблемы. Проследим с этой точки зрения историю химических исследований белковых молекул. [c.60]

    Нуклеиновые кислоты сосредоточены в ядрах клеток, представленных двумя типами кислот — дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК). Их биологическая роль исключительно велика. Они регулируют естественный синтез белков в живых организмах и осуществляют передачу наследственной информации из поколения в поколение. [c.353]

    Из предыдущего рассмотрения видно, что белки и нуклеиновые кислоты представляют собой органические соединения высокого уровня организации. Хотя, естественно, они не являются "живыми" молекулами, но их появление на Земле было предпосылкой образования первы. живых организмов. Поэтому их можно рассматривать как молекулярную основу организации жизни. В связи с этим область науки, имеющая дело с изучением структуры этих молекул, их комплексов и их поведения в биологических системах, получила название молекулярной биологии. [c.19]

    Бактериальные ДНК — это высокополимерные соединения, состоящие из большого числа нуклеотидов — полинуклеотиды с молекулярным весом около 4 млн. Молекула ДНК представляет собой цепь нуклеотидов, где расположение их имеет определенную последовательность. В последовательности расположения азотистых оснований закодирована генетическая информация каждого вида. Нарушение этой последовательности возможно при естественных мутациях или же под влиянием мутагенных факторов. При этом микроорганизм приобретает или утрачивает какое-либо свойство. У него наследственно изменяются признаки, т. е. появляется новая форма микроорганизма. У всех микроорганизмов — прокариотов и эукариотов — носителями генетической информации являются нуклеиновые кислоты — ДНК и РНК. Лишь некоторые вирусы представляют собой исключение у них ДНК отсутствует, а наследственная информация записана или отражена только в РНК. [c.28]


    Химия и биохимия полисахаридов — это области, в которых хроматографические методы разделения упоминаются почти в каждом сообщении и высокие темпы развития этих областей связаны главным образом с применением хроматографии. Однако главное назначение хроматографии состоит в выделении полисахаридов из естественных продуктов, в которых они смешаны с различными соединениями, такими, как белки, нуклеиновые кислоты или же вещества более низкой молекулярной массы. Последние соединения очень отличаются по характеру от полисахаридов, и их разделение, следовательно, здесь не рассматривается. [c.129]

    Начальным этапом в изучении структуры и функции нуклеиновой кислоты является ее выделение из клетки или субклеточных частиц и очистка от различного рода примесей. Заключительный этап — фракционирование для получения препаратов, гомогенных по химическому составу, молекулярному весу и надмолекулярной организации. Естественно, что схема выделения может существенно изменяться в зависимости от природы исходного материала. Подробное описание методик можно найти [c.66]

    Следует различать два вида классификаций филогенетические, или естественные , с одной стороны, и искусственные-с другой. Построение естественной классификации - конечная цель таксономии бактерий, которая состоит в том, чтобы объединить родственные формы, связанные общностью происхождения, и на этой основе создать филогенетическое древо бактерий. Несомненно, когда-нибудь это удастся сделать, исходя из химических признаков-таких, как последовательность аминокислот в функционально сходных ферментных белках или последовательность нуклеотидов в консервативных нуклеиновых кислотах, например в рибосомных РНК. [c.86]

    Невзирая на эти вполне естественные и независящие от автора упущения, книга Дэвидсона будет весьма полезной для всех тех, кто хочет поближе познакомиться с последними данными по химии нуклеиновых кислот, их структуре, биосинтезе и обмене, а также получить современные представления о процессе биосинтеза белка. Другими словами, эта книга-учебник может быть рекомендована широкому кругу биологов, химиков и физиков, интересующихся проблемой хранения наследственной информации и ее реализации в процессах развития и жизнедеятельности организма. [c.5]

    Азотистый обмен в животном организме — это по преимуществу обмен белков. Однако не следует забывать, что в организме имеется ряд азотистых соединений, которые хотя и образуются из продуктов распада белка, ио совершенно отличны от них по своей химической природе и используются организмом для выполнения специальных функций. К таким азотистым веществам относятся, например, некоторые пигменты (гем, желчные пигменты), нуклеиновые кислоты, простетические группы некоторых ферментов (дегидрогеназ, цитохромов, оксидаз), азотсодержащие гормоны (тироксин, адреналин, холин). Синтез и распад этих соединений протекают путями, в большинстве случаев еще недостаточно выясненными. Ввиду активного участия этих соединений в обмене естественно, что даже временная блокировка путей их превращения приводит к извращению нормального обмена веществ, т. е. к патологии. [c.368]

    Для обеспечения роста микроорганизмов в среде должны быть неорганические фосфаты в виде кислых солей КН2РО4 и К2НРО4. Они же обеспечивают определенное значение pH среды (буферность раствора). В клетках живых организмов фосфор присутствует в форме фосфатов, главным образом фосфатов сахаров в нуклеотидах и нуклеиновых кислотах. Поскольку к этим соединениям относятся такие важные составные части клетки, как ДНК, РНК и АТФ, то очевидно, что фосфаты играют важную роль в жизнедеятельности клетки. Источником фосфатов в естественных средах (как питательный бульон) служат нуклеиновые кислоты. [c.284]

    При съемке кристаллов белков, нуклеиновых кислот и других объектов с очень большими параметрами решетки, когда общее число отражений достигает нескольких десятков или сотен тысяч, а также при съемке кристаллов, нестабильных во времени или разлагающихся под действием рентгеновского излучения, возникает необходимость ускорения рентгеновского эксперимента. Один из естественных методов ускорения — повышение мощности рентгеновских трубок, в частности использование трубки с вращающимся анодом или переход к другим источникам мощного у-излучения. Второй метод — замена последовательного измерения отражений в обычных дифрактометрах одновременным измерением многих дифракционных пучков с помощью специальных устройств. В настоящее время разработаны так называемые многоканальные дифрактометры, оснащенные системой из нескольких (трех или пяти) параллельно перемещаемых счетчиков, которые регистрируют дифракционные лучи, возникающие одновременно (или почти одновременно) на разных слоевых линиях в процессе вращения кристалла. Эти приборы предназначены специально для кристаллов с большими периодами. В стадии технического совершенствования находятся в принципе более перспективные координатные детекторы, как олтномерные, так и двумерные. Одномерный координатный детектор позволяет измерять интенсивность всех дифракционных лучей одной слоевой линии (в том числе возникающие одновременно) с регистрацией угловой координаты (а следовательно, и индексов) каждого луча. Аналогичным образом двумерный координатный детектор позволяет регистрировать дифракционные лучи всех слоевых линий. [c.64]


    Из 90 элементов периодической системы Д. И. Менделеева, находящихся в естественных условиях на Земле, лишь восемнадцать элементов входят в состав биологических систем. Шесть элементов — углерод, водород, азот, кислород, фосфор, сера — играют исключительную роль в биосистемах они входят в состав белков и нуклеиновых кислот и составляют основу жизни на земле. Среди них легчайшие атомы, у которых наиболее распространенными и устойчивыми степенями окисления являются 1 (Н) 2 (О) 3 (Ы) 4 (С) 5 (Р) 6 (5) и которые отвечают наиболее стабильным электронным конфигурациям. Существенное значение для жизнедеятельности организмов имеют 12 следующих элемен- [c.561]

    По мере углубления наших знаний о природе жизненных процессов вырисовывается картина сложной и многогранной роди углеводов в живых организмах. Среди известных сейчас функций углеводов мы находим и роль энергетического резерва, и роль главных структурирующих веществ, и роль эластиков, и роль смазки, и разнообразные информационные функции, и многое другое. Такую поразительную полифункционадьность этого класса соединений можно, по-иидимому, понять из общих соображений. Действительно, такие биологически монофункциональные биополимеры, как нуклеиновые кислоты, имеют один тип ковалентной структуры это линейные одномерные цепи. Напротив, структуры высокомолекулярных углеводов представлены по крайней мере двумя молекулярными типами линейными и разветвленными, не говоря уже о том, что среди разветвленных полисахаридов можно также выделить несколько крупных классов структур и что организация последовательностей мономеров в полисахаридных цепях может принадлежать к нескольким принципиально различным типам. Из такого разнообразия структур, естественно, следует и разнообразие функций. [c.135]

    Этот выбор диктуется характером задачи, которая решается гель-фпльтрацией, и свойствами разделяемых молекул, в первую очередь их массами. Для обессоливаиия раствора макромолекул естественно использовать жесткие, достаточно мелконористые матрицы с крупными гранулами (последнее — для увеличения скорости течения), например сефадекс С-25 или биогель Р-б. Для обессоливания более мелких молекул можно воспользоваться сефадексами С-10 и С-15 или биогелями Р-2 и Р-4. Названные матрицы удобны и для смены буфера, в котором первоначально находится препарат, на тот, которым уравновешена колонка и производится элюция, или для освобождения биополимеров от радиоактивных низкомолекулярных предшественников. Близка к описанным н задача рассортировки смеси на две группы веществ — высокомолекулярных и низкомолекулярных (например, отделение белков от пептидов или нуклеиновых кислот от белков). Здесь, очевидно, следует вы- [c.133]

    Возможности ионообменной хроматографии целых молекул нуклеиновых кислот, естественно, ограничены кругом сравнительно низкомолекулярных НК (тРНК, рибосомальные 5S РНК, ядерные РНК) в последнее время к ним присоединились и плазмиды бактерий. Это ограничение обусловлено чересчур прочной многоточечной связью высокомолекулярных НК даже со слабыми анионообменник ами. [c.323]

    Естественно, что еще более эффективную, чем с гепарином, и избирательную очистку белков метаболизма и регуляции матричной активности можно получить, используя в качестве лигандов сами нуклеиновые кислоты. Аффинные сорбенты с иммобилизованными НК могут обладать не только групповой (белки хроматина, нуклеазы, рестриктазы и др.), но и сугубо индивидуальной снецифично- [c.370]

    Между двумя этапами, естественно, фигурирует перенос вещ ества с ацетилцеллюлозы на пластинку. Такое фракционирование используется в различных вариантах секвенирования нуклеиновых кислот, особенно богатых модифицированными (минорными) нуклеотидами (тРНК). [c.460]

    Одним из самых важных применений электрофореза является использование его в анализе естественных смесей коллоидов, например белков, полисахаридов и нуклеиновых кислот, а также продуктов, полученных фракционной перегонкой. При электрофорезе между раствором белка и буфером в специальной У-образной трубке, снабженной электродами, образуется резкая граница, за движением которой можно проследить с помощью оптической шлирен-системы (разд. 11.10). Эти опыты обычно проводят при температуре 4° С, т. е. при максимальной плотности воды, так что температурный градиент в электрофоретической кювете, вызванный нагреванием током, сопровождается наименьшим градиентом плотности. Градиенты плотности горизонтально поперек кюветы стремятся вызвать конвекцию. На рис. 20.1 [1] показана электрофоретическая картина плазмы крови человека в буферном растворе (pH 8,6) диэтилбарбитурата натрия с ионной силой 0,10 (после 150 мин при 6,0 В/см и 1°С). Строится график зависимости градиента показателя преломления от расстояния в кювете (горизонтальная ось). Одна картина получена для той части кюветы, в которой белки опускаются вниз, а другая — для той части, где белки поднимаются вверх. Начальные положения границ указаны на рисунке тупыми концами стрелок. Различные виды белков представлены альбумином, аг, аг-, р-, у-глобу-линами и фибриногеном ф. Площадь под определенным пиком почти точно пропорциональна концентрации белка, дающего эту границу. Так, например, процент альбумина может быть получен делением площади пика альбумина на суммарную площадь всех пиков белков. е-Граница в спускающейся части и б-граница в поднимающейся части картины обусловлены не белковыми компонентами, а изменениями концентрации соли, которые возникают в опытах с обычным переносом вблизи начального положения границы. [c.603]

    Рамановская спектроскопия все более интенсивно применяется для анализа биологических систем благодаря возможности изучения малых объемов и водных растворов. Конформационные изменения белков, нуклеиновых кислот и пептидов в липидах и мембранах можно легко отследить in situ (т. е. в естественном состоянии), поскольку вода почти неактивна в КР-спектре. Многие биологические образцы флуоресцируют, поэтому для получения КР-спектров следует применять КР-спектрометры с фурье-преобразованием (почему ). [c.197]

    Исключительная важность этого вопроса для решения биологических проблем очевидна, так как именно последовательность связи отдельных мономерных единиц в любом биогенном полимере и определяет его специфичность. Такие определяющие жизнедеятельность процессы, как передача наследственных признаков и биосинтез белка, естественно, це ликом основаны на высокой сяецифичности нуклеиновых кислот, а стало быть без установления тонкой структуры индивидуальных ДНК и РНК, т. е. без установления в них последовательности мономерных единиц, не могут быть должным образом решены и эти проблемы естествознания. Для установления последовательности мономерных единиц [c.251]

    Нуклеиновые кислоты являются очень трудным для работы материалом. Они чувствительны к расщеплению ферментами (ри-бонуклеаза, например, может быть обнаружена даже на кончиках пальцев исследователя). Они не терпят экстремальных значений pH и температуры и даже действия механических разрывающих сил. Длина молекулы ДНК, полученной из распространенной бактерии Е. oli, составляет примерно 1 мм, в то время как ее диаметр— около 2 нм. Таким образом, простое перемешивание или даже неосторожное взятие пипеткой раствора ДНК обычно приводит к существенному уменьшению ее молекулярной массы. Естественно, что наиболее ранние препараты ДНК представляли собой фрагментированный материал с низкой молекулярной массой. [c.35]

    Классическая биохимия изучала главным образом жизненно важные процессы в организмах растений и животных с участием органических соединений — белков, углеводов, жиров, нуклеиновых кислот, витаминов, гормонов и др. Она практически не касалась вопросов о воздействии на эти молекулы (и на их биологические функции) многообразных неорганических соединений, поступающих в организм с питательными веществами или другим путем. Сегодня стало очевидным, что в живых организмах присутствуют соединения всех элементов периодической системы, которые в ничтожных, некоторые — минигомеопатических количествах, изначально присутствовали в живых организмах с момента зарождения жизни на Земле, так как попадали тем или иным путем в водоемы, воздух и на луга, а оттуда в организмы животных и растений. В настоящее время, когда техническая деятельность человека и разрущение земных покровов приняло порой неразумные и даже катастрофические размеры, в окружающую среду попадают уже не гомеопатические, а макрогомеопатические количества соединений всех элементов периодической системы, которые, безусловно, оказывают сильнейшее воздействие на жизнь. Поскольку остановить все более стремительное развитие техники и разрушение данной от природы структуры Земли, водных покровов и воздушного океана невозможно в силу того, что это есть следствие развития естественных потребностей человека, крайне необходимо изучать и знать, как состав окружающей среды взаимодействует с биологическими структурами человека, животных и растений и какие непредсказуемые последствия может вызвать. [c.182]

    Интерфероны. Интерфероны—это ингибиторы размножения многих типов вирусов. Открыто несколько типов интерферонов (а, 3 и у), некоторые из них получены методами генетической инженерии. Это сравнительно небольшие сложные белки с мол. массой у разных видов животных и человека от 25000 до 38000—40000). Они образуются в клетке в ответ на внедрение вирусной нуклеиновой кислоты, ограничивая вирусную агрессию (инфекцию). Известно также, что группа видоспецифических а-интерфе-ронов синтезируется макрофагами, в то время как у-интерферон продуцируется Т-клетками и стимулируется интерлейкином-2 (см. Лимфо-кины ). Показано также, что у-интерферон в свою очередь повышает цитотоксическую активность макрофагов, Т-клеток и естественных кле-ток-киллеров. Интерфероны наделены антипролиферативной активностью и считаются основными защитными белками не только против вирусной инфекции, но и при опухолевых поражениях. [c.92]

    Основное положение молекулярной биологии, согласно которому происходит передача информации от нуклеиновой кислоты к белку, но не обратно, естественно, остается справедливым. Нуклеиновые кислоты обладают законодательной , а белки исполнительной функцией. Причины этого подробно рассмотрены Эйгеном [57]. [c.565]

    Обработка полиэтиленгликолем облегчает слияние клеток, тем не менее слияние происходит редко и является в достаточной степени случайным событием. В смеси присутствуют клетки миеломы, селезенки, а также слившиеся клетки миеломы-селезенки, миеломы-миело-мы, селезенки-селезенки. Однако в среде ГАТ растут только гибридные клетки миеломы-селезенки, все остальные типы клеток не могут в ней пролиферировать. Клетки селезенки и слившиеся клетки селезенки—селезенки вообще не растут в культуре, а миеломные клетки НОРЕТ и слившиеся клетки миеломы—миеломы не могут использовать гипоксантин в качестве предшественника в процессе биосинтеза пуриновых оснований гуанина и аденина, без которых невозможен синтез нуклеиновых кислот. Но у них есть другой естественный путь синтеза пуринов - при участии дигидрофолатредуктазы, поэтому в состав среды и входит аминоптерин, ингибирующий активность этого фермента. Таким образом, миеломные клетки [c.185]

    Второе издание учебника по биологической химии, как и первое, написано по материалам лекций, которые авторы на протяжении ряда лет читают на биологическом и химическом отделениях факультета естественных наук Новосибирского государственного университета. Хотя с момента вы.хода первого издания прошло не очень много времени, учебник потребовал некоторой доработки в связи с бурным развитием ряда областей биохимии и смежных дисциплин. Достаточно упомянуть такие понятия, как рибозимы — ферменты, построенные из молекул РНК и не содержащие белка, как селекция нуклеиновых кислот in vitro, превратившаяся в могучий инструмент исследования взаимодействий нуклеиновых кислот между собой и с другими лигандами, как интенсивное развитие анти-смысловой технологии в качестве наиболее направленного подхода к борьбе с вирусными и онкологическими заболеваниями, понятие об апаптбзе — запрограммированной клеточной смерти, по-виДимому, являющейся важным путем регуляции клеточных делений и, в частности, предотвращения малигнизации клеток. Без представления этих понятий и ознакомления с новыми революционизирующими исследования методами невозможно полноценное биохимическое образование. [c.6]

    Строение нуклеиновых кислот, их биосинтез и биологическая роль составляют предмет особой науки — молекулярной биологии. Родивщись в недрах химии природных соединений и биохимии, она быстро оформилась в самостоятельную научную дисциплину. Это связано с исключительной важностью нуклеиновых кислот для земной жизни. Они играют ключевую роль в таких фундаментальных процессах, как хранение и воспроизводство биологической информации и ее наследование, деление клеток, биосинтез белка. Здесь, однако, нет возможности углубляться в проблемы молекулярной биологии. Для химии природных соединений существенно то, что важная роль нуклеозидов и нуклеотидов в биохимии живых организмов использована естественным отбором для создания антибиотиков и других биологически активных соединений, действующих по принципу антиметаболитов (см. разд. 6.2). Своим химическим строением молекулы этих веществ лищь незначительно отличаются от нуклеозидов. По этой причине ферменты нуклеинового обмена обманываются , принимая их за истинные субстраты. Резуль- [c.581]

    В очистке промышленных сточных вод принимает участие большинство микроорганизмов, способных к гетеротрофному биосинтезу, ибо только они могут разрушать органические вещества. Известно, что гетеротрофы в процессе эволюции приспособились к использованию в природе тех естественных органических веществ, с которыми они встречаются в нормальных экологических условиях. Это вещества растительного и животного происхождения разной сложности углеводы от гексоз и пентоз до целлюлозы, пентозанов, лигнина и хитина азотистые вещества от аминокислот до полипептидов и прочных фибриллярных белков — кератина и коллагена, нуклеиновые кислоты и нуклеопротеиды липиды и их компоненты от глицерина и жирных кислот до сложных растительных и животных масел, жиров и жироподобных веществ — фосфолипидов, липопротеи-дов и т. д. У значительно меньшего числа микроорганизмов существует приспособленность к потреблению углеводородов нефти, озокерита, битуминозных сланцев, сапропелитов и фенолов. Они в течение длительного периода времени, охватывающего жизнь многочисленных поколений микробов, в нормальных экологических условиях вступали в контакт с этими веществами, совершенно непригодными для всего органического мира ни в [c.100]

    Адсорбционная емкость естественного целлюлозного волокна (ваты) по отношению к белкам и нуклеиновым кислотам незначительна. Поэтому при обычном пропусканнп растворов изучаемых высокомолекулярных органических соединений через слой ваты в рабочей камере концентрация испытуемого вещества на выходе (С]) быстро выравнивается и соответствует исходной концентрации раствора на входе в камеру (Со). Полное насыщение загрузки раствором биополимера и выравнивание концентраций на входе и выходе из камеры происходит в течение 5—10 мин (рис. 39). При нодаче на электроды постоянного электрического тока (стрелка а, рис. 39) концентрация используемого соединения [c.179]

    Хорошо известно, что растворы нуклеиновых кислот и полипептидов обладают оптической активностью, значительно отличающейся от суммарной оптической активности мономерных звеньев. Это различие обусловлено спиральной структурой соответствующих макромолекул в нативном состоянии. Дисперсия естественной вращающей способности спиральных полимеров отличается от обычной дисперсии Друде. Согласно анализу, проведенному Моффитом, Кирквудом и Фиттсом [1] и автором [c.129]

    Важная роль соединений фосфора в жизненных процессах в настоящее время общепризнана хорошо известно, какое значение имеют эфиры фосфорной кислоты в синтезе нуклеиновых кислот и при образовании углерод-углеродных связей, особенно в синтезе терпенов и стероидов. Кроме того, после открытия реакции Виттига была найдена широкая область синтетического применения для соединений трехвалентного фосфора и фосфониевых солей. По этим причинам препаративная химия фосфорорганических соединений в последние 15—20 лет получила значительное развитие. Естественным следствием работ по синтезу явилось изучение строения фосфорорганических соединений и механизмов их реакций, в результате чего для соединений фосфора обнаружены некоторые общие черты с соединениями углерода. [c.7]

    Чтобы разработать методы использования нуклеиновой кислоты, нуклеотидов, аминокислот и фосфатов, значительная часть работы К. Нойберга была повторена и подтверждена [17]. Необычные эффекты растворения были ползпгены при использовании 0,2 М растворов Ка-АТФ на определенные навески свежеосажденных соединений. Исследование более 200 таких образцов полностью подтвердило выводы К. Нойберга и его сотрудников. Субстраты готовились осаждением солей металлов, которые после промывки дистиллированной водой концентрировались в центрифуге и затем помещались в 0,2 М раствор Ка-АТФ. Величина pH во всех случаях поддерживалась около 7,5. Получив прозрачный раствор, исследователи выяснили, что добавлением применяемых реагентов не удается достигнуть повторного осаждения этих соединений, которые остаются в растворе вплоть до разложения Na-ATФ. Для проверки этих удивительных результатов применительно к разным породам природные минералы были измельчены в порошок и помещены в 0,2 М раствор Ма-АТФ (табл. 4). Разница получилась очень незначительная, что подчеркивает возможности нуклеиновых кислот и нуклеотидов как растворителей при природной седиментации и цементации в более или менее нейтральных или естественных условиях. [c.34]

    Как видно из материала двух предыдущих разделов, выделение индивидуальных нуклеиновых кислот в интактном состоянии является довольно сложной проблемой, которая и по сей день разрешена удовлетворительно только для низкомолекулярных РНК (таких, как тРНК, 55 РНК, и, возможно, других компонентов рибосомальной РНК), а также РНК и ДНК из вирусов. Естественно, что речь о полном определении химической структуры может идти только для этих соединений. [c.41]

    Данные об электронных характеристиках, таутомерии и кислотно-основных свойствах позволяют а priori предсказать некоторые наиболее общие положения, связанные с реакционной способностью оснований нуклеиновых кислот. Естественно ожидать, [c.195]

    Спектры компонентов нуклеиновых кислот зависят от pH поскольку переход от нейтральной формы основания к протонированной или депротонированной сказывается на распределении электронной плотности в гетероциклических ядрах, а соотношение форм является функцией pH раствора. Протонирование свободной пары электронов атома азота гетероциклического ядра, естественно, сильно сказывается пап — я -электронных переходах (см. гл.З). Сольватация, особенно в полярных растворителях, также существенно влияет на п — я -переходы, вследствие чего плечи на кривых поглощения, соответствующие п — я -переходам, проявляются более четко в неполярных растворителях 2 . Важные изменения спектров происходят, кроме того, при межплоскостных и комплемен-гационных взаимодействиях оснований в полинуклеотидах (см. гл. 4). [c.619]

    Если во всех изложенных примерах выбор условий, снособствуюш,их получению желательного продукта, основывался па использовании естественных кинетических закономерностей, то применение катализаторов позволяет изменить сам ход процесса. При каталитических реакциях посторонняя искусственно созданная матрица позволяет производить принудительную укладку реагирующих молекул, такую укладку, которая обеспечивает нужное направление процесса. Однако применение обычных катализаторов — далеко не совершенный способ получения веществ с заданной структурой оно ограничено, в сущности, получением лишь простейших соединений. Совсем иным путем идут каталитические процессы в живом организме, где синтез даже самых сложнейших соединений, например белков или нуклеиновых кислот, осуществляется с необычной точностью, где отсутствуют какие-либо отклонения от формирования заранее заданных сложнейших структурных единиц . Такой синтез подобен точной штамповке тончайших конструкций или радиосхем. Во всех таких синтезах основную роль играют биологические катализаторы — ферменты. [c.18]


Смотреть страницы где упоминается термин Естественный нуклеиновые кислоты: [c.939]    [c.169]    [c.104]    [c.21]    [c.437]    [c.82]    [c.424]    [c.179]    [c.170]    [c.235]    [c.33]    [c.501]   
Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.56 , c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2024 chem21.info Реклама на сайте