Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота хлористого водорода

    Для отвода теплоты, выделяющейся в результате экзотермической реакции сульфохлорирования, установлен охлаждающий змеевик. Газы, выходящие из верхнего конца сосуда, а именно непрореагировавший углеводород, двуокись серы и хлористый водород, отводят в промывную башню, в которой они освобождаются от хлористого водорода и двуокиси серы, а углеводород направляют в трубопровод отходящих газов. В процессе реакции четыреххлористый углерод обогащается продуктами реакции. Когда концентрация сульфохлоридов достигнет примерно 20%, то ее поддерживают на этом уровне непрерывным удалением части раствора и добавлением свежего четыреххлористого углерода. [c.390]


    Конвективный теплообмен между газом или жидкостью и твердым телом происходит в результате их соприкосновения. Теплопередача при этом происходит переносом теплоты движущимися материальными частицами газа или жидкости, прилегающей к поверхности твердого тела при эндотермических реакциях, и от частиц материала к газу или жидкости при экзотермических реакциях, за исключением печи синтеза хлористого водорода, где тепло от реакционных газов передается металлическому кожуху печи и отводится из системы. [c.26]

    Основная реакция гидрохлорирования винилацетилена проходит через промежуточные комплексные продукты. Теплота реакции образования хлоропрена из винилацетилена и хлористого водорода составляет 1,20—1,56 МДж/кг, а теплота растворения хлористого водорода в катализаторе — около 1,8 МДж/кг. [c.418]

    Теплота реакции также поглощается током воздуха. Длина пути реакционной смеси должна быть отрегулирована так, чтобы в конце его произошло полное удаление хлористого водорода. Продукт собирается на дне реакционной камеры, затем поступает и нейтрализатор. Давление воздуха 7—10 кг/см . [c.73]

    Тепловой эффект процесса хлорирования складывается и., тепла реакции Q , тепла растворения хлористого водорода в воде Q, и теплоты испарения хлорируемого сырья (эта величина [c.263]

    При разложении перхлората аммония образуется хлористый водород с теплотой разложения при постоянном объеме, равном 132,9 Дж. Молекулы хлора при нагревании диссоциируются на атомы, которые реагируют с молекулами водорода, образуя НС1 и атом водорода. Последний реагирует с молекулой хлора, образуя НС1 и атом хлора. Таким образом, за счет цепной реакции образуется НС1. [c.9]

    Теплота образования хлористого водорода равна 92,05 кДж/моль, а теплота образования иодистого водорода равна 25,10 кДж/моль. Рассчитайте тепловой эффект реакции  [c.59]

    При отрицательных отклонениях парциальные давления компонентов и общее давление пара над раствором меньше, чем в идеальном растворе. Это связано с большей энергией, которая требуется на перевод в газовую фазу молекул данного компонента, окруженных молекулами другого компонента, и наблюдается, когда ав> аа и дв> бв- Смесей с отрицательными отклонениями известно меньше, чем с положительными. В качестве примера можно привести системы вода — хлористый водород, хлороформ — ацетон, хлороформ — бензол. При образовании идеальных растворов теплота смешения равна нулю. При положительных отклонениях наблюдается поглощение тепла, при отрицательных — выделение. [c.118]


    Пользуясь значениями теплот образования сернистого ангидрида (—70,97), воды (—68,317) и хлористого водорода (—22,06) и теплот растворения сернистого ангидрида, серной кислоты и хлористого водорода в очень разбавленном растворе (соответственно —8,56 —22,05 и —17,627 ккал/моль) найти теплоту образования серной кислоты. Результат расчета сравнить с табличным значением ДЯ = —193,75. [c.23]

    Отрицательные отклонения от закона Рауля характерны для растворов вода — хлористый водород, вода — серная кислота и т. п. Для данных растворов наблюдается уменьшение давления пара по сравнению с идеальными растворами (рис. 82). Отрицательные отклонения обусловливаются большими силами притяжения между молекулами разных типов (взаимодействие А — В больше, чем А — А и В — В). Отрицательные отклонения наблюдаются у растворов, склонных к сольватации, в частности гидратации и т. п. Образование раствора такого типа, как правило, сопровождается уменьшением объема и выделением теплоты, т. е. Аг <0 ДЯ<0. Поэтому теплота парообразования растворенного компонента оказывается больше, чем чистого компонента. Это затрудняет парообразование. Если отклонения от закона Рауля очень велики, кривая общего давления пара может иметь максимум или минимум, в зависимости от того, какие отклонения наблюдаются— положительные или отрицательные. [c.194]

    Значения температуры кипения и теплоты испарения жидких галогеноводородов, приведенные в табл. 26.3, свидетельствуют о том, что наименьшая тенденция к ассоциации имеет место у хлористого водорода. Энергия связи в ряду НР — Н1 уменьшается, что обусловлено резким возрастанием числа электронов в атомах галогенов в ряду Р — I, а также уменьшением различия в энергии уровней и подуровней по мере увеличения числа электронных слоев. В результате этого уменьшается степень перекрывания орбиталей водорода и галогена и возрастает межатомное расстояние. Моменты диполей галогеноводородов в связи с уменьшением тенденции к разделению зарядов и увеличением межатомных расстояний в той же последовательности существенно уменьшаются. [c.317]

    Экзотермические — это такие реакции, которые протекают с выделением теплоты. Например, реакция образования хлористого водорода из водорода и хлора  [c.34]

    Газы, выходящие из реактора, быстро охлаждаются в трубчатом холодильнике 7 до 50° и направляются в колонну 8 для предварительной фракционной очистки хлорорганических продуктов от пропилена и хлористого водорода. В колонне 8 в качестве флегмы используется жидкий пропилен с температурой —40°. Поступающий на орошение колонны пропилен охлаждается до —40° за счет испарения его в аппарате 14. Фракция, отходящая из колонны 8 и содержащая пропилен и хлористый водород, поступает в абсорбер 9, где хлористый водород поглощается водой с образованием технической соляной кислоты. Для удаления теплоты абсорбции используется жидкий пропилен. [c.283]

    Во всех этих реакциях молекула хлора, имеющая структурную формулу С1—С1, расщепляется на два атома хлора один из них занимает место атома водорода, связанного с углеродом, а второй соединяется с вытесненным атомом водорода и образует молекулу хлористого водорода И—С1. Воспользовавшись значениями энергий связи, приведенными в табл. V.1, можно рассчитать значение теплоты реакции для каждой ступени этого процесса 328 + 432—243—415=102 кДж-моль-. Рассмотренные реакции не столь экзотермичны, как реакция присоединения хлора по двойной связи (142 кДж-моль 1). [c.200]

    Как известно, растворение хлористого водорода в воде сопровождается довольно сильным разогреванием образующегося раствора. Действительно, энергия связи водорода и хлора в молекуле H I равна 1360 кДж/моль. Теплота гидратации протона равна И(Х) кДж/моль, что в сумме с уже приводившейся теплотой сольватации иона С1 дает общую теплоту гидратации H I 1450 кДж/моль, а это заметно больше энергии связи Н— I. Вот почему при образовании раствора соляной кислоты и происходит довольно сильное разогревание. [c.31]

    В 2-литровую трехгорлую круглодонную колбу, снабженную обратным холодильником, механической мешалкой (примечание 1) и капельной воронкой емкостью 100 мл, помещают 374 г (2,8 мол.) безводного хлористого алюминия и 400 мл сероуглерода (примечание 2). К суспензии при перемешивании медленно прибавляют через капельную воронку 375 г (2,5 мол.) фенилового эфира пропионовой кислоты (примечание 3). Почти сейчас же начинается реакция с выделением хлористого водорода (примечание 4) и сероуглерод начинает кипеть благодаря теплоте, выделяемой при реакции (примечание 5). После прибавления всего пропионата (около 1,5 часа) смесь нагревают на водяной бане так, чтобы она спокойно кипела до тех пор, пока выделение хлористого водорода практически не закончится (около 2 час.). Обратный холодильник заменяют на обращенный вниз и сероуглерод отгоняют. Затем водяную баню удаляют и смесь нагревают на масляной бане в течение 3 час. при 140—150" (при.мечание б). При отом снова происходит выделение хлористого водорода смесь постепенно густеет и наконец застывает в коричневую тягучую массу. Перемешивание продолжают, пока это возможно (примечание 7). [c.426]


    При растворении хлористого водорода в бесконечно большом количестве воды при 15 °С теплота растворения составляет [c.478]

    Дифференциальные, или парциальные, теплоты растворения широко используют в термохимических расчетах при расчете по уравнению (135) их следует прибавить к теплотам образования чистых фаз, если они вступают в реакцию или получаются в растворенном виде. Интегральная теплота растворения хлористого водорода, например, может быть рассчитана по формуле, учитывающей изменение термодинамических свойств воды  [c.354]

    Соляная кислота получается при абсорбции хлористого водорода водой. Растворение хлористого водорода в воде - сильно экзотермический процесс, суммарная теплота растворения хлористого водорода в воде для бесконечного разбавления при О °С составляет 69,9 кДж/моль, или 1920 кДж/кг НС1. Таким образом, при получении соляной кислоты необходимо отводить значительное количество тепла. По способам отвода тепла методы абсорбции делят на изотермический, адиабатический и комбинированный. Адиабатический процесс был впервые предложен Г. М. Гаспаряном. [c.7]

    Теплота растворения хлористого водорода снижается в ряду растворителей дихлорэтан > трихлорэтан > трихлорэтилен > [c.13]

    Благодаря удачному решению вопроса об отводе тепла за счет испарения бензола производительность реактора непрерывного действия с рабочим объемом 1,7 м в 16 раз выше производительности хлоратора-абсорбера объемом 7 На I т хлорбензола в хлоратор подается 700 кг хлора под давлением 0,12—0,13 МПа и около 4200 кг бензола. В процессе хлорирования за счет теплоты реакции испаряется около 1450 кг бензола, а хлор почти нацело превращается в хлористый водород. Объем реакционной массы за счет паров, образующихся при кипении бензола, увеличивается более чем в 3 раза, а масса жидкости уменьшается с 4200 до 3100 кг. [c.91]

    В этом случае выполнение важнейших требований, связанных с успешным проведением процесса — точное регулирование интенсивности света, обеспечивающее расходование всего подаваемого хлора с выделением только хлористого водорода, применение коррозийностойких материалов, достаточный отвод теплоты реакции и тепла ртутной лампы, интенсивное перемешивание жидкой и газовой фаз для полного завершения реакции — достигнуто совершенно другим способом. [c.147]

    На рнс. 233 показан хлоратор непрерывного действия в производстве хлорбензола. Изнутри аппарат футерован диабазовой плиткой. В нижней части колонны крепят чугунную решетку 2, на которой уложена насадка 3 из смеси керамических и стальных колец. Ж<. лезо в данном процессе служит катализатором. Жидкий бензол и газообразный хлор подают под решетку, и смесь движется снизу вверх прямотоком. Теплота реакции отводится за счет частичного испарения реакционной массы. Хлорированная жидкость выходит через боковой штуцер в верхней части аппарата. Парогазовая смесь, содержащая хлористый водород, пары хлорбензола и другие примеси, удаляется через штуцер в крышке хлоратора. На выходе парогазовой смеси установлен каплеотбой-ник. [c.249]

    Помимо указанных выше катализаторов, в процессах алки-лнрования могут применяться также хлористый алюминий в присутствии хлористого водорода. При помощи этого катализатора путем алкилирования изобутана этиленом можно получать диизо-проппл, обладающий высоким октановым числом (95) и высокой теплотой сгорания. При использовании диизопропила в качестве топлива допускаются высокие степени сжатия, что является ценным качеством. [c.138]

    Растворы газов в жидкостях. По своей природе и свойствам растворы газов в жидкостях ничем не отличаются от других жидких растворов. Обычно концентрации газов в этих растворах незначительны, и растворы являются разбавленными. Исключение составляют отд ьные системы, в которых растворимость оказывается весьма большой вследствие химического взаимодействия растворяемого газа с растворителем, например в растворах аммиака или хлористого водорода в воде. Малая концентрация раствора приводит обычно к сравнительно слабому отличию его свойств от свойств чистого растворителя. Впрочем, в незначительной степени растворений газов в жидкостях сопровождается в общем случае и изменением объема раствора и выделением или поглощением теплоты. Растворение газа в жидкости иначе называют абсорбцией газа жидкостью. [c.325]

    Суммирование этих уравнений дает Hj Gl = 2HG1, откуда следует, что реакция образования хлористого водорода может дойти до равновесия при любой концентрации активных центров С1 и Н, и так как энергия активации указанных выше процессов значительно меньше энергии активации процесса lj = 2С1 (равной теплоте диссоциации молекул lj 57,3 ккал), то за время реакции концентрация активных центров существенно не изменится. Таким образом, рассматриваемая реакция идет практически при неизменном числе частиц, из чего можно заключить, что скорость детонации смеси H -Ь ia не будет зависеть от давления. Как видно из данных табл. 13, это заключение подтверждается на опыте, так как при повышении начального давления смеси с ро=200 тор до Ро = 760 тор скорость детонации изменяется всего лишь на 0,7%. [c.244]

    На основании экспериментальных данных для теплоемкости хлористого водорода построим график в координатах Ср— IgT (рис. 92). Экспериментальные данные получены, начиная с Т = 17,29 К. Теплоты фазовых переходов AtrW° = = 1190, Дп,Я°= 1992, АуН" = 16 151 Дж/моль, а соответствующие им температуры фазовых переходов 98, 36 158, 91 и 188,07 К. Общее изменение энтропии Д 5° при нагревании 1 моль хлористого водорода от О до 298 К можно представить выражением [c.234]

    Молекула НС1 характеризуется ядерным расстоянием d(H l)= 1,28 А, энергией связи 103 /скал, силовой константой 5,2 и довольно значительной полярностью (ц = 1,08). Ионизационный потенциал молекулы H I равен 12,8 в. Хлористый водород плавится при —114°С и кипит при —85 °С, Его крид ическая температура равна -1-51 °С, критическое давление 82 атлг, плотность в жидком состоянии 1,2 г/сж теплота испарения 3,9 ккал/моль. Распад НС1 на элементы становится заметным примерно с 1500 С. [c.258]

    Литтлвуд и сотр. (1955), а также Портер и сотр. (1956) вычислили по температурной зависимости величин К и Уд теплоты растворения, испарения и парциальные молярные теплоты смешения. Дежорж и сотр. (1963) определили теплоту растворения таких корродирующих газов, как хлор и хлористый водород, в толуоле и и-ксилоле в интервале температур от —70 до —10°. [c.455]

    В круглодонную колбу емкостью 6 л, снабженную обратным холодильником и термометром, вливают 956 мл (765 г, 16 молей) этилового спирта. Колбу охлаждают и через холодильник вливают порциями 748 мл (1378 г, 13,5 моля) концентрированной серной кислоты. Кислоту следует приливать медленно, встряхивая время от времени содержимое колбы, так, чтобы температура смеси не превысила 40 . Раствор охлаждают до 20° и, сняв холодильник, быстро всыпают 825 г сухой натриевой соли циануксусной кислоты, после чего вновь присоединяют обратный холодильник. Прибор помещают под тягу и колбу встряхивают. Температура смеси быстро повышается, и начинает выделяться хлористый водород (примечание 1). Когда температура перестанет повышаться за счет теплоты реакции, колбу начинают медленно нагревать на масляной бане до температуры кипения жидкости. Эту температуру поддерживают 4—5 часов, время от времени встряхивая колбу (примечание 2). Охладив затем смесь до 30—40 , добавляют 500 мл бензола, колбу встряхивают, вливают в нее 2 л воды и в делительной воронке отделяют водно-спиртовой слой от бензольно-эфирного (примечание 3). Бензольный экстракт нейтрализуют, промывая 10%-ным водным раствором карбоната натрия, на-сьщенного поваренной солью (примечание 4), а затем водой. Бензольный экстракт перегоняют сперва под атмосферным давлением до 90 , а затем в вакууме, собирая фракцию с т. кип. 80°/4 мм рт. ст., =1,055—1,061 (примечание 5). [c.364]

    В 1-литровую трехгорлую круглодонную колбу, снабженцукз эффективной мешалкой, обратным холодильником, трубкой для ввода газа и термометром (примечания 1 и 2), помещ,ают 102 г ( мл, 0,85 моля) мезитилена ( Синт. орг. преп. , сб. 1, стр. 242), 147 г (1,25 моля) цианистого цинка (примечание 3) и 400 мл тетри- хлорэтана (примечание 4). Трубку для ввода газа соединяют с источником хлористого водорода (примечание 5) и пере.меши-вают смесь при комнатной температуре, одновременно пропуская через нее быстрый ток сухого хлористого водорода до тех пор, пока цианистый цинк не разложится обычно это занимает 3 часа. Затем колбу погружают в баню со льдом, трубку для ввода газа удаляют и к смеси прибавляют при очень энергичном пере.меши-вании 293 г (2,2 моля) тщательно измельченного безводного хлористого алюминия (примечания 6 и 7). После этого баню со льдом отставляют и возобновляют пропускание хлористого водорода в тече-йие всего остального периода реакции. Теплота реакции достаточна для того, чтобы смесь медленно разогревалась через 1 час температура ее повышается примерно до 70 Температуру поддерживают при 67—72° в течение еще 2,5 часа. Охлажденную смесь разлагают, осторожно выливая ее при перемешивании от руки в 4-литровый сосуд, до половины заполненный колотым льдом, к которому добавлено Шмл концентрированной соляной кислоты. Смесь оставляют на ночь затем ее переносят в 3-литровую круглодонную колбу и кипятят с обратным холодильником в течение [c.18]

    Теплоту сгорания определяют как такое количество теплоты, которое выделяется при взаимодействии одного грамм-моля соединения с избытком кислорода нрп атмосферном давлении и комнатной температуре, причем продукты находятся в их естественном состоянии ири указанных условиях. Следует подчеркнуть, что химический анализ является существенной частью всех термохимических исследований. Наиример, хлористый метил легко сгорает в воздухе, давая углекислый газ, жидкуюводу и газообразный хлористый водород, который растворяется в воде с образованием соляной кислоты. Кроме того, образуется 6,5% свободного хлора необходимо так ке учитывать тот факт, что на опыте очень трудно приготовить хлористый метил без примеси диметилового эфира. Йодистый метил загорается на воздухе ярким пламенем, но ипамя вскоре гаснет, еслн не подается воздух, обогащенный кислородом при этом иодистого водорода не образуется и весь иод в продуктах реакции обнаруживается в кристаллическом состоянии. Чтобы дать правильное объяснение термическим эффектам, сопровождающим эти реакции сгорапия, надо иметь возможность совершенно точно сопоставлять кало-рпметричес1ше результаты с происходящими при этом химическими изменениями и такими физическими процессами, как растворение НС1 в воде и сублимация иода. Огромной заслугой Томсена [9] и Бертло [10] было то, что еще в прошлом веке они точно определили теплоты образования и сгорания многих тысяч химических соединений, а также нашли теплоты процессов растворения, нейтрализации и разведения. Работая независимо и пользуясь различной аппаратурой, они достигли результатов, находящихся в замечательном взаимном соответствии. Их данные лишь с некоторыми небольшими иоправками [И] до сих пор можно исиользовать как стандартные значения термохимических величин. [c.257]

    Теплота растворения хлористого водорода в органических рас-8орителях составляет 3—4 ккал/моль. [c.469]

    Схемы питания электролизера электролитом могут быть различными. В основном все электролизеры работают с циркуляцией электролита, имеющего оптимальную концентрацию с выводом из цикла части кислоты на донасыщение газообразным хлористым водородом. Оптимальной по концентрации слёдует считать 20%-ную кислоту, которая имеет наиболее высокую электропроводность (76,16 См/м при 18°С), что обеспечивает наиболее низкое из возможных напряжение электролиза. При циркуляции кислота прохо-. дит через графитовый холодильник, снимающий теплоту, которая выделяется при электролизе. Напряжение электролиза лежит в пределах 2—2,3 В. [c.133]

    Как видно, теплота реакции диссоциации НС1 может быть представлена как сумма теплоты образования газообразного хлористого водорода из водорода и хлора с обратным знаком AHj = -AfH (H l, g), половины энергии диссоциации водорода АНз (Нз, g) и половины диссоциации связи хлора АН3 = l/2Aii H ( I3, g). [c.204]

    Хлористый водород отходящих газов адсорбируют водой. Образующуюся соляную кислоту нейтрализуют щелочью или выпускают как товарную продукцию, если концентрация НС1 в ней достигает 22-26%. Получение имеющей сбьгг кислоты и значительная теплота сгорания ХОО (до 16-25 тыс. КДж/кг) во многих случаях делают рентабельной работу установок по сжиганию. Их оптимальными конструкциями являются камерные (факельные и циклонные). Одна из них используется во Франции (технология VR ) для обезвреживания и утилизации отходов мономера винилхлорида, трихлорэтилена, перхлорэтилена, че-тыреххлористого углерода, полихлорированньге бифенилов. [c.271]

    Как мы видим, радикальное присоединение бромистого водорода к большинству олефинов протекает с большой скоростью. В противополох<ность этому, радикальное присоединение хлористого водорода может быть достигнуто только в специальных условиях, а иодистый водород вообще не присоединяется к олефинам в радикальных процессах. В табл. 14.1 приведены теплоты [c.203]

    Воган и Свисенбэнк [6] изучали эффект разбавления изопропанолового раствора хлористого водорода в ряде органических растворителей и воде. Они нашли, что в растворителях типа изопропанола (например, в воде, метаноле, этаноле) имели место слабо экзотермические реакции разбавления, а в неполярных органических растворителях типа четыреххлористого углерода, бензола, ацетона и диоксана обнаруживалась относительно большая эндотермическая теплота разбавления. Наибольшее понижение температуры было получено в тех органических растворителях, в которых хлористый водород имеет наименьшую растворимость. [c.117]

    Бутан перед поступлением на изомеризационную установку предварительно подсушивается 96%-ной серной кислотой. Кислота меняется периодически при достижении концентрации в 88—90%. После просушки н-бутан закачивается насосамп в испаритель высокого давления, подогреваемый паром. Отходящие пары н-бутана смешиваются с хлористым водородом и поступают в реактор. Обогрев реактора производится паром и необходим только в начальной стадии, при запуске процесса. При нормальной работе обогрев излишен, так как тепловые потери реакторов компенсируются теплотой реакции изомеризации. [c.323]


Смотреть страницы где упоминается термин Теплота хлористого водорода: [c.411]    [c.297]    [c.57]    [c.116]    [c.30]    [c.304]    [c.100]    [c.490]    [c.115]    [c.115]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.478 ]

Справочник по производству хлора каустической соды и основных хлорпродуктов (1976) -- [ c.246 ]




ПОИСК





Смотрите так же термины и статьи:

Хлористый водород



© 2024 chem21.info Реклама на сайте