Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природа сольватации в воде

    Природа сольватации в воде [c.57]

    Независимые доказательства природы сольватации в воде дают кинетические данные [32] и результаты исследования растворимости [33], которые независимым путем приводят к выводу, что молекулы воды, окружающие молекулы растворенного вещества, слабо взаимодействующего с растворителем, должнь геометрически вписываться в многогранники, экспериментально наблюдаемые в случае твердых гидратов газов [11, 12, 67, 79]. Такие многогранники, не содержащие разорванных водородных связей, дают естественное объяснение наличию полостей с низкой энергией в теории Эли [23], согласующейся со структурой воды с трехмерной четырехкратной координацией и водородными связями в модели Бернала и Фаулера [5, 71]. [c.57]


    Растворимость веществ существенно зависит от природы растворяемого вещества и растворителя, температуры и давления. Причины различной растворимости веществ пока не выяснены, хотя их связывают с характером взаимодействия молекул растворителя и растворенного вещества. Например, известно, что молекулярные кристаллы, структурными единицами которых являются молекулы с ковалентным неполярным типом связи (сера и др.), практически нерастворимы в воде, так как энергия разрушения кристаллической решетки настолько велика, что не может быть компенсирована теплотой сольватации, которая очень мала. [c.63]

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]

    Важную роль играет также выбор растворителя и электролита фона. Применение растворителей с высокой диэлектрической постоянной (б>20) и прежде всего воды приводит к высоким диэлектрическим потерям энергии сверхвысокочастотного поля в резонаторе спектрометра ЭПР и ухудшает условия получения хорошо разрешенного спектра. С другой стороны, в растворителях с низким значением е возможно образование ионных пар, искажающее спектры. Этот эффект ослабляется при использовании в качестве электролита фона тетраалкиламмониевых солей. Влияние на спектр ЭПР природы растворителя и соли фона имеет и положительное значение, так как открывает пути для изучения процессов сольватации ион-радикалов и образования ионных ассоциатов. [c.226]


    В отличие от солей Ig Yo ионов кислот дая е в ряду растворителей одной природы не является линейной функцией 1/е (см. рис. 104, 2а). Как мы видели, это является следствием особенностей сольватации протонов. Ие линейна зависимость от 1/е и э. д. с. цепей, содержащих водородный элемент (см. рис. 104, 2, б и б) не линейной должны быть зависимости от 1/е и растворимости сильных кислот. Только в тех случаях, если основность ряда растворителей с различной диэлектрической проницаемостью остается неизменной, как, например, в смесях неводных растворителей с водой при большом ее содержании, наблюдается линейная зависимость свойств от 1/е. [c.402]

    Как известно из школьного курса, по способности диссоциировать на ионы растворы электролитов разделяют на слабые и сильные. В растворе слабые электролиты состоят из молекул, которые частично распадаются на ионы под действием растворителя сильные электролиты состоят из ионов, которые за счет сольватации разъединены между собой. Образование сольватированных ионов обусловливает особые свойства растворов электролитов. Следует иметь в виду, что деление электролитов на слабые и сильные в значительной степени условно. Оно зависит от концентрации электролита, природы растворителя и некоторых других факторов. В очень разбавленных растворах все электролиты можно отнести к сильным. Йодисты натрий в воде ведет себя как сильный электролит, а в уксусной кислоте или ацетоне — как слабый электролит. Состояние сольватированного иона в растворе можно представить формулой [c.224]

    Второй эффект более сложен и связан с природой высаливателя. Гидратация ионов высаливателя уменьшает концентрацию несвязанной воды, а следовательно, увеличивает эффективную концентрацию (активность) экстрагируемого вещества. Коэффициент активности увеличивается тем больше и высаливатель действует тем эффективнее, чем сильнее он гидратирован. Связывание воды высаливателем способствует дегидратации катиона экстрагируемого соединения и его сольватации молекулами экстрагента. Этот эффект не зависит от того, имеет или не имеет высаливатель общий ион с экстрагируемым соединением. Критерием высаливающей способности электролита могут быть гидратные числа, однако он недостаточно строг, так как гидратные числа, определенные различными способами, сильно различаются между собой. По высаливающей способности их солей катионы можно расположить примерно в следующий ряд  [c.335]

    В расплавленных солях и шлаках явление гидратации (или сольватации) отсутствует. Поэтому подвижности различных ионов заметно отличаются друг от друга в зависимости от их радиусов. Удельная электропроводность расплавленных шлаков увеличивается с ростом температуры. В большом числе случаев ее зависимость от температуры определяется уравнением а=Ле- / , где Л и — постоянные, зависящие от природы расплава. Отметим, что измерения электропроводности водных растворов используются в аналитической химии для определения эквивалентных точек в тех случаях, когда применение индикаторов невозможно, например, если растворы окрашены или содержат много взвешенных частиц. Так, при титровании сильными кислотами сильных оснований электропроводность раствора при нейтрализации будет минимальной, поскольку исчезают наиболее подвижные ионы НзО- - и 0Н , образующие воду. Титрование, основанное на измерении электропроводности, называется кондуктометрическим. [c.203]

    Растворимость веществ определяется соотношением свободных энергий образования кристаллической решетки и сольватации. И та, и другая энергия зависят от структуры вещества и природы растворителя. В целом, справедливо утверждение подобное растворяется в подобном . Так, в высокополярных растворителях (вода) растворимость комплексов в целом уменьшается в ряду заряженные незаряженные гидрофильные > незаряженные гидрофобные комплексы. Для органических неполярных растворителей ряд растворимости противоположный. [c.163]

    Энергия сольватации зависит от природы растворителя (табл. 5) например, в ацетоне она на 42—63 кДж, а в ацетонитриле всего на 8—12 кДж ниже, чем в воде. [c.11]

    В начальной стадии набухания происходит сольватация - энергетическое взаимодействие растворителя с полимером. Растворитель разрывает часть межмолекулярных связей в полимере и образует с ним свои связи. Сольватированный растворитель, вследствие перестройки его структуры, сжимается, и его плотность увеличивается. Это приводит к контракции объем набухшего полимера оказывается меньше суммы исходных объемов полимера и растворителя. При этом выделяется теплота - теплота сольватации (теплота набухания), в частности, в случае воды и водных растворов - теплота гидратации, и развивается давление - давление набухания. Степень контракции зависит от природы растворителя и полимера, а также от плотности упаковки последнего. Чем меньше плотность упаковки, тем сильнее выражена контракция, больше теплота сольватации и давление набухания. Дальнейшее набухание с поглощением больших количеств растворителя происходит уже без выделения теплоты. [c.160]


    Нельзя не отметить роль, которую сыграли идеи В. А. Каргина в выяснении вопроса о природе высокой устойчивости гидрофильных (лиофильных) коллоидных систем. В 30-е годы стабильность гидрофильных коллоидов объясняли значительной гидратацией (сольватацией) частиц дисперсной фазы [6]. Однако впоследствии выяснилось, что у типичных гидрофильных коллоидов гидратация невелика, на что обратил внимание в своих работах В. А. Каргин. Одновременно оказалось, что само понятие гидратация недостаточно определенно, например для ионов измеренные значения гидратации (числа молекул воды, связанных с одним ионом) могут колебаться в пределах двух десятичных порядков. Тогда возникло [c.87]

    Влияние растворителей. Часто на скорость реакции оказывает глубокое влияние природа той среды, в которой выполняется данная гетеролитическая реакция. Самое сильное влияние среды на скорость реакции можно проследить, если рассматривать поведение ионов на медленной стадии реакции, образуются ли они или разрушаются или то и другое отсутствует. Хорошо ионизирующими растворителями являются те, в которых ионы стабилизуются посредством сольватации. Вода и муравьиная кислота — превосходные ионизирующие растворители. Другие гидроксильные растворители, например метанол, этанол и уксусная кислота, являются промежуточными по своей способности стабилизировать ионы. Полярные растворители типа нитрометана и ацетонитрила также носят промежуточный характер. Ацетон и диэтиловый эфир, которые хотя и растворяют некоторые ионноиостроенные вещества (как ионные пары), не принадлежат к числу очень хороших ионизирующих сред. Углеводороды же по существу представляют собой неионизирующие растворители. [c.247]

    Ввиду необходимости даже в простых электростатических оценках энергетики сольватации учитывать, что диэлектрическая проницаемость вблизи иона существенно отличается от таковой в массе раствора, следует вернуться к приведенному нами на стр. 95 экспериментальным данным о теплотах сольватации ионов в воде и неводных растворителях. Практическое равенство значений АОсольв ионов в различных растворителях в общем можно объяснить, не прибегая к представлениям о донорно-акцепторной природе сольватации. Достаточно предположить примерное равенство значений Впред вблизи иона в воде, спиртах и аммиаке. [c.103]

    Наибольшее число исследований посвящено выяснению роли растворителя при сольволизе арилсульфоновых эфиров. Наиболее интересными являются систематические исследования Р.В.Сендеги и Р.В. Визге рт о влиянии среды на процесс сольволиза [19,21,29]. Так, при изучении алкоголиза н-пропиловых и аллиловых эфиров (табл.2, примеры 15-19, 27, 30-33) четко прослеживается уменьшение реакционной способности и увеличение р при переходе от метилового спирта к трет.-бутиловому спирту. Для определения природы сольватации были сделаны попытки выяснить зависимость скорости отдельных членов ряда от функции Кирквуда (1/5) и от ионизирующей способности растворителя (Y). В обоих случаях линейной зависимости не наблюдалось. Это свидетельствует о наличии неспецифической и специфической сольватации, которая зависит как от полярных, так и от стерических характеристик спиртов. В этом плане несколько более четкую информацию дает исследование кинетики сольволиза аллилбензолсульфонатов в водно-диоксановых раствору (табл.2, примеры 34-41). Величина р меняется в широких пределах, увеличиваясь с возрастанием процента содержания воды в смесях. Изменение р позволяет сказать, что с увеличением полярности среды чувствительность реакции к передаче влияния заместителя на реак- [c.147]

    Согласно теории сольватации, вокруг частицы растворенного вещества расположены две сольватные оболочки первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, совершающие движение в растворе вместе с частичкой вещества. Число молекул растворителя в первичной сольватной оболочке называют координационным числом сольватации. Значение его зависит от природы растворенного вещества и растворителя. Во вторую сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на большом расстоянии. Сольватация сильно проявляется в водных растворах электролитов за счет взаимодействия ионов с полярными молекулами воды (гидратация). Термодинамическая устойчивость сольватов определяется величиной энергии Гиббса (ЛОсол)- Так как А О соя = АН СП.-,—ТА.8 СОЛ, то чем меньше АСсо.ч, тем устойчивее комплекс. Основной вклад в величину ДСсол вносит энтальпия сольватации АНсол, которую находят из соотношения [c.137]

    В результате таких процессов образуются растворы молекулярного или ионного типа. При нехимическом растворении процесс взаимодействия между молекулами растворяемого вещества с молекулами растворителя называется сольватацией, а продукты взаимодействия — сольватами (от лат. solvere — растворять). Если в качестве растворителя используется вода, то процесс называется гидратацией, а продукты взаимодействия — гидратами. Образование сольватов может протекать различными путями в зависимости от природы растворителя и растворяемого вещества. Так, если растворяются вещества с ионной структурой, то молекулы растворителя удерживаются у образовавшегося иона за счет электростатических сил взаимодействия. Например, при растворении некоторых солей двух- и трехзарядных катионов (Си , [c.102]

    Проведенные ими термохимические исследования показывают, что энергия сольватации ионов мало зависит от природы растворителя и определяется в основном зарядом, радиусом и электронным строением сольватируемого иона. Молекулы воды и спирта взаимодействуют с ионами практически одинаково. При этом сольватирующие молекулы спирта обращены к иону металла атомом кислорода. Группы СНз спирта слабо взаимодействуют с ионами и не образуют водородных связей. Такая конфигурация сольватного комплекса не способствует формированию второго сольватного слоя, а также структур, где молекулы растворителя принадлежат одновременно двум ионам металла, как это наблюдается в структурах некоторых кристаллогидратов. С. И. Дракин, и М. X. Карапетьянц произвели оценку координационных чисел ионов с помощью модельных сольватов, образуемых [c.297]

    Природа растворителя, в котором протекает та тгли иная реакция, йожет оказывать существенное влияние на ее механизм. Поскольку только что мы рассматривали гидролиз (или сольво-лиз) алкилгалогенида, можно oтмefить, что вероятность протекания этой реакции по механизму (но не 5 у2) тем больше, чем выше полярность используемого растворителя. Поэтому замена одного растворителя другим часто может приводить к изменению механизма процесса. Это изменение механизма обусловлено отчасти тем, что ионизация протекает легче в растворителе, имеющем высокую диэлектрическую проницаемость, а частично связано с более высокой степенью сольватации в каком-нибудь одном растворителе (например, в воде) по сравнению с другим раствррителем. Процесс сольватации сопровождается выделением значительных количеств энергии, которая может быть затрачена на ионизацию новых исходных молекул, что приводит к дальнейшему ускорению реакции. Большое значение подобных эффектов сольватации может быть подтверждено тем обстоятельством, что в газовой фазе, где сольватация ионов, разумеется, невозможна, реакции типа 5 хотя иногда и наблюдались, однако этот механизм значительно менее характерен, чем для реакций, протекающих в растворе. [c.95]

    Вследствие взаимод. между иоиами даже в р-рах сильных электролитов при достаточно высокой их концентрации образуются ионные пары, тройники и т. д. Электростатич. взаимод. между ионами и сольватация ионов — осн. причины отклонений св-в Р. э. от идеальности. Эти отклонения в Р. э. очень велики коэф. активности -у могут достигать величины нескольких порядков. Ван-дер-ваальсовы взаимод. между частицами играют в природе неидеальности Р. э. второстепенную роль. Для водных Р. э. существенна способность ионов стабилизировать или разрушать структуру Воды. Для концептриров. Р. э. сущестненпо и оттал-кивательное взаимод. сольватных оболочек попов. [c.495]

    Исключительно плодотворным для Р х оказалось применение разработанного в 1960 метода имнугьсного радио гиза. Были идентифицированы мн короткоживущие промежут. частицы радиац -хим превращений и исследованы их св-ва, в т ч установлено образование сольватированных электронов при радиолизе жидкостей и определены времена сольватации электронов Совр теоретическую Р. х характеризует углубленное исследование механизма возникновения нестабильных хим продуктов в зависимости от природы излучения, мощности дозы излучения и др параметров Для ряда систем разработаны теоретич модети хим взаимодействия ионизирующего излучения с в-вом Установлены осн закономерности радиолнтич превращений в Гс зах, воде и водных р-рах, неорг в-вах, замороженных системах, полимерах Эти сведения позволяют обьяснть, а иногда н предвидеть пути протекания радиац -хим процессов в разнообразных системах. [c.150]

    В основе У. лежит дифракция света на колловдных частицах, размер к-рых меньше половины длины световой волны, в результате чего система начинает светиться. Частицы можно наблюдать в УМ как яркие дифракц. пятна, изучать их природу, оценивать концентрацию, однако изображений частиц микроскоп не создает. Яркость свечения, а следовательно, и видимость частиц зависят от разности показателей преломления частицы и дисперсионной среды. Если она велика (напр., взвесь металлич. частиц в воде), то отчетливо фиксируются частицы размерами 2-4 нм (т.е. значительно меньше предела разрешения обычных микроскопов). Если эта разность мала (взвесь орг. частиц в воде), то обнаруживаются только частицы размерами не менее 20-40 нм. В лиофильных коллоидах (напр., гелях желатины, декстрина) пов-сть частиц вследствие сольватации не обладает заметной разницей в показателях преломления относительно дисперсионной среды (воды), поэтому свечение в них знач1ггельно слабее. [c.36]

    Растворенное в воде вещество, как правило, ионизировано (по крайней мере в некоторой степени). В этом случае о растворе говорят как о растворе электролита. Однако ионы обычно не голые , а существуют в виде продуктов специфических взаимодействий. Эти взаимодействия, в соответствии с их физической природой, могут быть классифицированы как ион-ионные, ион-дипольные или ковалентные (рис. 4.1-3). По химической природе взаимодействия можно кл сифицировать как ионную ассоциац , гидратацию (или сольватацию) и комплексообразование (рис. 4.1-4). [c.127]

    Интенсивность катион-анионного взаимодействия, повидимому, зависит от природы ионов в основном таким же образом, как и любой вид взаимодействия ионов с растворителем, т. е. для симметричных ионов интенсивность тем больше, чем меньше ион. Это приводит к интересным обращениям порядка реакционной способности. В ацетоне относительные удельные скорости реакции галогенидов тетрабутиламмония с изобутнловым эфиром толуолсуль- фокислоты равны для иодида 1, для бромида 4,9, для хлорида 18, однако в реакции галогенидов лития соответствующие величины составляют для иодида 1, для бромида 0,92, для хлорида 0,16 [51]. Различие можно полностью объяснить, приняв, что в переходном состоянии не происходит образования ионных пар с ионом лития, и вычислив степень диссоциации галогенида лития на ионные пары по данным электропроводности. Эта диссоциация уменьшается с уменьшением размера аниона. В растворителе, сольватирующем анионы, сольватация аниона тем сильнее, чем меньше ион. В смесях вода — диоксан относительные скорости реакции этилового эфира толуолсульфокислоты с галогенидами натрия или калия равны для иодида 1, для бромида 0,32, для хлорида 0,14 [52] В диметилформамиде, который сольватирует катионы зна чительно лучше, чем ацетон, относительные удельные ско рости реакции метилового эфира толуолсуль юкислоты с галогенидами лития составляют для иодида 1, для бромида 3,4, для хлорида 9,1 (при экстраполяции на нулевую ионную силу) 53]. Присутствие воды в концентрации 5 М снижает удельную скорость реакции с хлоридом в 24 раза, а реакции с иодидом — только в 2 раза. [c.309]

    Во все средние коэффициенты активностл кислот в данном растворителе входит одна и та же величина IgYo катиона МН +. Таким образом, различие в Igy, ионов кислот не может быть связано с изменением энергии протона, а являются результатом различного взаимодействия анионов с рас-творителям и. Анионы жирных карбоновых кислот, ароматических карбоновых кислот и фенолов характеризуются различным изменением энергии при переносе их из неводного растворителя в воду. Можно было бы думать, что это результат различия в радиусах анионов. Однако радиусы замещенных-бензойных кислот и фенолов с теми же заместителями мало отличаются между собой, а величины Igy,, различаются очень сильно. Очевидно, эффект заключается не столько в различии радиусов анионов, сколько в различном характере сольватации анионов кислот различной природы. Причина этого состоит, вероятно, в различном распределении зарядов в анионах кислот различной природы. У ароматических карбоновых кислот заряд в анионе менее локализован, чем у алифатических кислот, а у фенола локализация еще меньше. Следовательно, энергия переноса анионов зависит от характера распределения зарядов в анионах п, как мы уже говорили, от величины неполярных радикалов нонов, [c.383]


Смотреть страницы где упоминается термин Природа сольватации в воде: [c.318]    [c.47]    [c.348]    [c.78]    [c.279]    [c.93]    [c.312]    [c.330]    [c.29]    [c.199]    [c.18]    [c.32]    [c.276]    [c.61]    [c.76]    [c.171]    [c.115]    [c.175]    [c.640]   
Смотреть главы в:

Равновесие и кинетика реакций в растворах -> Природа сольватации в воде




ПОИСК





Смотрите так же термины и статьи:

Вода в природе

Природа воды

Сольватация



© 2025 chem21.info Реклама на сайте