Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анионное замещение в ароматических соединениях

    При нуклеофильном замещении ароматическое соединение атакуется реагентом, представляющим собой либо анион, либо нейтральную молекулу с постоянным или возникающим в момент реакции диполем, причем активным центром является отрицательный конец молекулы, обладающей свободной электронной парой, как в аммиаке и т. п. [c.358]


    Чисто качественными опытами Эфраима [108] было показано, что некоторые комплексные соединения кобальта образуют труднорастворимые сочетания с анионами замещенных ароматических кислот, однако каких-либо теоретических объяснений этого явления автор не приводит. [c.92]

    Отщепление протона от о-комплекса. Как следует из приведенной в начале разд. 5.2.1 схемы, реакции электрофильного замещения атома водорода у ароматических соединений (в отличие от реакций алкенов) завершаются отщеплением от а-комплексов протона и восстановлением ароматической структуры. Отщепление протона обычно происходит под действием обладающего основными свойствами аниона. Так как энергия сопряжения бензольного кольца (150 кДж/моль) значительно выше энергии сопряжения диеновой системы (15 кДж/моль), отщепление протона от о-комплекса (энергия сопряжения 108 кДж/моль) и восстановление ароматической структуры сопровождаются выигрышем энергии, равным 42 кДж/моль, в то время как присоединение с образованием диеновой системы идет с затратой энергии, равной 93 кДж/моль. [c.321]

    Действие электрофила на циклопентадиенилнатрий приводит к нарушению ароматичности аниона и превращению его в циклопентадиен. Однако в ферроцене и его аналогах циклопентадиенильный фрагмент обнаруживает свойственную ароматическим соединениям способность к электрофильному замещению. [c.142]

    Как отмечалось в гл. 11, для реакций электрофильного замещения наиболее характерны такие уходящие группы, которые могут существовать в состоянии с незаполненной валентной оболочкой, для завершения которой необходима электронная пара. В случае ароматических систем самой распространенной уходящей группой является протон. В алифатических системах протон также может служить уходящей группой, но его подвижность зависит от кислотности. В насыщенных алканах подвижность протона очень мала, но электрофильное замещение зачастую легко происходит в тех положениях, где протон более кислый, например, в а-положении к карбонильной группе или при ацетиленовом атоме углерода (КС = СН). Особенно склонны к реакциям электрофильного замещения металлоорганические соединения, так как при этом образуются положительно заряженные ионы металлов [1]. Важным типом электрофильного замещения является анионное расщепление, включающее разрыв связей С—С, при котором уходящей группой является углерод (реакции 12-39—12-45). В конце данной главы рассматривается много примеров электрофильного замещения у атома азота. [c.407]


    Различие между реакциями алкенов и ароматических углеводородов заключается во второй стадии. Карбокатион, образующийся при электрофильной атаке на алкен, быстро реагирует с анионом (У-). Если аналогичная реакция произойдет с карбокатионом XII, то образуется продукт XIV, уже не обладающий ароматической структурой. Для того чтобы превратить ароматическое соединение в неароматическое, необходим возврат 150 кДж/моль—-энергии резонанса, выделившейся при образовании ароматических я-орбиталей (разд. 3.5). Реакции присоединения к ароматическим соединениям, аналогичные соответствующим реакциям алкенов, являются крайне невыгодными, тем более что существует более легкий альтернативный путь — замещение. [c.53]

    Наиболее эффективно восстановительное алкилирование протекает для каменных углей. Так, растворимость анжерского каменного угля марки ОС при времени наработки угольных анионов 0,25 ч составила 86,3%, а при увеличении продолжительности до 2,0 ч возросла до 93,0%. Основными реакциями, приводящими к повышению растворимости, являются С-алкилирование ароматических фрагментов ОМУ и О-алкилирование. Продукты алкилирования характеризуются сравнительно высоким содержанием ароматических соединений, высокой степенью замещения водорода на алкильные радикалы и заметным содержанием сложных и простых эфиров. [c.10]

    Анионное замещение в ароматических соединениях [c.107]

    Пиктографическая орбитальная теория, таким образом, позволяет объяснить ориентацию замещения в реакциях присоединения с отщеплением в аренах более исчерпывающе, чем простая теория резонанса. В частности, она позволяет объяснить изменение отношения орто пара при катионном замещении тем, что происходит изменение от зарядового контроля к орбитальному. Свободнорадикальное замещение в ароматических соединениях легче всего объясняется с помощью теории резонанса, но для анионного замещения снова необходимо применять орбитальную теорию. [c.108]

    Ипсо-замещение — тип замещения в ароматических соединениях, заключающийся в замене присутствующего в исходной молекуле заместителя на другую группу. Не следует к данному типу замещения относить замещение атома Н, хотя обратный процесс есть ипсо-замещение. Реакция реализуется по различным механизмам, но более распространенными являются нуклеофильные с образованием в качестве интермедиатов анионных ст-комплексов  [c.132]

    Карбониевые ионы, положительные и отрицательные, постулируются в качестве интермедиатов для самых разнообразных химических реакций. Исследование структуры и относительной стабильности карбониевых ионов — прекрасный пример применения метода поверхностей потенциальной энергии к конкретным химическим проблемам. Большинство подобных систем весьма трудно поддается изучению экспериментальными методами и квантовохимический расчет — зачастую единственный способ получить какую-либо информацию об этих нестабильных образованиях. Из этого параграфа мы исключили результаты, которые так или иначе связаны с интерпретацией реакций электрофильного или нуклеофильного замещения в ароматических соединениях, так как они будут рассмотрены в другом разделе. Соответствующие вопросы тесно связаны с проблемой сопряжения и другими аспектами взаимодействия ионного центра с остальным фрагментом, тогда как здесь будут рассмотрены вопросы структуры самого катионного (анионного) центра и перегруппировки в ионах. [c.151]

    Наглядную иллюстрацию дает рассмотрение ряда ароматических соединений циклопентадиенид натрия, пиррол, бензол, пиридин, бромид тропилия. Циклопентадиенид-анион исключительно легко вступает в реакции электрофильного замещения при переходе к пирролу и далее к бензолу и пиридину легкость электрофильного замещения уменьшается, а катион [c.41]

    В реакциях присоединения к олефинам на заключительной стадии выгоднее ионное взаимодействие а-комплекса (карбокатиона) с анионом А , несущим отрицательный заряд и противостоящим в реакционной смеси частицам X . Это приводит к образованию продукта присоединения, а не замещения. Лишь в очень редких случаях олефины реагируют подобно ароматическим соединениям, давая продукт замещения, например  [c.287]

    В то время как в наиболее распространенном катионном замещении ароматических соединений участвует ВЗМО арена, в анионном замещении участвует НСМО. Тем не менее монозамещенные бензолы можно рассмотреть аналогичным образом, т. е. найти коэффициенты несвязывающей орбитали бензил-катиона. Если заменить группу СН на нитрогруппу, то следует ожидать некоторого увеличения заряда в орто-и иара-положениях  [c.107]

    В ряду Р <С С1 < Вг < I, причем не удалось обнаружить эффектов растворителя при проведении реакций СеНвСНгС в воде, метиловом и этиловом спиртах [130]. Эти результаты можно согласовать только с таким механизмом, в котором лимитирующей стадией является образование СбНэСНгС] -, причем заряд аниона в основном сосредоточен на атоме галогена. Поэтому довольно трудно установить аналогию между реакциями гидратированных электронов с алкилгалогенидами и процессами типа SNl и SN2 у насыщенного атома углерода [131]. Тем не менее между механизмами присоединения электронов к алкилгалогенидам и к замещенным ароматическим соединениям имеется сходство в том отношении, что в обоих случаях атака идет по центрам с наименьшей электронной плотностью. Поскольку атом галогена, связанный с углеродом, может играть роль электрофильного центра только при атаке сильным восстановителем, то гидратированный электрон при реакциях с алкилгалогенидами выступает не только как активный нуклеофил, но также и как активнейший восстановитель. В принципе можно использовать активность алкилгалогенидов в реакциях с гидратированными электронами как меру относительных восстановительных потенциалов этих соединений. Более высокую реакционную способность СбНзСНгС] по отношению к гидратированным электронам, чем следовало ожидать из соответствующих значений а , можно объяснить, как и в отмеченном выше случае, дополнительным взаимодействием электрона с ароматическим кольцом [130]. [c.139]


    Донором электрона при генерировании анион-радикалов ароматических соединений может служить частица нуклеофила. Начиная с работы [109], многими исследователями показано, что ароматические нитросоединения могут восстанавливаться в анион-радикалы под действием различных нуклеофильных реагентов. В свете общей концепции одноэлектронного переноса как нормальной стадии гетеролитических реакций [64] (см. выше) это дало основание трактовать образование анион-радикалов как элементарную стадию ароматического нуклеофильного замещения, предшествующую образованию а-комплекса [65,89]. Превращение анион-радикала в анионный а-комплекс ArXY изображается или неценной схемой, как рекомбинация с радикалом, возникающим в результате переноса электрона от нуклеофила [ПО]  [c.85]

    Диазониевый катион является слабым электрофилом и вступает в реакции электрофильного замещения с активированными ароматическими соединениями. В щелочной среде протекает реакция азосочетания фенола с солями диазония, приводящая к получению желтых или красных азокрасителей (по-видимому, реагирует феноксид-анион). Аналогичную реакцию с диазониевыми солями дают третичные ароматические амины. Первичные или вторичные ароматические амины реагируют по атому азота, образуя диарилтриазены  [c.111]

    Гетероциклические системы. Явление ароматичности не ограничивается карбоциклическими соединениями. Замещение какого-либо из углеродных атомов в перечисленных выше соединениях на другие атомы дает новые ароматические системы при условии, что я-электронная система не изменяется. Замещение СН-групп в бензоле на изоэлектронный (т. е. содержащий такое же число электронов) азот приводит к образованию серии гетероциклических ароматических соединений пиридин, пиридазин, пиримидин и пиразин. Возможно и дальнейшее замещение. Во всех этих соединениях циклическая бя-электрон-ная система ( ароматический секстет ) использует по одному электрону от каждого атома кислорода и азота, оставляя по свободной паре электронов на р -орбитали каждого азота на месте бензольной связи С—Н. В результате эти гетероциклические соединения обладают слабоосновными свойствами, основность свободной электронной пары на р -орбитали значительно меньше, чем свободной пары на 5рЗ-орбитали (ср. С—Н-кислотность в алканах и алкинах, разд. 8.2.1). Циклопен-тадиенид-анион можно также рассматривать как родоначальное карбоциклическое соединение серии гетероциклических ароматических соединений. Фуран и тиофен имеют ароматический секстет, в котором по одному электрону дают каждый из четырех углеродных атомов (т. е. две двойные связи), а два электрона являются свободной парой кислорода или серы. В пирроле [c.306]

    Кислотные свойства циклопентадиена (р/Са 15), который достаточно легко теряет протон, переходя в сравнительно устойчивый карбанион, можно рассматривать как подтверждение устойчивости его аниона, стабилизованного за счет ароматизации. Квазиароматичность не может быть продемонстрирована электрофильным замещением, так как атака реагентом Х+ приведет просто к неспецифическому связыванию с анионом. Истинный ароматический характер подобных квазиароматических систем (участие в реакции Фриделя — Крафтса и т. д.) был показан на примере таких особо стабильных соединений нейт- ральной природы, как ферроцен X (который получается взаимодействием между 1Ха и РеС12)  [c.256]

    Самым характерным свойством фенолов является их слабая кислотность, которая обусловлена тем, что гидроксил связан с ненасыщенным атомом углерода ароматического ядра, т. е. наличием еноль-ной группировки —СН = С(ОН)—. Сам фенол —слабая кислота, (р/Ск=10,0). Он образует соли (феноляты) с едким натром, но не с карбонатом натрия. Такое поведение типично для фенолов, и этим они отличаются от карбоновых кислот, которые реагируют даже с бикарбонатами. Таким образом, если исследуемое ароматическое соединение эастворяется в едком натре лучше, чем в воде, но его растворимость а воде не повышается в присутствии карбоната натрия, то возможно, что оно принадлежит к ряду фенолов. Константы диссоциации замещенных фенолов не подчиняются какой-либо закономерности. ИсклЮ чение представляет ряд нитрофенолов все три мононитрофенола — более сильные кислоты (р/(к = 7,2—8), чем фенол еще зыше кислотность 2,4-динитрофенола (р/(1, = 4,0) и пикриновой кислоты, кислотность которой почти равна кислотности минеральной кислоты. Увеличение кислотности фенолов при введении нитрогрупп обусловлено стабилизацией анионной формы. Стабилизация анионной формы нитрогрупп аналогична подавлению основной диссоциации аминов и точно так же может быть объяснена индукционным и резонансным эффектами. [c.278]

    В ароматич ряду механизмы 3 р более разнообразны Наиб изучено электроф ароматич замещение (5 Аг), протекающее с промежут образоваиием катионного ст-комплекса (см Ароматические соединения) К этому типу замещения относятся р-ции нитрования, сульфирования, азосочетания, алкилирования и ацилирования по Фриделю Крафтсу и др, причем скорость р-ции и место вхождения заместителя зависят от природы присутствующих в субстрате групп (ориентанты первого и второго рода) В качестве уходящей группы выступает обычно водород, хотя известны примеры замещения одной группы на другую (г/лсо-замещение) Нуклеоф замещение в электронодефицитной ароматич. молекуле протекает чаще всего через стадию образования анионного ст-комплекса Др важнейшие механизмы нуклеоф замещения в ароматич ряду механизм 5 I и ариновый, характеризующийся возникновением дегидробеизолов Изменение условий протекания одной и той же р-цни может привести к изменению механизма процесса и строения продуктов, напр [c.161]

    Важно отметить, что в этом случае попытки разрушить соли диазония простым нагреванием их водных растворов приводят, как правило, не к образованию соответствующих замещенных аренов, а к образованию фенолов, поскольку вода будет превосходить по нуклеофильности хлорид-, бромид- и цианид-анионы Арильный радикал, образующийся при распаде соли диазония в присутствии катализатора, не является электрофилом, как катион, возникающий при ее гетеролизе, и реагирует не с водой, а с находящимся по соседству галогенидом или цианидом меди (II) Получающиеся при этом арилгалогениды и арилцианиды широко используют в препаративных целях Выходы их обычно составляют от 60 до 90% Прямое фторирование ароматических соединений, как и алифатических (см разд 1 1 3), обычно сопряжено с большими трудностями, поскольку фтор благодаря своей чрезвычайной активности вызывает полифторирование и деструкцию органических молекул [c.255]

    Предельное положение наблюдается в тех случаях, когда карбокатион R+ способен к столь продолжительному существованию, что анион Х успевает удалиться на значительное расстояние от атома, от которого он отщепляется. В данном случае катион R+ приобретает плоскую конфигурацию, а его последующая реакция с нуклеофильным реагентом Y приводит к образованию рацемической смеси. В качестве примера приведем хлористый фенэтил eHsGHGlGHg, катион которого стабилизирован сопряжением с участием ароматического ядра. Реакции замещения этого соединения, протекающие по мономолекулярному механизму, сопровождаются практически полной рацемизацией. [c.145]

    Сильное снижение активности ароматических соединений при реакциях нитрования наблюдается в случае возможности образования комплексов, приводящих к уменьшению электронной плотности в ядре, например СвН ,Ы02... 1 2804 или СвН5Ы02...А1С1з. Этим, по мнению А. И. Титова, объясняется, что скорость нитрования нитробензола и других соединений повышается при добавке к безводной серной кислоте небольшого количества воды, разрушающей указанные комплексы. Комплексообразованием объясняется также неспособность нитробензола нитроваться окислами азота при добавке А1С1д. Сильное повышение скорости реакции, наоборот, происходит, как уже указывалось, если органическое,соединение способно к ионизации, и вследствие этого в реакцию электрофильного, замещения всту пают анионы, например в случае фенолов. Активность фенолов и нитрофенолов в недиссоциированном состоянии повышается также и за счет образования водородной связи с молекулами воды  [c.349]

    Для замещения атомов галогенов или нитрогруппы в активированных ароматических соединениях достаточно обработки азидом натрия в спирте или, лучше, в биполярном апротонном растворителе. Реакция 1,3-динитро-4-хлорбензола с азидом натрия в 25%-м метаноле при 25°С приводит к 2,4-динитрофенил-азиду. (185). Кинетика этой реакции описывается линейным уравнением н= 1+ 2[К]. В присутствии мицеллярного катализатора (бромид триметилцетиламмония) реакция протекает по каталитическому пути ( а) в 28 раз быстрее, чем по нёка-талитическому ( 0, а в присутствии трициклической аммониевой соли, в полости которой включается азид-анион, —в 128 раа быстрее. Атом фтора по сравнению с атомом хлора обменивается со скоростью в 500 раз большей в некаталитичеекой и в [c.346]

    СН2ОСН3, —СН2С1, —СНО, —СОСНз, —СО2Н и — N , ароматические соединения, содержащие такие заместители, будут называться ароматическими соединениями, замещенными в боковой цепи. Основное внимание будет уделена реакциям в боковой цепи, причем особо будет подчеркиваться влияние ароматического ядра на реакционную способность. В этой связи будут рассмотрены относительно устойчивые триарилметильные катионы, анионы и свободные радикалы, а также количественные корреляции скоростей органических реакций на базе так называемого уравнения Гамметта. В заключение кратко будут рассмотрены принципы спектроскопии электронного парамагнитного резонанса (ЭПР) и использование этого метода при изучении органических свободных радикалов. [c.335]

    На ароматичность циклопентадиенилида (ЬХУИ) определенно указывает то обстоятельство, что он вступает в реакции электрофильного ароматического замещения. Этот илид реагирует с хлористым фенилдиазонием, давая 2-(фенилазо)цикло-пентадиенилидентрифенилфосфоран [144]. Депортер и сотр. [145] тоже сообщали об электрофильном замещении в соединении ЬХУП. Очевидно, что делокализация электронной плотности в этом соединении так велика, что его лишь искусственно можно рассматривать как илид и, пожалуй, оно лучше описывается как циклопентадиенильный анион с фосфониевой группой в качестве заместителя. [c.77]


Смотреть страницы где упоминается термин Анионное замещение в ароматических соединениях: [c.350]    [c.410]    [c.269]    [c.362]    [c.2230]    [c.49]    [c.195]    [c.384]    [c.111]    [c.96]    [c.61]    [c.584]    [c.108]    [c.325]    [c.745]    [c.5]    [c.147]    [c.101]    [c.307]    [c.536]   
Смотреть главы в:

Орбитальная теория в контурных диаграммах -> Анионное замещение в ароматических соединениях

Орбитальная теория в контурных диаграммах -> Анионное замещение в ароматических соединениях




ПОИСК





Смотрите так же термины и статьи:

Замещение анионное



© 2025 chem21.info Реклама на сайте