Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носители аппаратура

    Выхлопные газы, содержащие 2—4% (об.) Ог и остатки N0+ +N02, предварительно подогревают теплом горячих нитрозных газов до 400 °С и затем смешивают с природным газом с тем, чтобы обеспечить в результате реакции температуру 750—870 °С. В качестве катализатора применяют платину, нанесенную на носители. Этим путем содержание N0+N02 в выхлопных газах удается довести до 0,005—0,0005% (об.). При получении азотной кислоты на многотоннажных агрегатах для восстановления окислов на катализаторе применяют природный газ давлением 1,5—1,6 МПа. Восстановление осуществляют в контактных аппаратах при 750 °С. Чтобы предотвратить образование взрывоопасной метановоздушной смеси и ее взрыв в аппаратуре, предусматривают автоматическое регулирование подачи природного газа. Кроме того, агрегат каталитической очистки оснащают системой защитных блокировок, обеспечивающих отключение подачи природного газа к горелкам подогревателя при аварийной остановке компрессорных агрегатов и отклонении температуры газов после топки от нормальной. Предусматривают также запрет подачи природного газа к горелкам прп отключенной воздуходувке. На линии природного газа, ведущей к смесителю реактора каталитической очистки, устанавливают отсекатель, который закрывается при отклонении от нормальной температуры газа после реактора, остановке компрессорного агрегата и закрытии отсекателя на линии природного газа перед топкой. [c.45]


    Аппаратура, Принципиальная схема газового хроматографа представлена на рис. 3.3. Подвижная фаза (газ-носитель) непрерывно подается из баллона 1 через редуктор 2 в хроматографическую установку. Анализируемую пробу вводят дозатором 4 либо в поток газа-носителя, либо через резиновую мембрану в испаритель 3. Из испарителя проба переносится газовым потоком в хроматографическую колонку 5. Изменение состава выходящей из колонки смеси фиксируется детектором 7 и записывается на ленте регистратора 9. Хроматографическая колонка и детектор помещены в термостаты 5 и 5. Дозатор предназначен для введения точного количества образца пробы в хроматограф. В качестве дозатора используют специальное дозирующее устройство или микрошприц. Объем вводимой пробы 0,1 мкл — 0,1 мл для жидких и 0,5—20 мл для газообразных проб. [c.192]

    Коды ЕС ЭВМ. Для представления числовой и алфавитно-цифровой информации на носителях (перфокартах, перфоленте), входах и выходах аппаратуры передачи данных в ЭВМ и устройствах ввода — вывода используется четыре кода Двоичный Код Обмена Информацией (ДКОИ), Код Обмена Информацией (КОИ-8), Код Обмена Информацией (КОИ-7), Код Перфокарт (КПК-12). [c.162]

    Чтобы при просмотре местности не было смазывания изображения, обусловленного движением вперед носителя аппаратуры, время перемещения изображения местности по чувствительному приемнику должно быть в к раз больше инерционности приемника X. [c.232]

    П. Рассчитать поле зрения и разрешающую способность сканирующего теплопеленгатора для снятия тепловой карты местности. В качестве сканирующего элемента использована пятигранная призма. Приемник — селенисто-свинцовое фотосопротивление. Носитель аппаратуры — самолет со скоростью полета о = 2000 км/час, максимальная высота полета 30 км. [c.254]

    Гальваномагнитные эффекты. Одним из гальваномагнитных эффектов является эффект Холла — явление возникновения в полупроводнике с текущим по нему током поперечного электрического поля под действием магнитного поля. Методика и аппаратура, ос- нованные на использовании эффекта Холла, позволяют определять удельную электропроводность материала, тип электропроводимости, подвижность и концентрацию носителей заряда, ЭДС и постоянную Холла. [c.175]

    Проблема исиользования комплексов с разделяющими агентами состоит не столько в проведении самого процесса разделения, сколько в подборе такого носителя, который бы отвечал необходимым требованиям. Носитель должен обладать прежде всего следующими свойствами изменять коэффициенты относительной летучести смеси (отдельных компонентов) в нужном направлении (обладать достаточно высокой поглотительной способностью и селективностью — в случае абсорбции, обладать необходимой зоной расслаивания и селективной растворимостью — в случае экстракции) легко регенерироваться из смесей с компонентами разделяемой системы быть безопасным в обращении, доступным и дешевым быть устойчивым (к разложению, осмолению и т. д.), инертным по отношению к компонентам разделяемой смеси, не оказывать коррозионного воздействия на аппаратуру. [c.91]


    Для каталитической конверсии метана применяют никелевый катализатор на носителе — оксиде алюминия. В присутствии никелевого катализатора равновесие быстро достигается уже при 800°С. Несмотря на то что содержание СН в равновесном газе повышается с увеличением давления, конверсию метана выгодно проводить при повышенном давлении для увеличения скорости реакции. При этом используется естественное давление природного газа, при котором он подается на завод,— 1—4 МПа. При повышении давления уменьшаются объем аппаратуры и трубопроводов. [c.74]

    Цеолитные катализаторы в различных поливалентных катионных (или декатионированных) формах используют для проведения реакций органического и неорганического цикла крекинг, гидрокрекинг, изомеризация, алкилирование, гидрирование, дегидрирование, окисление и т. д. [209—214]. В некоторых случаях они проявляют высокую активность без добавок промоторов, а в других— при нанесении на них активных компонентов. Цеолитные катализаторы термически стабильны, устойчивы по отношению к таким контактным ядам, как сернистые и азотсодержащие соединения, металлы, не вызывают коррозии аппаратуры. Развитая поверхность (до 800 м /г), способность к катионообмену и высокая механическая прочность цеолитов позволяют использовать их в качестве носителей каталитически активной массы.  [c.171]

    При работе с подвижным катализатором (порошкообразным, сплавным или на носителе) достигается большее соприкосновение катализатора с гидрируемыми веществами. Однако их применение связано с эрозией аппаратуры, а также с необходимостью дополнительного оборудования для отделения катализатора (центрифуги, фильтр-прессы и т. д.) от гидрогенизата. [c.152]

    Для прямой гидратации этилена предложен также катализатор, представляющий собой окислы вольфрама, нанесенные на силикагель. Реакция идет при 250—300° С и давлении 300 ат, и вода находится в жидком состоянии. Преимущество этого способа заключается в том, что катализатор не смывается с носителя и не вызывает коррозии аппаратуры. [c.329]

    Отделение следовых количеств элементов от основы методом дистилляции связано с неизбежными потерями, особенно вследствие адсорбции стенками аппаратуры. Поэтому часто предпочитают отгонять вещества основы, получая анализируемые элементы в остатке. Так, в сосудах из платины или фторопласта выпаривают воду, кислоты, органические растворители из соответствующих растворов анализируемых веществ. При этом в ряде случаев добавляют некоторые реагенты для образования носителей, удерживающих анализируемые вещества при отгон-ке растворителя. [c.19]

    До конца пятидесятых годов промышленность не производила газовых хроматографов, и хроматографисты вынуждены были своими силами изготовлять и налаживать простейшие газо-хрома-тографические установки. Тем не менее первоначальные и наиболее оригинальные открытия, как, например, открытие Мартином и Джеймсом газо-жидкостной хроматографии, были сделаны именно с применением такой простейшей аппаратуры. Любая простейшая хроматографическая установка или хроматограф промышленного изготовления состоит из следующих основных узлов 1) источник газа-носителя с системой очистки, регулирования и измерения его потока через хроматографическую колонку 2) узел ввода пробы в колонку (дозатор) 3) хроматографическая колонка 4) детектор с регистратором (визуальным или самопишущим). [c.23]

    Абсолютным методом анализа для определения состава подобного рода стандартной газовой смеси, т. е. методом, не требующим применения индивидуальных стандартных веществ, хорошо себя зарекомендовал объемно-хроматографический метод газового анализа, предложенный одновременно в 1953 г. Д. А. Вяхиревым в СССР и Я. Янаком в Чехословакии. Аппаратура метода очень проста. Не менее проста и техника анализа. Принципиально важной особенностью метода, делающего его абсолютным, является отсутствие необходимости в калибровке. В качестве детектора используется специальная бюретка, в которой непосредственно измеряется объем каждого компонента анализируемой газовой смеси в течение времени выделения его из колонки. В качестве газа-носителя применяется двуокись углерода высокой чистоты (не ниже 99,95%), которая по выходе из колонки полностью поглощается концентри- [c.29]

    Джеймс и Мартин в 1952 г. описали технику и аппаратуру метода в случае разделения и анализа смесей алифатических кислот и простых аминов, изложили теоретические основы метода. Суть метода сводится к следующему. Анализируемые вещества распределялись между движущимся газом-носителем (азот) и неподвижной жидкой фазой (силиконовое масло с примесью стеариновой кислоты в случае разделения кислот и вазелиновое масло в смеси с ундека-нолом в случае разделения простых аминов.) Жидкую фазу наносили на гранулированный материал целит-545, который служил неподвижным носителем. [c.104]


    В отличие от жидкостного колоночного хроматографического разделения в классических вариантах бумажной и тонкослойной хроматографии разделение веществ осуществляется в тонком слое сорбента, нанесенного на пластину, или на бумаге, являющейся одновременно твердым носителем для жидкой неподвижной фазы. Движение подвижной фазы, содержащей разделяемые компоненты, происходит только в результате действия капиллярных сил. Поэтому эти методы близки по технике выполнения хроматографического разделения, по использованию однотипного оборудования и аппаратуры, а также по способам анализа разделяемых компонентов. [c.113]

    Радиохроматографический метод. В колонку высотой 100—120 мм и диаметром 4—5 мм вносят смесь носителя и осадителя, а затем пропускают анализируемый раствор, содержащий радиоактивные изотопы определяемых элементов. После формирования первичной или промытой хроматограммы исследуют распределение радиоактивных веществ вдоль колонки с помощью специальной аппаратуры или после извлечения сорбента из колонки и его разделения на равные части, как было описано выше. [c.232]

    В детекторе фиксируются изменения состава выходящей из колонки смеси. Дифференциальный детектор регистрирует концентрацию компонентов в газе-носителе, интегральный детектор непрерывно фиксирует общее количество элюируемых компонентов с начала опыта. Сигнал детектора подается автоматически на записывающую аппаратуру 4. [c.40]

    Особенности использования химических методов на предварительных стадиях подготовки пробы к анализу подробно рассмотрены в книгах [30, 31 ]. Это, прежде всего, расширение области применения газовой хроматографии (становится возможным анализ нелетучих соединений, ускоряется анализ умеренно летучих соединений), улучшение разделения анализируемых веш,еств и количественных характеристик аналитических определений (за счет исключения или подавления адсорбции ряда компонентов на поверхностях газохроматографической аппаратуры, твердого носителя и на границе раздела между твердым носителем и неподвижной жидкой фазой), повышение чувствительности детектирования производных по сравнению с исходными соединениями. [c.161]

    Однако в практике качественного газохроматографического анализа Vg используются редко, поскольку их расчет возможен лишь при использовании прецизионной аппаратуры, позволяющей точно измерять абсолютные значения температуры колонки и скорость газа-носителя. Кроме того, для их определения необходимо [c.166]

    Воспроизводимость и правильность измерения абсолютных и относительных параметров удерживания обусловливаются совокупным влиянием многочисленных факторов, вклад каждого из которых в общую погрешность измеряемой величины определяется классом используемой аппаратуры, техникой дозирования, типом и степенью перегрузки колонки (ее эффективностью), природой, происхождением и количеством используемой неподвижной фазы, наличием в ней нежелательных примесей, физико-химическими свойствами поверхности твердого носителя, возрастом колонки, а также квалификацией оператора [c.173]

    Аппаратура, реактивы, материалы реактор пробирочного тина, система охлаждения, поглотительный патрон, хроматограф ЛХМ-8 МД с катарометром, печь трубчатая шириной 50 мм, печь трубчатая шириной 150 мм, загрузочный стержень для внесения пробы в реактор, контейнеры для взятия навески из алюминиевой фольги, весы аналитические ВЛР-20г, муфельная печь, сита 0,15 мм 0,25 0,5 1 мм, пинцеты, ангидрон, б/в, ч, аскарит, ч оксид никеля, спирт этиловый технический, уголь марки СКТ, гелий газообразный — га.ч-носитель. [c.211]

    Коллектив авторов настоящей книги поставил перед собой задачу осветить в одной книге результаты, достигнутые в разработке теории газовой хроматографии, в ее применении и конструировании аппаратуры. Материал изложен авторами обстоятельно и подробно. Дается большое количество практических рекомендаций по нанесению неподвижной фазы, обработке колонок, расчету результатов анализа и т. д., имеется полезная классификация неподвижных фаз, критическое описание методики их выбора, обзор применяемых твердых носителей, рекомендации по выбору оптимальных параметров опыта и т. д. Кроме того, книга содержит богатый библиографический материал. [c.5]

    Детектирование разделенных компонентов осуществляют в основном с помощью пламенно-ионизационного детектора. В этом случае кроме газа-носителя необходимы также водород высокой чистоты и очищенный сжатый воздух. Электрический усилитель с динамическим конденсатором с малой постоянной времени и потенциометр дополняют аппаратуру. [c.344]

    Большое значение имеет и график подъёма температуры. Так как при давлении 5-7 кг/см температура кипения воды находится в интервале 180-197°С, то во избежание разрушения структуры носителя скорость подъёма температуры до 250°С не должна превышать 20°/час. Выпаренная из катализатора вода не сразу доходит до сепаратора. Вначале она накапливается в холодных участках теплообменной и захолаживающей аппаратуры, и только после её прогрева попадает в сепаратор. Обычно наиболее интенсивное дренирование воды из сепаратора (при этом необходимо сделать выдержку) наблюдается в интервале температур в реакторах [c.66]

    К недостаткам жидкофазных методов следует отнести возникающие в ряде случаев затруднения с отделением катализатора от цро дуктов реакции, сложность подбора прочных в условиях жидкофаз ных реакций формованных катализаторов и носителей. Возможность применения жидкофазных процессов ограничивается и тем, что.во многих случаях для сохранения жидкого состояния реагентов при температуре реакции необходимо применять высокие давления, а это приводит к усложнению и удорожанию аппаратуры. [c.273]

    Программа экспериментальных. исследований, закодированная на машинном носителе информации, обычно содержит циклограмму режимов работы объекта перечень параметров, подлежащих регистрации на каждом этапе эксперимента продолжительность периодов регистрации, моменты включения и отключения отдельных контрольно-измерительных приборов перечень типов аппаратуры, которая используется для измерения и регистрации различных параметров с указанием условий перехода в процессе проведения эксперимента на иной вид измерительного прибора или другой диапазон измерений программы для математической экспресс-обработки регистрируемых параметров (алгоритмы и аналитические соотношения, по которым выполняются расчеты, и объем исходной информации при отдельных расчетах) логику перехода к следующим видам эксперимента в зависимости от результатов экспресс-обработки данных, полученных в предыдущих экспериментах указания о способах отображения и документального представления результатов регистрации и обработки экспериментальной информации перечень параметров, подлежащих контролю по предельно допустимым значениям в блоке противоаварийной защиты вид аварийной сигнализации и последовательность операций управления испытательными стендами, контрольно-измерительными и регистрирующими приборами при аварийной или предава-рийной ситуации. [c.119]

    Малая стоимость катализатора— определяющий фактор как для неподвижного, так и для взвешенного слоя, несмотря на то, что стоимость израсходованного катализатора (потери его) составляют, как правило, лишь незначительную часть себестоимости продукта. Снижение себестоимости катализатора достигается, в основном, заменой дорогостоящих пЛаТинБГ, серебра и других металлов, входящих тг сисгав "ксжтятшШЗГмасс, менее активными, но и более дешевыми окислами железа, хрома, ванадия и т. д. Тонкое диспергирование катализатора носителе также позволяет снизить стоимость. Большое значение в стоимости катализаторов имеет рационализация технологии, полное использование всех видов сырья, применение современной, интенсивной, непрерывно работающей аппаратуры [I]. [c.61]

    В процессе Рашига бензол, НС1 и водяные пары (из водного раствора НС1 ) в смеси с воздухом пропускают над смешанными хлоридами Си и Fe, нанесенными на пористый носитель, при давлении, близком к атмосферному и температуре 210-230°С. Превращение бензола в хлорбензол составляет 10% за проход. Как и следовало ожидать, реакция экзотермична, а сырье и продукты корродируют аппаратуру /7,34/. Автору не известны поставщики катализатора, но если начинать экспериментировать в этой области, то можно взять такой катализатор 5% u l2+5% Fe lg, нанесенные на кизельгур. Во второй стадии процесса Рашига хлорбензол гидролизуется в фенол и водный раствор НС1 в присутствии силикагеля при 500 С. Водный раствор НС1 возвращают в цикл на первую стадию хлорирования. [c.317]

    Реактивы, аппаратура. Смесь СНгС , СНС1з и ССЦ. Хроматограф с детектором по теплопроводности (например, ЛХМ-72). Хроматографическая колонка длиной 1 м, заполненная бентоном-34 на носителе целите-545. Баллон с гелием, расходомер. Микрошприц. [c.301]

    Программирование температуры — вариант элюентного способа, при котором разделение проводится не при постоянной температуре (как при классическом элюентном способе), а при постепенном или скачкообразном нарастании температуры по всей длине колонки. В отличие от хроматермографического варианта градиент температуры вдоль колонки и движущаяся электропечь отсутствуют, что намного упрощает конструктивно систему нагревания колонки и создает преимущества в развитии и применении этого варианта перед хроматермографией. Однако, как показали Жуховицкий и Туркельтауб, отсутствие движущегося градиента температуры по слою сорбента не позволяет получить столь большое обогащение концентрации компонентов на выходе из колонки, как при наличии градиента температуры. Тем не менее постепенный рост температуры при постоянной скорости потока газа-носителя ускоряет вымывание из колонки сильно удерживаемых компонентов и создает благоприятные условия для разделения многокомпонентных смесей. Программирование температуры означает, что повышение температуры в течение времени процесса разделения производится с некоторой выбранной постоянной или переменной скоростью, т. е. по заданной программе. Колонку нагревают электрическим нагревателем, питаемым от автотрансформатора, соединенного с автоматическим регулятором — задатчиком скорости изменения температуры. Теория, методика и аппаратура данного варианта подробно изложены в монографии канадских ученых Харриса и Хэбгуда (см. приложение), [c.19]

    Хроматография без газа-носителя . Непосредственное разделение компонентов смеси в отсутствие газа-носителя создает ряд преимуществ по сравнению с проявительным способом, где анализируемая проба разбавляется газом-носителем, а затем размывается в колонке, что осложняет определение микропримесей. При помощи этого метода удается решать задачи концентрирования в изотермическом режиме, определения количественного состава смеси по характеристикам удерживания, повышения точности анализа и определения физико-химических характеристик концентрированных растворов. Хроматография без газа-носителя позволяет коренным способом упростить хроматографическую аппаратуру, фактически устранить ошибки, связанные с дозированием. [c.21]

    Для газохроматографического разделения анализируемой смеси применяют обычную аппаратуру (жидкая фаза — бис-пропионитриловый эфир этиленгликоля газ-носитель— электролитный водород скорость 2,5 л ч 1 детектор — катарометр температура колонки 100 °С проба 10 мкл охлаждающая смесь ацетон — сухой лед при —78 °С). На газовой хроматограмме наблюдается появление четырех пиков, пик 3 имеет одно широкое и слабо выраженное плечо. [c.424]

    В табл. 111.3 приведены погрешности параметров опыта, воз-никаюш,ие при их измерениях на стандартной аппаратуре, предназначенной для аналитических целей, и на аппаратуре, специально изготавливаемой для физико-химических исследований. Установлено, что для определения неисправленного удерживаемого объема Уц с погрешностью 1 % необходимо подцерживать и измерять температуру колонки и расход газа-носителя с погрешностью не хуже 0,1 С и +0,5 % соответственно. Чтобы снизить погрешность определения Уд до 0,1 %, необходимо уменьшить погрешность измерений температуры колонки до 0,01 С, а расхода газа-носителя до 0,1 %, что трудно достижимо при использовании стандартной аппаратуры (см. Т21бл. 111.3). [c.174]

    Применение капиллярных колонок помимо существенно увеличивающейся эффективности разделения обеспечивает и большую надежность значений индексов в этом случае (при использовании стандартной аппаратуры и термостабильных, а также не подверженных химическому окислению неподвижных фаз) межлабора-торная воспроизводимость значений / составляет (1—2) ед. Важно подчеркнуть, что усовершенствование процедуры нанесения неподвижных фаз на специально подготовленную поверхность стеклянного капилляра, последующее аккуратное кондиционирование колонки, использование газов-носителей, с максимальной тщательностью очищенных от нежелательных примесей (кислород, влага и др.), а также обязательная герметизация (запаивание) концов капилляра при хранении обеспечивают возможность весьма длительной (1—7 лет) эксплуатации колонок без > зменения рабочих характеристик [481. [c.176]

    Вследствие малой удельной поверхности стеклянных шариков (см. табл. 2) на них можно наносить лишь малые количества неподвижной фазы. Максимальное количество неподвижной фазы зависит от радиуса шариков, иоверхностного натяжения и плотности неподвижной фазы и изменяется в пределах 0,05—3%. При оптимальном содержании ненодвижной фазы достигается высота теоретической тарелки 0,5 — 1 мм, причем в области скоростей 16 —100 мл мин эта величина не зависит от скорости газа. Этот факт, а также малое содержание неподвижной фазы позволяют снизить время анализа (которое, как известно, зависит от количества неподвижной фазы и от скорости потока газа) па 40% при том же качестве разделения, и, следовательно, можно работать при температурах на 250° ниже температуры кипения наиболее высококипящего компонента анализируемой смеси (Хишта, Мессерли и сотр., 1960). В этом, по-видимому, заключается главное преимущество стеклянных микрошариков как носителей. Таким образом, оказывается возможным применять менее устойчивые к нагреванию полярные неподвижные фазы, использовать аппаратуру, менее пригодную для работ нри высоких температурах, и, кроме того, исследовать вещества, термически неустойчивые. Вследствие малого количества неподвижной фазы приходится, однако, применять пробы малого размера. Правильная форма стеклянных шариков позволяет изготовлять колонки с воспроизводимыми величинами числа тарелок , что в случае носителей на основе кизельгура (Шретер и Лейбнитц, 1961) связано со значительными трудностями. [c.88]

    Через -образное разветвление газового потока, включенное перед дозаторами на пути газового потока, газ-носитель проходит через обе колонки камеры катарометра. Следует обратить внимание на то, что равные части газа-носителя проходят через обе колонки лишь при равном перепаде давления. Так, например, применяя колонки различной длины, необходимо дополнительно регулировать количество газа посредством игольчатого вентиля между разветвлением и дозатором. Посредством этой аппаратуры могут проводиться последовательные анализы на одной из двух колонок. При эхом через одну из колонок протекает чистый газ-носитель. Чтобы обеспечить единообразную заиись анализов в одном и том же направлении (относительно нулевой линии), к компенсографу должен быть присоединен переключатель полюсов. [c.223]

    Очень простая и практичная аппаратура для использования нескольких одновременно работающих колонок и одного детектора описана Митц-нером и Гитонеасом (1962). Схематическое изображение этой аппаратуры приведено на рис. 4. Газ-носитель подводится к отдельным дозаторам и затем к параллельно расположенным колонкам через устройство для распределения потока газа. С помощью соответствующего переключения кранов, находящихся между дозаторами и распределительным устройством и расположенных вне термостата, анализы могут проводиться на определенной колонке. Отдельные выходы из колонок соединяются затем гребенкой на входе в детектор. Такая аппаратура дает возможность применять колонки различного диаметра и — при условии раздельного термостатирования — колонки, нагреваемые до различной температуры. Так, например, в одном приборе можно проводить разделение смеси на ирепаративной колонке с последующим анализом разделенных фракций на обычных колонках. Установка двух или нескольких независимо работающих колонок в одном приборе приносит, кроме того, всегда значительную экономию во времени, так как отпадает необходимость смены колонок и связанной с этим потери времени на нагревание и охлаждение колонок. [c.223]

    Значительно более простой в аппаратурном отношении метод газохроматографического определения С — Н был разработан Фогелем и Куатропе (1960). В противоположность описанным выше методам при этом не требуется применения системы ловушек для выделения продуктов сгорания и нет необходимости превращать воду в ацетилен. Сжигание проводят в бомбе в атмосфере кислорода, и газообразные продукты могут дозироваться из бомбы непосредственно в газохроматографическую аппаратуру. Прямой анализ СО2 и Н2О при применении кислорода в качестве газа-носителя возможен на колонке, заполненной диатомитом, содержащим додецилфталат. При этом вода дает отрицательный пик, хорошо пригодный для расчетов путем планиметрического определения площади пика. Этот очень простой метод позволяет проводить анализ за 17 мин. Троекратное определение ири очень хорошей воспроизводимости и точности результатов занимает лишь 40 мин. [c.252]


Смотреть страницы где упоминается термин Носители аппаратура: [c.322]    [c.106]    [c.119]    [c.323]    [c.288]    [c.26]    [c.287]    [c.49]    [c.224]    [c.275]   
Лабораторная техника органической химии (1966) -- [ c.213 , c.215 , c.259 , c.262 , c.274 , c.278 , c.286 , c.287 , c.290 , c.297 ]




ПОИСК





Смотрите так же термины и статьи:

Аппаратура Измерение и стабилизация потока газа-носителя

Аппаратура для аналитического разделения на носителях различного типа

Аппаратура, носители, осадители, проявители

Носители сборка аппаратуры

Регуляторы скорости газа-носителя, термостаты и другая аппаратура



© 2025 chem21.info Реклама на сайте