Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлористый алюминий применение

Рис. 2. Равновесные состояния при этилировании бензола при 95° с применением в качеств катализатора хлористого алюминия [151. Рис. 2. <a href="/info/6361">Равновесные состояния</a> при <a href="/info/411992">этилировании бензола</a> при 95° с применением в <a href="/info/1247388">качеств катализатора хлористого</a> алюминия [151.

    Механизм обратного замещения. В реакции Фриделя-Крафтса с рядом первичных производных проявляются некоторые особенности, затрудняющие принятие для этих производных карбоний-ионного механизма, Например, реакция бензола с н-пропилхлоридом идет с выходом в 40% пропилбензола при 35° и с выходом в 60% при —6°. Сообщалось также, что применение в реакции м-пронилового спирта вызывает образование исключительно н-пропилбензола. Еще более удивительным является наблюдение, что неопентилбензол получается по реакции Фриделя—Крафтса из неопентилового спирта и бензола в присутствии хлористого алюминия [172]. [c.438]

    Различие в стабильности промежуточного карбоний-иона и показанного выше сигма-комплекса, возможно, является причиной отличия продуктов алкилирования, катализированного, соответственно, серной кислотой и хлористым алюминием. При применении составителя изомеризация внутри алкильных групп (или прежде или в течение алкилирования) имеет значительно больше места, чем при использовании хлористого алюминия. Например, З-метил-1-бутен алкилирует бензол, образуя третичный амилбензол при помош и серной кислоты и 2-метил-З-фенил-бутан с хлористым алюминием [605] алкилирование бензола [c.136]

    Метилциклогексан при нагревании с бромистым или хлористым алюминием практически не изменяется [18]. При помощи метода меченых атомов с применением метилциклогексана, содержащего С1 -метильную группу, удалось показать, что изомеризация идет и что после реакции. 31% метилциклогексана содержал радиоактивный углерод в кольце [58]. Реакция проводилась при 25° в течение 21 часа, в качестве катализатора были взяты бромистый алюминий и бромистый водород, а в качестве инициатора цепи — вто/ -бутилбромид. В отсутствии инициатора в кольце оказалось только около 1% радиоактивного углерода. [c.46]

    При рассмотрении промышленного применения процессов получения этилбензола может быть небезынтересно то, что на более современных заводах, сооруженных фирмой Копперс в Порт-Артуре и в Тексасе, в стадии алкилирования, как сообщают [6], применяется катализатор типа Фриделя-Крафтса — хлористый алюминий. [c.495]

    Термическое разложение в присутствии катализаторов. Обычный прием термического разложения каучука изложен в предыдущей главе. Зелинский и Козлов описывают случай разложения в присутствии хлористого алюминия. Применение этого катализатора значительно понижает температуру разложения и приводит к получению продуктов, отличающихся от продуктов обычного пиролиза. [c.114]


    Схема установки для жидкофазной изомеризации н. бутана приведена на рис. 70. Процесс ведется с хлористым алюминием, применение которого требует особых условий. Комплекс углеводорода с хлористым алюминием осаждается на поверхности хлористого алюминия и меняет его активность, в результате чего при промышленном оформлении процесса, когда требуется непрерывность и постоянство превращения, приходится слишком часто менять условия ведения изомеризации. Кроме того при этом [c.245]

    В термических реакциях наблюдается движение двойной связи [455—458], а в разветвленных структурах может происходить некоторое перемещение метильных групп, уже присутствующих в системе, но новые разветвленные структуры не образуются. То же можно сказать и о мягких катализаторах, таких как алюминий нри 400—450° С [459—461] и сульфат алюминия при 270—290° С [462—464]. Однако катализаторы, обладающие кислотными свойствами, вызывают перемещение метильных групп или разветвление цепи. Это в особенности справедливо для тех случаев, когда олефины проходят через окисленный алюминий при 300° С-370° С [465, 466, 462, 461], глины при 290° С [467], кремний-алюминиевые катализаторы крекинга при 400—600° С [468, 469] и кислоты, такие как фосфорная, при 200—350° С [470]. Сильные кислоты, такие как серная кислота и хлористый алюминий, являются эффективными агентами изомеризации при комнатной температуре, но их применение сопровождает значительный крекинг углеводородов.  [c.120]

    Существуют два метода конденсации продуктов прямого хлорирования высших парафиновых углеводородов с фенолом. Для этого можно использовать или реакцию Фриделя — Крафтса с применением хлористого алюминия в качестве катализатора, или конденсацию в присутствии цинковой пыли. [c.246]

    Другая форма применения катализатора основана на образовании комплексного соединения парафинового углеводорода, подлежащего изомеризации, хлористого алюминия и хлористого водорода. Этот комплекс жидкий, но не растворим в углеводороде. В этом случае жидкий парафиновый углеводород пропускают через колонну, наполненную хлористым алюминием. Отсюда углеводород увлекает с собой некоторое количество катализатора и поступает затем вместе с хлористым водородом в колонну с насадкой из битого кварца, где комплексное соединение задерживается и действует как катализатор. Можно также обойтись и без инертного носителя, заполняя колонну жидким комплексным соединением и пропуская череэ него смесь парафинового углеводорода и хлористого водорода. [c.517]

    Более ранние исследования показали, что хлористый алюминий, обычно применяемый вместе с хлористым водородом, является эффективным катализатором изомеризации, что привело к важным применениям этого катализатора в промышленности. Он применялся не только сам по себе, но и на носителях, а также в виде комплексов, не смешивающихся с углеводородом, часто называемых осадком хлористого алюминия. Последующая работа с тщательно очищенными веществами показала, что инициаторы цепей, обычно присутствующие в определенных концентрациях в технических исходных материалах, необходимы для осуществления реакции изомеризации. Бромистый алюминий с бромистым водородом по своему действию напоминает хлористый алюминий с хлористым водородом. [c.14]

    При изучении влияния воды на изомеризацию н-бутана был применен вакуум [81]. Для исследования применялись два метода 1) бромистый или хлористый алюминий обрабатывали различными количествами воды, смесь нагревали и весь освободившийся бромистый или хлористый водород откачивали полученный продукт, свободный от несвязанного 2  [c.19]

    В литературе есть также сведения о применении азотной кислоты, ацетилхлорида, диметилсульфата, двуокиси серы, хлористого алюминия, сульфонилхлорида , ароматических сульфокислот (я-толуол-и п-бензолсульфокислоты ), хлорной кислоты > водной фосфорной кислоты , фос( рной кислоты с 85% фосфорного ангидрида и др. Однако сведения об условиях синтезов весьма ограничены и перспективность использования этих конденсирующих средств маловероятна. Высокий выход дифенилолпропана (95%) и большая ко-рость реакции достигаются при использовании фосгена (промотор — метилмеркаптан) . Фосген связывает образующуюся при реакции воду при этом выделяются хлористый водород и окись углерода [c.64]

    Применение в качестве индикатора радиоактивного водорода. Была сделана попытка определить стадии, через которые протекает изомеризация -бутана в изобутан при помощи радиоактивного изотопа водорода, трития [65]. Катализатор представлял собой хлористый алюминий, нанесенный на древесный уголь или на окись алюминия. Он применялся в присутствии или в отсутствии хлористого водорода. Обмен атомами водорода между бутаном и молекулярным водородом мало дает для объяснения механизма изомеризации, за исключением случаев, когда молекула бутана атакуется водородом. Степень обмена с хлористым водородом указывает на более эффективное участие его в реакции. Поскольку с тщательно очищенными реагентами опыты не проводились, любые заключения о механизме реакции, основанные на обмене трития и водорода, остаются открытыми для критики. [c.21]


    Действие хлористого алюминия на олефины изменяется при добавлении металлического алюминия есть данные о том, что при применении хлористого алюминия, содержащего 20% металлического алюминия, при превращении газойля в бензин (выкипающий до 200°) выход бензина увеличивается приблизительно на 50% [77]. [c.97]

    Здесь следует рассмотреть два основных варианта реакции Фри-деля-Крафтса. Первый вариант — прямое алкилирование бензола (или гомологов) с применением олефинов или неорганических сложных эфиров (алкилгалоидов или сульфатов) и небольших количеств катализатора. Другой вариант заключается в ацилировании с образованием арилал-килкетонов (как промежуточных соединений) и восстановление их в ароматические углеводороды. Ацилирование производится хлорангидридами или ангидридами с добавлением стехиометрических количеств катализатора — галогенида металла, обычно безводного хлористого алюминия  [c.480]

    Хлористый алюминий получил некоторое промышленное применение при производстве бензина из газойля в период первой мировой войны и позже [57]. Бензин, получавшийся таким образом, был бесцветным, не содержал олефинов, в значительной степени был свободен от сернистых соединений и имел сравнительно высокие антидетонационные качества, последнее, по-видимому, является следствием изомеризации м-парафинов в разветвленные парафины. [c.97]

    Реакции конденсации ускоряются такими активными катализаторами, как хлористый алюминий и хлористое железо, а также и менее активными катализаторами, как хлориды висмута и цинка. При использовании в качестве катализатора хлористого алюминия реакцию ведут при низкой температуре (от —30° до 0°), тогда как в случае применения хлористого висмута требуется более высокая температура (20—100°). [c.227]

    Образование комплекса катализатора. Сильно непредельные соединения, образовавшиеся в результате реакции переноса водорода, включая олефины, дают с катализатором комплексы присоединения (так называемый нижний слой или осадок ). Хлористый алюминий превращается в красно-коричневую жидкость. При применении таких катализаторов, как серная кислота и фтористый водород, также образуются вязкие комплексы, окрашенные в цвета от красного до коричневого. [c.320]

    Образова.ние сложных эфиров. Сложные алкилэфиры иногда присутствуют как примеси в продукте алкилирования. Их образование связано с реакцией второй ступени цепного механизма алкилирования. Они могут также образоваться в результате присоединения катализатора (фтористый водород, серная кислота) или активатора катализатора (хлористый водород при применении хлористого алюминия в качестве катализатора) к олефину или к полимеру. В неблагоприятных условиях для водородного обмена с изопарафиновым углеводородом эфиры получаются как таковые. [c.320]

    В качестве реагентов для химической очистки нефтепродуктов был испробован целый ряд веществ, но лишь немногие из них выдержали испытание временем и нефтезаводской практикой. Наиболее прочно утвердились лишь серная кислота (предложенная для очистки нефтепродуктов еще в 1855 г. [1]), водные растворы щелочей и еще несколько веществ, применяемых для нейтрализации активных сернистых соединений. За последние годы в производстве смазочных масел сернокислотная очистка все больше вытесняется селективной и контактной очисткой. Для очистки более глубокой, чем та, которая достигается нри сернокислотном методе, был применен безводный хлористый алюминий. Гидрогенизационный метод очистки от серы и улучшения качества нефтепродуктов был разработан еще в 1930 г., однако широкое внедрение этого метода в промышленную практику началось примерно в 1955 г., когда появился доступный и дешевый водород с установок каталитического риформинга. [c.222]

    Для реакций типа Фриделя и Крафтса, проходящих между газообразными или парообразными веществами, возможно, согласно патенту, вместо готового хлористого алюминия применение металлического алюминия в присутствии хлористого водорода или алюминия, активированного прибавкой небольшого количества хлористого алюминия, или кратковременным нагреванием алюминия в токе хлора или хлороводорода. Вместо чистого алюминия здесь можно применять его сплавы, например сплав из 30% 2п и 70% А1. Если хлороводород выделяется во время реакции, то нет необходимости все время вводить его в смесь. Таким образом возможно получение бензофенона из фосгена и бензола в трубке, содержащей алюминий (и немного А1С1з), при температуре 50—60° "8  [c.738]

    Не так давно Аллен, Крессман и Белл [60] изучили процесс получения р-хлорпропиофенопа посредством реакции этилена с хлористым бензоилом в присутствии хлористого алюминия. Было найдено, что указанная реакция осложняется следующими обстоятельствами 1) хлористый бензоил и хлористый алюминий образуют двойное соединение, не растворихмое в большинстве растворителей 2) этилен следует вводить таким образом, чтобы он хорошо перемешивался с растворителем 3) образующийся 3-хлоркетон легко разлагается. Эти трудности были отчасти преодолены применением бромистого этилена в качестве растворителя для комплексного соединения хлористого бензоила с хлористым алюминием, применением специальной мешалки из стекла пирекс , приспособленной для введения этилена в раствор под небольшим давлением, и нагреванием конечной реакционной смеси до температуры не выше 50° для отделения растворителя и выделения -хлоркетона. Таким образом был получен р-хлорпропиофенон с выходом 87—92%. [c.756]

    Оппанол В не вулкапизируется. Если, одпако, добавить к изобутену около 2% вес. дпенов, как, напрпмер, нзонрена или бутадиена, то в результате полимеризации нри —80° в присутствии хлористого алюминия получают легко вулканизируемый сополимер (бутилкаучук), производимый в настоящее время в очень больших количествах вследствие его некоторых исключительно ценных свойств. Он приблизительно в 10 раз менее проницаем для воздуха, чем натуральный каучук, исключительно устойчив против действия озона и значительно менее подвержен старению. Широчайшее применение оп находит в производстве автомобильных камер [66]. [c.225]

    Несмотря на указанные трудности, способ с использованием хлористого алюминия находит все более широкое применение (рис. 67). Реакция происходит практически без давления при 50—70 °С в реакционных башнях высотой 15 м. В этих условиях имеет место каталитическое переалкилирование, поэтому высокоалкилированные продукты целесообразно снова возвращать в процесс. Оптимальное отношение бензол пропилен составляет примерно 4,5- 4,7 1, выход 98% в расчете на бензол, расход катализатора 0,025 г/кг кумола. [c.266]

    НИЯ тем, что сам по себе является электронно нейтральным. Было сделано предположение [69], что это свойство галоидных металлов обусловливает их тенденцию к образованию более высокомолекулярных полимеров, чем в случае применения протонных кислотных катализаторов. Но такое предположение не объясняет промотирующее действие галоидво дородных кислот, воды и других промотирующих веществ в реакциях,, катализируемых хлористым алюминием и фтористым бором. [c.229]

    Эти углеводороды могут быть использованы также и при изучении рёакций, протекающих нод давлением, превышающем атмосферное, при применении запаянных трубок. В литературе описаны различные типы аппаратуры для проведения реакции в условиях непрерывного или полунепрерывного процесса с применением твердых и жидких катализаторов. Твердые катализаторы обычно нрименяются в виде фиксированного слоя. В специальном процессе [Ю], широко применяющемся в лабораторных исследованиях и в заводской практике, хлористый алюминий находится в особой зоне, из которой он подхватывается потоком подаваемого углеводородного сырья при соответствующей температуре и непрерывно подается в реактор. [c.15]

    Влияние воды. Промотирование водой реакции изомеризации предельных углеводородов при применении в качестве катализаторов бромистого пли хлористого алюминия было установлено ранее [43]. Сначала думали, что действие воды состоит просто в образовании галоидводорода, однако позже было показано, что вода образует гидроксиалюминийгалоиды, которые сами являются активными катализаторами. При применении слишком большого количества воды каталитическая активность уничтожается. [c.19]

    Влияние водорода. О применении водорода под давлением для подавления побочных реакций при изомеризации н-пентана сообщалось различными исследователями [21, 34, 72]. В контрольных опытах, в которых н-пентан нагревался с хлористым алюминием под давлением азота, в результате побочных реакций ббльшая часть пентана превращалась в бутаны, гексаны и более высококипящие алканы, а катализатор — в вязкую красную жидкость [34]. Как побочные реакции, так и изомеризация почти полностью подавлялись при применении вместо азота водорода при начальном давлении 100 ат и температуре 125°. П0лон<ительное влияние на реакцию изомеризации оказывало введение в водород некоторого количества хлористого водорода. Степень изомеризации увеличивается с повышением содержания хлористого водорода. Хорошие выходы изопентана были получены также при добавке к реагентам вместо хлористого водорода небольшого количества воды или когда в качестве катализатора применялся технический хлористый алюминий, содержащий от 15 до 20% несублимированпого вещества, даже без добавок хлористого водорода. [c.23]

    На рис. 2 приведены результаты опытов, проведенных в потоке, когда и катализатор и углеводород непрерывно проходили через реакционную зону. Хлористый алюминий уносился из сатуратора углеводородами, а хлористый водород добавлялся в поток при входе в реактор. Сгепень изомеризации, выраженная концентрацией изопентана в пента-новой фракции, и степень крекршга, выран енная концентрацией бутанов в полученном продукте, отложены в виде кривых в зависимости от содержания бензола в сырье. Ось абсцисс растянута, чтобы лучше показать влияние различных количеств добавки бензола в области низких концентраций путем применения шкалы, на которой расстояние от начала координат пропорционально Ig (г + 1), где V — объемный процент бензола в подаваемом сырье. Оптимальная изомеризация была получена при концентрации бензола приблизительно в пределах 0,25—0,5% объемн. [c.24]

    В повздении некоторых парафинов в присутствии серной кислоты наблюдается положение, несколько напоминающее случай с неопентаном. Изомеризация при помощи серной кислоты подробно обсуждается ниже. Здесь достаточно сказать, что серная кислота особенно в мягких условиях склонна катализировать только такие реакции изомеризации, которые можно рассматривать как внутримолекулярный переход водорода между третичными атомами углерода, исключая вторичные и первичные атомы. Образование продуктов, получающихся при применении в качестве катализаторов хлористого или бромистого алюминия, можно удовлетворительно объяснить внутримолекулярным переходом водорода между третичными и вторичными, но не первичными атомами углерода. Приведем пример. В присутствии серной кислоты легко устанавливается равновесие между 2- и 3-метилпентанами, причем 2,2-диметилбутан отсутствует, хотя термодинамически он является более выгодным изомером и преобладает, когда равновесие устанавливается на хлористом алюминии как катализаторе. [c.26]

    Например, при проведении реакции в присутствии хлористого алюминия при температуре от —20° до —15° была получена с выходом 72% смесь хлор-/и/)ет-бутилциклогексанов, из которых около 85% составлял изомер (III), остальное — изомер (IV) основной побочный продукт — хлорциклогексан — получен с выходом в 5%. С другой стороны, при использовании в качестве катализатора фтористого бора при 0° был получен только изомер (IV) с выходом в 23% вместе с продуктом дегидрохлорирования его 1-/га/)е7и-бутил-1-циклогексеном (выход 12%) и цикло-гексилхлоридом (выход 15%). При применении в качестве катализатора хлористого висмута при 0° или при комнатной температуре был получен конденсат хлорбутилциклогексанов (с выходом 5% и 21—25% соответственно), подобный тому, который был получен ири использовании хлористого алюминия при —25°- --15°  [c.230]

    И могут быть использованы в непрерывных процессах, йаилучшие результаты получены при применении жидких комплексов хлористого алюминия, которые вследствие нерастворимости в продукте алкилирования быстро отстаиваются. Это позволяет отделять их и снова вводить в процесс. Комплексы можно получать на месте (in situ) при помощи реакции алкилирования [2, 47] или же приготовлять предварительно путем взаимодействия хлористого алюминия с различными алифатическими углеводородами и углеводородными фракциями (например, с олефинами, с 2,2,4-триметил-пентаном, с керосином) [19]. Хорошие результаты давало использование в качестве катализатора жидкого комплекса, приготовленного взаимодействием хлористого алюминия с остатком от перегонки продукта (температура кипения около 160—200° 98,4% парафиновых и 1,6% олефиновых углеводородов), получаемого при алкилировании изобутана пропиленом и бутиленами в присутствии серной кислоты. [c.321]

    При применении монометанолята хлористого алюминия побочная реакция идет в незначительной степени [38(1]. При алкилировании бутеном при 55° образуется жидкий продукт, содержащий 60% диметилгексанов (35% 2,4- и 2,5-, 17% 2,3-и 8% 3,4-диметилгексанов) и 9,5% триметилпентанов (6,5% 2,2,4- и 3% 2,3,4-триметилпентанов). При алкилировании же бутеном-2 при 28° получается жидкий продукт, содержащий 65% триметилпентанов (28% 2,2,4-, 22,5% 2,3,4-, 14% 2,3,3- и 0,5% 2,2,3-триметилпентанов) и только 4% диметилгексанов (3,5% 2,4- и 2,5- и [c.323]

    Если применяется хлористый алюминий и продукт обрабатывается для отщепления НС1, то 1-метилциклогексен дает смесь, состоящую из 1-метил-2-ацетилциклогексепа и 1-ме-тил-6-ацетилциклогексена. Применение хлорного олова дает более высокий выход последнего вещества [19]. Метод имеет очень малое значение для получения хлоркетонов и непредельных кетонов. [c.363]

    Существует большая разница в легкости введения различных олефинов в реакцию с ароматическими углеводородами. Изобутилен алкилирует ароматические углеводороды в присутствии 80—90% сорной кислоты, пропилен же требует болео сильеюй кислоты (до 96%). Этилену для алкилирования необходима приблизительно 98%-ная кислота. Так как кислота такой концентрации быстро превращает бензол и продукт алкилирования в сульфоновые кислоты, то применение сорной кислоты для этилирования ароматических соединений непрактично [170J. Для этой реакции лучшим катали. <атором является хлористый алюминий [281]. [c.430]

    К сожалению, несмотря на огромное количество затраченного труда на изучение реакции алкилирования ароматических углеводородов, имеется сравнительно немного кинетических данных по этой реакции. Кроме того, имеющиеся данные получены главным образом с применением ароматических углеводородов в качестве растворителя, поэтому очень мало можно сказать о порядке реакции по отношению к ароматическому углеводороду [245]. Имеется одна недавняя работа по кинетике реакции, катализируемой хлористым алюминием, между 3,4-дихлорбензилхлори-дом и /i-питрохлорбензилхлоридом и производными бензола в растворе нитробензола [47]. [c.439]

    Применение детализированного механизма замещения в ароматическом кольце (XLVI) к этой реакции водет к механизму LXXXII (в растворе нитробензола хлористый алюминий присутствует в впде комплекса с,п,т, AI I3). [c.440]

    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]

    Хлористый алюминий до сих нор применяется при глубокой очистке масляных дистиллятов для удаления чрезмерно больших молекул ароматического типа и соединений, содержащих кислород, азот и серу. В военное время он применялся для изомеризации нормального бутана в изобутан. Реакции синтеза с участием хлористого алюминия демонстрируются его способностью полиме-ризовать низшие олефины в масляные фракции и алкилировать с олефинами как изопарафины, так и ароматику. Многосторонняя реакционная способность хлористого алюминия иногда даже затрудняет его применение, так как легко протекают и побочные реакции. Подобные явления особенно часто наблюдаются в случае углеводородов с более высоким молекулярным весом.  [c.136]

    Частично производство смол для применения в промышленности красителей и лаков осуществляется реакцией высококрекированных дистиллятов с хлористым алюминием [660]. Во всех случаях реакция требует присутствия диолефинов. Полагают, что такой процесс никогда не будет применяться в больших масштабах. [c.144]

    Свойства и применение. Низшие нитропарафины при обычной температуре —жидкости (нитрометан кипит при 102 °С, нитроэтан — при 114,8°С, 1-нитропропан—при 131 °С тетранитрометан при 125,7 °С разлагается) их плотности составляют от 1,14 (нитрометан) до 1,002 (1-нитропропан). Они широко применяются как растворители (ацетата целлюлозы при экстракции ароматических углеводородов, хлористого алюминия при алкилировании и полимеризации), пластификаторы, карбюранты для реактивных двигателей, взрычатые вещества. Тетр а нитрометан часто используют как агент мягкого нитрования, так как он менее коррозионноактивен, чем HNO3, а также в качестве добавки для повышения цетанового числа дизельных топлив. [c.310]


Смотреть страницы где упоминается термин Хлористый алюминий применение: [c.273]    [c.107]    [c.280]    [c.94]    [c.332]    [c.441]    [c.506]    [c.127]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.517 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий применение



© 2025 chem21.info Реклама на сайте