Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сегрегация скорость

    Применительно к однородному псевдоожижению мы придем к следующим значениям этого соотношения е (1 — е )/е (1 — е) для одинаковых и<И 1/ (1 — e )/ / e (1 — е) для одинаковых цd/v и е (1 — одинаковых — е)у. Очевидно при разных базах сопоставления различие соотношений весьма велико. Кроме того, рассматриваемые соотношения выше при больших расширениях слоя, так что для достижения одинаковой степени приближения к равновесию однородный псевдоожиженный слой должен быть выше неподвижного. Это означает, что для систем с сегрегацией фаз утверждение о более низкой скорости массообмена в однородном псевдоожиженном слое, нежели в неподвижном, будет подавно правильным — для каждого из трех приведенных выше способов сопоставления. [c.393]


    Для реакторов небольшой высоты (большие значения В Н) влияние величины обменного фактора б незначительно высота реакционной зоны определяется, главным образом, заданной степенью превращения и константой скорости реакции. Сегрегация фаз не играет существенной роли, так что вполне оправдано использование модели однородного слоя. [c.407]

    По мере возрастания сил сцепления между частицами агрегаты начинают возникать внутри слоя, достигая некоторого равновесного размера. Они могут оставаться псевдоожиженными или, напротив, увеличиваться в размерах до тех цор, пок 1 не начнется сегрегация, вызывающая прогрессирующее нарушение псевдоожижения. Если подобное агрегирование происходит в процессе псевдоожижения, то оно может быть сведено к минимуму подачей крупнозернистых материалов и применением высоких скоростей ожижающего агента Частицы, выпадающие в основание слоя, могут быть удалены через разгрузочный люк, установленный на уровне решетки вместо использования обычного переливного устройства .  [c.713]

    Влияние сегрегации. Сравнение состояния сегрегации с уровнем молекулярного смешения для эндотермических реакций показывает, что наивысшая степень превраш,ения достигается при сегрегированном состоянии реакций всех порядков. Разница между этим результатом и результатом, рассмотренным при изотермических условиях, для которых существен порядок реакции, обязана характеру изменения скорости процесса. В эндотермической системе скорость уменьшается с увеличением степени превращения вследствие расходования реагентов и уменьшения температуры системы. Для описанных выше систем температурный эффект был большим, чем компенсация, обусловленная порядком реакции. [c.113]

    Сравнение состояния сегрегации с уровнем молекулярного смешения для экзотермических реакций приводит к противоположным выводам — наивысшая степень превращения соответствует уровню молекулярного смешения. Это объясняется тем, что в экзотермических системах начальная скорость увеличивается с возрастанием степени превращения вследствие повышения температуры системы. [c.113]

    Сегрегация и ее воздействие на химические превращения и процессы переноса особенно проявляются в системах с повышенной вязкостью, а также там, где реакции протекают с высокими скоростями. Образование молекулярных агрегатов характерно для многих процессов получения высокомолекулярных соединений. Так, сложной совокупностью физико-химических явлений отличается гетерофазная полимеризация, при которой образующийся полимер выделяется из первоначально гомогенной системы в виде новой конденсированной фазы с соответствующими морфологическими особенностями и возможным протеканием элементарных реакций в нескольких фазах [12, 13]. Примером может служить полимеризация винилхлорида, которая протекает в три стадии вначале процесс идет в гомогенной мономерной фазе на второй (наиболее продолжительной) стадии полимеризация протекает в двух фазах — мономерной и полимер-мономерной, а на третьей стадии — вновь в одной фазе (полимер-мономерной). При этом процесс сопровождается потоками массы и тепла в глобулярных образованиях (полимерных частицах), размеры которых увеличиваются в ходе реакции за счет поступления реагентов из сплошной мономерной фазы. [c.26]


    В периоде II скорость процесса смешивания становится сопоставимой со скоростью сегрегации, поэтому значения У со временем изменяются незначительно (по сравнению со значениями периода /). Сам же процесс смешивания реализуется в основном за счет перемещений отдельных частиц одна относительно другой. Из-за внешней схожести с процессом диффузии молекул этот процесс смешивания называют диффузионным. [c.229]

    В периоде III скорость процесса смешивания становится равной скорости процесса сегрегации, поэтому У не меняется во времени. Наименьшее значение коэффициента неоднородности называют предельным коэффициентом неоднородности У п- Время /см достижения смесью однородности, оцениваемой значением является опти- [c.229]

    Ранее мы говорили, что частичная сегрегация жидкости приводит к соответствующему увеличению размера реактора. Это не единственное влияние макросостояния жидкости на показатели процесса. Так, если реагенты представляют собой вязкие жидкости, то в аппарате с мешалкой они смешиваются как бы послойно. Поэтому процесс протекает в различных участках реактора с разными скоростями и состав реакционной смеси отличается от точки к точке. [c.316]

    При заполнении коксом бункеров и открытых складов, а также при выполнении погрузочно-разгрузочных работ имеет место нежелательное явление - сегрегация частиц кокса [48]. Коксовая мелочь концентрируется вдоль траектории падения кокса, а крупные фракции скатываются к основанию насыпи материала. Угол наклона поверхности насыпи материала в верхней части становится больше угла естественного откоса основной массы. Ослабить сегрегацию можно, если снизить скорость падения частиц и уменьшить высоту свободного падения. [c.33]

    Согласно сказанному выше, сталь, прошедшая холодную механическую обработку, корродирует в природных водах с той же скоростью, что и отожженная [1]. Однако в кислотах скорость коррозии нагартованной стали увеличивается в несколько раз (рис. 7.1). Традиционно многие авторы приписывали этот эффект остаточному напряжению в металле, которое увеличивает склонность к коррозии. Но эта интуитивная концепция, вероятно, неверна, так как остаточная энергия, приобретенная в результате холодной деформации (по калориметрическим данным обычно <7 кал/г), недостаточна, чтобы обусловить значительное изменение энергии Гиббса [3]. Вероятно, наблюдаемое увеличение скорости коррозии обусловлено скорее сегрегациями атомов углерода или азота по дефектным местам, образовавшимся вследствие пластической деформации (рис. 7.2), чем влиянием самих дефектов (рис. 7.3). На этих участках водородное перенапряжение ниже, чем на цементите или на железе [2], и это, возможно, наиболее важный фактор. Второстепенными факторами являются [c.130]

    Поскольку полистирол и полибутадиен относятся к категории термодинамически несовместимых, полимеров, термодинамическая поправка связана здесь с сегрегационным параметром хав (А и В обозначают блоки, которые в свободном состоянии разделились бы на макрофазы), величина которого столь высока, что можно принять эффективную энергию излома бесконечной, т. е. считать для полистирольных блоков /" = 0. Это приводит к полному их распрямлению вот здесь-то обходным путем удается реализовать структуру, которая возникла бы при низкотемпературном переходе второго рода, если бы его осуществлению не мешало структурное стеклование иными словами, этот переход действительно реализуется в результате сегрегации (количественно характеризуемой параметром хав) и воздействия относительно малого продольного градиента скорости у входа в канал экструдера. Впрочем, можно показать, что тот же эффект в других условиях достигается за счет одной лишь сегрегации (28]. [c.223]

    Полному смешению соответствует случай, когда каждый из элементарных объемов, или, по принятой в работе [8] терминологии, агрегатов молекул , настолько мал, что реакция происходит практически на его поверхности (с уменьшением объема отношение поверхности к объему возрастает). В этом случае скорость изменения концентрации в элементарном объеме определяется средней концентрацией в реакторе, которая у реактора идеального перемешивания совпадает с концентрацией на выходе. Полной же сегрегации соответствует случай, когда каждый из элементарных объемов автономен и скорость реакции в этом объеме определяется концентрацией в нем самом, т. е. такой объем ведет себя как периодический реактор, находящийся в основном реакторе случайное время т. Плотность распределения времени пребывания зависит от гидродинамики реактора. [c.274]

    Для простоты примем, что общий поток жидкости состоит из двух струй, имеющих объемные скорости и V2 соответственно. Каждая из струй находится в состоянии полной сегрегации и проходит объемы V) и Уг соответственно. Характер движения жидкости в каждой струе подчиняется идеальному вытеснению, т. е. линейная скорость жидкости по сечению струи постоянна и не изменяется в осевом направлении. Для определенности примем следующие значения параметров системы и характеристики потоков 1/, = 1/5=2 м VI—3 м /ч, 02=1 м /ч. Таким образом, среднее время пребывания в системе составит величину [c.71]


Рис. 2.22. Влияние концентрации растворенного кислорода на скорость его потребления микроорганизмами при различных условиях сегрегации среды Рис. 2.22. <a href="/info/6816">Влияние концентрации</a> <a href="/info/641946">растворенного кислорода</a> на скорость его <a href="/info/326941">потребления микроорганизмами</a> при <a href="/info/527393">различных условиях</a> сегрегации среды
    Из этих графиков следует, что влияние степени сегрегации наиболее сильно проявляется при высоких скоростях реакции и малой кратности циркуляции. Наконец, увеличение числа ячеек в циркуляционном контуре также увеличивает эффект сегрегации. [c.118]

    Все частные случаи легко получаются из этой модели. Если в аппарате имеет место только микросмещение, то а = 0 и зона сегрегации ликвидируется. Если поступающий поток единственный, то =1 и имеем мы последовательную модель. Наконец, если аппарат представляет собой систему с полной сегрегацией, то а оо и зона микросмешения в структуре отсутствует. Применение алгоритма для расчета по этой модели требует знания функционального соотношения для скорости процесса, величины критического возраста а и вида функций распределения по времени пребывания для всех поступающих потоков. Величина а и вид функций распределения по времени пребывания зависят от ряда факторов, таких, как физические свойства систем, условий перемешивания, условий ввода и вывода потоков. Распределение по времени пребывания частиц задается структурой модели, т. е. принимается, например, в аппаратах с пропеллерной мешалкой один циркуляционный контур, а в аппарате с турбинной мешалкой — два циркуляционных контура [7]. [c.121]

    Рассмотрим далее некоторые теоретические и экспериментальные данные по моделированию процесса ферментации в биореакторе с учетом промежуточного состояния смешения, т. е. частичной сегрегации среды. Будем считать, что поток, проходящий биореактор, находится последовательно или в зоне, соответствующей идеальному перемешиванию среды, при этом по уровню смешения он может быть либо в сегрегированном состоянии, либо в состоянии максимальной смешанности. Физическую картину, соответствующую данной модели, можно представить исходя из экспериментальных данных по оценке вязкости дрожжевой суспензии в биореакторе при различных скоростях сдвига (рис. 3.19). [c.150]

    Влияние сегрегации. На рис. 1У-29 и 1У-30 представлены графики изменения степени превращения в зависимости от безразмерного времени пребывания в моделях реакторов идеального вытеснения и идеального смешения на двух уровнях смешения, соответственно для эндотермических и экзотермических реакций. При графическом построении профилей использовалась температурная зависимость скорости реакции по Аррениусу. При этом температура исключалась путем составления теплового баланса для адиабатического реактора с последующим аналитическим или численным решением для следующих условий = 40 и Га/ о = ОД- [c.338]

    Наиболее интенсивная сегрегация зерен в слое происходит в результате усилий, возникающих при встрече материала с ситом. Интенсивность перемещения зерен внутри слоя определяется величиной кинетической энергии слоя относительно вибрирующей плоскости, которая зависит от относительной скорости (Х отн.) слоя к плоскости в момент встречи. Оптимальное сочетание частоты и амплитуды колебаний грохота следует считать такое, когда скорость слоя ( 1у сл.) материала и просеивающей поверхности ( Ъ с.) будет.в момент встречи максимальной. [c.173]

    А1(х) ТО возникнет плоскодонная ямка травления, которая после перемещения ступени исчезнет. Наоборот, при образуется тонкий туннель вдоль дислокации. Нормальная скорость пропорциональна частоте появления двумерных зародышей [18], а тангенциальная характеризует скорость их расширения при перемещении ступеней. Отношение можно регулировать введением ингибирующих и стимулирующих примесей в раствор, избирательное действие которых аналогично действию полирующих электролитов. Примеси, находящиеся в мета л л еГ могут оказыв ать двоякое действие с одной стороны, при сегрегации примесей на дислокациях уменьшается их химическая активность, так как релаксируют напряжения (поэтому старые дислокации травятся труднее), а с другой стороны, увеличивается растворение, так как вследствие изменения химического состава области выхода дислокации понижается коррозионная стойкость. [c.60]

    Следует отметить, что в реальных материалах могут наблюдаться отклонения от симметричного характера изменения электродного потенциала и скорости коррозии при деформациях растяжения и сжатия. В частности, одной из причин могут быть вторичные явления, связанные с перераспределением активности катодных участков в местах сегрегации углерода сжатие кристаллической решетки уменьшает подвижность атомов углерода вследствие уменьшения межатомных расстояний. [c.193]

    Кривые, характеризующие качество смеси, 1юказа-ны на рис. 1.7.3.1. Из рисунка следует, что для материалов, сильно отличающихся по размерам частиц или плотности, качество смеси с течением времени может вновь ухудшиться. При этом дисперсия стремится к некоторой равновесной величине, которая не изменяется с течением времени. Это явление называется сегрегацией. Скорость сегрегации возрастает тем значительнее, чем больше отношение размеров или плотностей смешиваемых компонентов отличается от единицы. [c.55]

    В периоде / преобладает процесс смешивания за счет конвективного переноса компонентов по внутреннему объему смесителя. Процесс сегрегации по сравнению с процессом смешивания идет с небольшой скоростью, В связи с этим в периоде / У резко уменьшается до некоторого значения У,,,,. К концу этого периода ( ,,) в рабочем объеме смесителя практически нет агрегатов (макрообъемов), состоящих из частиц одного компонента. [c.229]

    В периоде III скорость процесса смешивания становится равиой скорости процесса сегрегации, поэтому У не меняется во временн. Наименьшее значение коэффициента неоднородности называют предельным коэффициентом неоднородности Время достижения смесью однородности, оцениваемой значением К,.,,, является оптимальным временем смешивания, так как при дальнейшем смсцшвании Ус lit уменьшается  [c.229]

    Для раздельного анализа трех стадий массопереноса в псевдоожиженных системах массообмен между стенкой и слоем (раздел I), а также между твердыми частицами и ожижающим агентом (раздел II), следует рассматривать в отсутствие сегрегации фаз (т. е. газовых пузырей). Это можно осуществить кепериментально, так как для развития газовых пузырей необходима некоторая конечная высота слоя. В жидкостных псевдоожиженных системах дискретная фаза (пузыри) образуются на высоте , превышающей 0,5—1м при газовом псевдоожижении пузыри заметных размеров ( с1р) присутствуют уже на высоте 0,2 м. Таким образом, данные по масообмену могут быть получены как в отсутствие пузырей (однородное псевдоожижение), так и а тех случаях, когда дискретная фаза оказывает влияние на скорость массопереноса (неоднородное псевдоожижение). В разделах I и II мы будем рассматривать только однородные псевдоожиженные системы неоднородные будут основной темой последующих разделов. [c.377]

    Осевые машины менее пригодны, нежели радиальные, по следующим причинам 1) из-за малой степени сжатия в одной ступени возникает необходимость в применении многостзтгенчатых (обычно, более шести ступеней) компрессоров, что резко усложняет их конструкцию 2) наличие многих ступеней приводит к сегрегации газовзвеси, так что эрозия локализуется в отдельных критических зонах 3) лопатки осевого компрессора относительно тонкие, поэтому даже небольшая степень их износа приводит к быстяому ухудшению эксплуатационных характеристик 4) типичные для этих машин высокие окружные скорости вызывают быстрый износ лопаток 5) смена лопаток и ремонт осевых ко1шрессоров обходятся очень дорого. Опыт эксплуатации осевых компрессоров указывает на их заметный износ уже нри концентрациях 1,6 10 кг твердых частиц на 1 м воздуха. [c.613]

    Удельная поверхность и пористая структура катализатора сильно зависят от способа удаления растворителя из осадка, геля, суспензии нли из пропитанного носителя. Этот способ выбирают с учетом того, в какой форме катализатор будет в дальнейшем использован. Часто применяют непосредственное выпаривание, но оно может привести к сегрегации компонентов. На микроструктуру также влияет скорость сушки, и ее следует регулировать. Интересные результаты получаются при замораживании силикагелей, содержащих большое количество воды. Замороженный продукт уплотнения геля оксида кремния становится не-растворпмым в воде, и после оттаивания оксид кремния приобретает структуру кристаллов льда. Так, если инициировать рост дендритных кристаллов льда, то можно получить волокна оксида кремния [21]. Методом замораживания были получены силикагели с чрезвычайно высокими удельными поверхностями порядка 1000 м /г. Замена воды в геле на спирт и выдерживание его при критических условиях в автоклаве привели к получению образцов с высокой удельной поверхностью и очень большими порами [22]. Использование для промывки геля жидкостей с более низким, чем у воды, поверхностным натяжением, например ацетона, предотвращает обусловленное капиллярными силами захлопывание узких пор при сушке геля. Одним из недостатков способа получения твердых веществ с высокой удельной поверхностью через образование геля является низкая концентрация твердого вещества в растворе. Приходится удалять большие количества растворителя, что требует дополнительных затрат. Кроме того, образуется чрезвычайно рыхлый порошок, и перед дальнейшим использованием его обычно формуют. [c.23]

    При нарушении равенства (1.23) частицы с меньшим значением произведения Рпл йл могут всплывать в кипяш,ем слое, а частицы с большим значением этого произведения ртон он тонуть и опускаться на дно аппарата [25]. При достаточно большой скорости потока слой в целом будет псевдоожижен, но может представлять собой фактически два различных кипяш,их слоя, расположенных один над другим, имеющих различную порозность и плотность Рел- При малых же скоростях могут начать псевдоожижаться частицы лишь всплывающей фракции, а внизу расположиться неподвижный продуваемый слой тонущей фракции. С ростом скорости потока кипящий слой всплывающей фракции (плв) может полностью или частично размывать лежащую внизу тонущую фракцию (тон) и образовывать единую псевдо-ожиженную систему. На рис. 1.13 схематически изображены различные возможные случаи — полного смешения (см) при малой разности величин P(d , полной сегрегации ( ejp) при большой разнице величин Pjd,- и промежуточный случай частичного смешения (ч. см). [c.30]

    В отличие от углеродистой стали, глубокая деформация тех-ническогб никеля на холоду не вызывает значительного повышения скорости его коррозии в кислотах [4], следовательно, в данном случае на сегрегациях примесей не возникают катодные участки с низким водородным перенапряжением. [c.132]

    Разделение зерен по крупности достигается при их движении по просеивающей поверхности. При движении короба с ситом происходит сегрегация материала - наиболее крупные зерна оказываются в верхнем слое, а наиболее мелкие - на поверхности сита. Эффективность работы грохота определяется коэффициентом эффективности, равным отношению массы подре-шетного продукта к массе мелкого класса в исходном сырье. Коэффициент эффективности грохота должен быть не меньше 0,8-0,9. Он зависит от влажности исходного материала, скорости движения материала по грохоту и угла наклона грохота (обычно 5°). [c.9]

    Иногда его называют коэффициентом сегрегации или коэффициентом ликвации. Коэффициент распределения — очень важная характеристика примеси. Он определяет поведение примеси при кристаллизации и характер распределения ее в вырап енном кристалле, а также позволяет оценить эффективность очистки вещества в процессе кристаллизации. Величина к зависит от природы примеси и основного вещества, типа фазовой диаграммы соответствующей системы, условий кристаллизации, скорости перемещения расплавленной зоны, интенсивности перемешивания и т. п. При кристаллизации из расплава различают равновесный и эффективный коэффициенты распределения. Равновесный коэффициент распределения к применим к бесконечно медленной кристаллизации при равновесии между соприкасающимися фазами. Эффективный коэффициент распределения характеризует процессы кристаллизации с измеримой скоростью (состояние системы неравновесно). Величина /г для различных примесей в одном и том же веществе может меняться в очень широких пределах. Примеси, понижающие температуру плавления, имеют к <. 1, а примеси, повышающие температуру,— к > 1, На рис. 32 показаны участки фазовых диаграмм в области небольших концентраций примеси. При этих концентрациях можно использовать для описания состояния системы законы разбавленных растворов и считать, что шнии солидуса и ликвидуса близки к прямым. Тогда коэффициент распределения легко рассчитать. Он равен отношению отрезков горизонтальных линий от оси температур до их пересечения с линиями солидуса и ликвидуса. Если угол между линиями солидуса и ликвидуса мал и концентрации и [c.61]

    Распределение СВ в стали находилось с помощью галогенидов серебра по методу Бауманна [12] на образцах сталей, отобранных из очаговых зон разрушения газопроводов Средней Азии, Казахстана, Урала и Сибири (Средняя Азия-Центр, Уренгой-Центр, Уренгой-Грязовец, Уренгой-Петровск, Парабель-Кузбасс, Бухара-Урал). Опыты проводились совместно с Г. И. Насыровой. Для исследования отбиралось по два образца, для каждой стали. Сульфидные включения определялись на внешней поверхности трубы в связи со спецификой протекания процесса КР (трещина во всех наблюдаемых случаях, а также по данным отечественных и за рубежных исследователей зарождалась на внешней поверхности трубы), а в отдельных случаях и в сечении стенки трубы. Сульфидные включения практически во всех исследованных случаях имели сферическую форму. Исключение составляла сталь группы прочности Х70 фирмы Бергрор , для которой были выявлены макроскопические сегрегации СВ. Содержание СВ в очаговых зонах разрушения магистральных газопроводов приведено в табл.1.1 Там же приводятся значения эффективных скоростей роста трещин КР, приуроченных к исследуемым участкам (см. Подраздел 1.7, ниже). [c.35]

    В периоде III скорость процесса смешивания становится равной скорости процесса сегрегации, поэтому Ус не меняется во времени. Наименьшее значеиие коэффициента неоднородности называют предельным коэффициентом неоднородности Время см достижения смесью однородности, оцениваемой значением является оптимальным временем смешивания, так как при дал5знейщем смешивании Vf. не уменьшается, [c.229]

    Таким образом, присутствие углерода и азота в стали способствует Деформационномуупрочнению и тем самым повышает химический потенциал дислокаций и атомов металла, т. е. создает необходимые условия для механохимического растворения. Кроме того, адсорбция атомов углерода и азота на полигональных субграницах в некоторой мере способствует также увеличению химической активности. Этим, в частности, обусловлено некоторое увеличение [97, 98] скорости коррозии металла, прошедшего низкотемпературный отпуск, по сравнению с неотпущенным полигонизация приводит к увелич ению общей протяженности субграниц с сегрегированными на них атомами примеси (процессы диффузии примесей к субграницам облегчаются нагревом), которые повышают химическую активность этих границ. Однако следует иметь в виду, что сегрегация углерода и азота на субгра- [c.115]

    В ряде работ, однако, отрицается прямое влияние запасенной энергии остаточной деформации углеродистой стали на ускорение анодного растворения авторы их [97, 100, 101] объясняют ускорение коррозии деформированной стали в децинормальНом растворе соляной кислоты сегрегацией катодных примесей на дислокациях. Вряд ли это справедливо, так как опыты проводились на образцах, подвергнутых после деформации длительной выдержке (старению). В этом случае возможно образование сегрегаций примесей в результате-деформационного старения, хотя для этого требуется значительное время, что и было отмечено [2, 69]. Однако даже в случае состаренных (предварительно деформированных) образцов стали 08кп скорость коррозии в растворе серной кислоты [53] оказалась меньше, чем несостареннцх. На поверхности этих образцов в процессе старения появляются линии скольжения, а это прямо свидетельствует о наличии скоплений дислокаций под поверхностным барьером и упрочненных областей, которые в процессе старения разряжаются, что снижает механохимическую активность металла. Таким образом, попытка [100, 97] объяснить ускоренное растворение деформированного металла только сегрегацией примесей на дислокациях, основываясь на отсутствии влияния деформации на коррозию в случае чистого металла после старения, несостоятельна в чистых металлах старение приводит к рассасыванию дислокационных скоплений и элиминированию механохимической активности. [c.116]

    Таким образом, присутствие углерода и азота в стали способствует деформационному упрочнению и тем самым повышает химический потенциал дислокаций и атомов металла, т. е. создает необходимые условия для механохимического растворения. Кроме того, адсорбция атомов углерода и азота на полигональных субграницах в некоторой мере способствует также увеличению химической активности. Этим, в частности, обусловлено некоторое увеличение [105, 106] скорости коррозии металла, прошедшего низкотемпературный отпуск, по сравнению с неотпущенным полигонизация приводит к увеличению общей протяженности субграниц с сегрегированными на них атомами примеси (процессы диффузии примесей к субграницам облегчаются нагревом), которые повышают химическую активность этих границ. Однако следует иметь в виду, что сегрегация углерода и азота на субграницах повышает скорость коррозии в кислых растворах вследствие снижения перенапряжения водорода на выделениях [107], а не вследствие облегчения анодной реакции. Последняя замедляется из-за понижения энергии, связанной с дислокациями, адсорбировавшими примеси старые дислокации травятся труднее, чем свежие . [c.116]

    В ряде работ [105, 108, 1091, однако, отрицается прямое влияние запасенной энергии остаточной деформации углеродистой стали на ускорение анодного растворения авторы этих работ объясняют ускорение коррозии деформированной стали в децинор-мальном растворе соляной кислоты сегрегацией катодных примесей на дислокациях. Вряд ли это справедливо, так как опыты проводили на образцах, подвергнутых после деформации длительной выдержке (старению). В этом случае возможно образование сегрегаций примесей в результате деформационного старения, хотя для этого требуется значительное время, что и было отмечено в работах [54, 75 ]. Однако даже в случае состаренных (предварительно деформированных) образцов из стали 08кп скорость коррозии в растворе серной кислоты [59 ] оказалась меньше, чем несостаренных. На поверхности этих образцов в процессе старения появляются линии скольжения, а это прямо свидетельствует [c.117]


Смотреть страницы где упоминается термин Сегрегация скорость: [c.87]    [c.394]    [c.31]    [c.43]    [c.111]   
Перемешивание и аппараты с мешалками (1975) -- [ c.353 ]

Перемешивание и аппараты с мешалками (1975) -- [ c.353 ]




ПОИСК





Смотрите так же термины и статьи:

Сегрегация



© 2025 chem21.info Реклама на сайте