Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства растворов высокомолекулярных соединений Строение растворов высокомолекулярных соединений

    Среди высокомолекулярных соединений важное место занимают белки. Они играют основную роль во всех жизненных процессах, а продукты их переработки — в технике и производстве. Белки являются полимерными электролитами, так как их молекулы содержат ионогенные группы. Поэтому растворы белков имеют целый ряд особенностей по сравнению с растворами других полимеров. В состав молекул белков входят разнообразные а-аминокислоты, в общем виде формула их строения может быть записана в форме КНг — К — СООН. В водном растворе макромолекула представляет амфотерный ион КНз — К — СОО . Если числа диссоциированных амино- и карбоксильных групп одинаковы, то молекула белка в целом электронейтральна. Такое состояние бедка называют изоэлектрическим состоянием, а соответствующее ему значение pH раствора — изоэлектрической точкой (ИЭТ). Чаще всего белки — более сильные кислоты, чем основания, и для них ИЭТ лежит при pH < 7. При различных pH изменяется форма макромолекул в растворе. В ИЭТ макромолекулы свернуты в клубок вследствие взаимного притяжения разноименных зарядов. Б кислой и щелочной средах в макромолекуле преобладают заряды только одного знака, и вследствие их взаимного отталкивания молекулы распрямляются и существуют в растворе в виде длинных гибких цепочек. Поэтому практически все свойства растворов белков проходят через экстремальные значения в изоэлектрическом состоянии осмотическое давление и вязкость минимальны в ИЭТ и сильно возрастают в кислой и щелочной средах вследствие возрастания асимметрии молекул, минимальна также способность вещества к набуханию, оптическая плотность раствора в ИЭТ максимальна. Изучение всех этих свойств используется для определения изоэлектрической точки белков. [c.443]


    П. П. Веймарн и В. Оствальд предложили рассматривать свойства дисперсных систем только с позиции их степени дисперсности, не учитывая гетерогенности. Более общие представления о свойствах коллоидных растворов были развиты Н. П. Песковым, который подразделял коллоиды на два класса к первым он отнес коллоиды, которые самопроизвольно диспергируют в растворителе, образуя коллоидные растворы. Если вызвать коагуляцию такой системы, то в коагуляте окажется много растворителя. После удаления электролита (коагулята) коагулянт, как правило, сохраняет способность вновь диспергировать в растворителе. Второй класс коллоидов, по Н. П. Пескову, — это системы, у которых коагуляция необратима, коагулят (осадок), как правило, не содержит дисперсной среды. При этом только вторая группа коллоидных растворов представляет собой типичные коллоиды, инертные по отношению к дисперсионной среде. Как это ни парадоксально, но вещества, получившие впервые в истории науки название коллоиды (гуммиарабик, белки, крахмал), оказались не настоящими коллоидами. Водные растворы этих веществ в отличие от типичных коллоидов представляют собой гомогенные термодинамически равновесные системы, устойчивые и обратимые, т. е. представляют собой истинные растворы макромолекул высокомолекулярных соединений (ВМС). Различие двух типов коллоидов связано в значительной мере с гибкостью и асимметричным строением макромолекул. Последние взаимодействуют с растворителем (дисперсионной средой) подобно низкомолеку- [c.382]

    Лиофильными принято называть такие коллоиды, частицы которых в большом количестве связывают молекулы дисперсионной среды, например некоторые мыла в водной среде. Сюда относили раньше и растворы высокомолекулярных органических соединений (белки, целлюлоза и ее эфиры, каучук, многие искусственно получаемые соединения). Однако, как показало изучение внутреннего строения и свойств таких систем, производившееся в недавнее время, и, в частности, работы В. А. Каргина, Добри и Флори, эти системы представляют собой истинные растворы, т. е. молекулярно-дисперсные, а не коллоидные системы. Они являются гомогенными системами. Характерные отличия их свойств от свойств других групп истинных растворов обусловливаются в основном сильным различием в величине частиц растворителя и растворенного вещества и строением этих частиц, представляющих собой очень длинные и гибкие молекулы (цепное строение). Переход их в раствор облегчается высокой степенью сольватации. Благодаря большому размеру молекул растворы этих веществ по многим свойствам являются близкими коллоидным растворам и образуют самостоятельную группу растворов — растворы высокомолекулярных соединений. Более детально свойства этих растворов будут рассмотрены в гл. XVII ( 244). [c.508]


    В развитии коллоидной химии советского периода большое значение имеют исследования А. В. Думанского и Н. П. Пескова, посвященные главным образом изучению образования и строения коллоидных частиц, а также стойкости коллоидных растворов и защитному действию растворов высокомолекулярных соединений. А. И. Рабинович установил механизм процессов коагуляции А. Н. Фрумкин исследовал вопросы кинетики электродных процессов, связанных с общей теорией поверхностных явлений П. А. Ребиндер посвятил свои работы проблеме влияния поверхностных (адсорбционных) слоев на свойства и поведение коллоидных систем К. К. Гедройц создал учение о почвенном поглощающем комплексе и коллоидно-химических свойствах почв. [c.11]

    Физические характеристики полимерных материалов, свойства растворов и расплавов полимеров определяются не только молекулярной массой и полидисперсностью данного высокомолекулярного соединения, но и химическим и пространственным (стерическим) строением полимерной цепи, ее гибкостью, а также способами ее ассоциации с соседними макромолекулами. [c.122]

    В книге, написанной на высоком научном уровне, расс.матривается широкий круг вопросов физико-химии полимеров (строение и свойства полимеров, кинетика макромолекулярных реакций, теория растворов высокомолекулярных соединений). Отдельная глава посвящена полиэлектролитам. [c.396]

    Еще основатель коллоидной химии Грэм предположил, что особые свойства коллоидов обусловлены нх полимерным строением. Первыми объектами изучения в коллоидной хммии были растворы высокомолекулярных соединений желатины, гуммиарабика, крахмала и др. Хотя в то время не удавалось определить строение коллоидных част1 ц, принадлежность растворов этих соедщгенпй к коллоидным системам не подвергалась сомнению. Тогда считали, что все коллоидные системы термодинамически неустойчивы и соответственно эта особенность распространялась на растворы ВМС. Дальнейшими исследованиями были установлены отличия растворов ВМС от других коллоидных систем. Так, растворам ВМС [c.309]

    Преимущества ядерных мембран отклонение диаметров пор от номинального значения не превыщает 10% правильная, практически круглая форма поперечного сечения пор возможность получения мембран с заранее заданным числом и диаметром пор возможность использования для изготовления мембран материалов, стойких к агрессивным средам пассивность в биологическом отношении устойчивость к воздействию бактерий (они не обладают бактерицидными свойствами) стойкость в условиях термической и химической обработки и др. Поэтому ядерные мембраны очень перспективны для микроаналитических исследований (например, в цитологии и элементном анализе), для фракционирования растворов высокомолекулярных соединений и их очистки. Ядерные мембраны с успехом используют для получения очищенной от бактерий воды в полевых условиях, для изучения размеров и строения клеток крови различных типов (в частности, для выделения раковых клеток из крови) и для других целей. [c.319]

    Согласно современным представлениям, нефть — дисперсная система, т е раствор высокомолекулярных соединений в низкомолекулярных [403] Основу существующих технологий переработки нефти составляют процессы фазообразования (кипения, кристаллизации, стеклования и т д ), а формирование новой фазы в исходной (например, переход из жидкого состояния в твердое — образование парафина, кокса) осуществляется через дисперсное состояние Технология переработки нефти как дисперсной системы требует учета всех стадий образования фаз, возможности влияния внешних воздействий (температуры, давления, скорости нагрева и тд ) на кинетику и степень превращения исходных веществ в новые продукты Характер фазовых переходов в процессах технологической переработки предопределен составом исходной нефти и нефтепродуктов Для оптимизации качества продуктов необходимо знать взаимосвязи состава, ресурсов (выход на нефть) с основными показателями качества фракционным составом, температурой кристаллизации и застывания итд Сведений в литературе о таких зависимостях недостаточно Успешное решение этой проблемы возможно только на основе глубокого понимания взаимосвязи между свойствами нефтепродуктов, их составом и строением на молекулярном уровне, что требует привлечения спектроскопии ЯМР [c.249]

    Строение макромолекул и свойства растворов высокомолекулярных соединений нефти [c.57]

    Свойства растворов высокомолекулярных соединений тесно связаны со строением, размерами и гибкостью макромолекул в растворе, а также с энергией их взаимодействия с растворителем. Последний фактор особенно важен, поскольку сродство полимера к растворителю определяет форму молекулярных клубков. [c.439]


    В результате ряда дискуссий было признано целесообразным отказаться от терминов лиофильные коллоиды и лиофильные золи , чтобы не связывать с ними представлений о мицеллярном строении этих систем, а заменить их термином растворы высокомолекулярных соединений (сокращенно—растворы ВМС). В нашем изложении мы будем следовать этому решению и лишь-иногда, в целях преемственности, будем употреблять и термин лиофильные золи в качестве синонима нового термина, а рас- смотрение специальных свойств этих систем проведем отдельно в конце курса. По мнению И. И. Жукова, эти системы рациональнее было бы именовать молекулярными коллоидами. [c.12]

    Термин лиофильные коллоиды можно встретить как устаревшее название растворов высокомолекулярных соединений, представляющих собой гомогенные (однофазные) системы. Это связанно с тем, что первоначально полимеры рассматривались как особый класс коллоидных систем и им приписывали мицеллярное строение. Причиной заблуждения послужила общность многих свойств (оптич., осмотич., реологич. и др.) золей и р-ров полимеров, а также отсутствие в то время достоверных данных о молекулярном строении последних. Представления о М. как фазовых частицах было перенесено из коллоидной химии в учение о структуре полимерных тел. [c.129]

    Еще основатель коллоидной химии Грэм предположил, что особые свойства коллоидов обусловлены их полимерным строением. Первыми объектами изучения в коллоидной химии были растворы высокомолекулярных соединений желатины, гуммиарабика, крахмала и др. Хотя в то время не удавалось определить строение коллоидных частиц, принадлежность растворов этих соединений к коллоидным системам не подвергалась сомнению. Считали, что все коллоидные системы термодинамически неустойчивы и соответственно эта особенность распространялась на растворы ВМС. Дальнейшими исследованиями были установлены отличия растворов ВМС от других коллоидных систем. Так, для растворов ВМС характерны большая вязкость, высокая устойчивость, способность к набуханию. Это послужило основанием отнести растворы ВМС, как и растворы коллоидных ПАВ, к лиофильным системам, при этом подразумевалось большое сродство частиц к растворителю. [c.356]

    Образование структур в коллоидных системах и в растворах высокомолекулярных соединений является результатом сцепления частиц под влиянием действующих между ними сил (молекулярных или химических). Процесс образования структуры и свойства структурированных систем зависят от состояния и свойств поверхности частиц дисперсной фазы. Важную роль при этом играет неоднородность поверхности частиц, которая в одних случаях обусловлена анизодиаметрической формой, в других случаях— химическим строением, т. е. наличием в составе частиц функциональных групп с различными свойствами (например полярных и неполярных групп). [c.361]

    Установление связей между химическим строением макромолекул, величиной молекулярного веса, ко нцентрацией растворов высокомолекулярных соединений и их реологическими свойствами является важной проблемой физико-химии полимеров. [c.84]

    Оптические методы исследования коллоидных растворов дали в свое время возможность проверить гипотетический характер молекулярно-кинетических представлений о строении вещества, результатом чего явились неопровержимые доказательства существования молекул. Наконец, оптические исследования коллоидных растворов в частности изучение броуновского движения, дают возможность непосредственно демонстрировать статистический характер второго закона термодинамики. Оптические свойства широко используют в настоя -щее время для изучения коллоидных растворов и растворов высокомолекулярных соединений. [c.227]

    Не менее важное значение имеет применение реологических методов, т. е. методов, основанных на измерении величины тех или иных механических свойств, особенно вязкости, и для разрешения основных теоретических вопросов всей современной коллоидной химии—вопросов внутреннего строения дисперсных систем и процессов структурообразования, совершающихся в них как самопроизвольно, так и под влиянием различных внешних воздействий. Особенно это касается растворов высокомолекулярных соединений. [c.201]

    Свойства высокомолекулярных соединений изменяются в широких пределах и зависят от состава и строения элементарных звеньев, размеров и формы макромолекул, интенсивности межмолекулярных связей, условий получения, температуры испытания и от других факторов. В зависимости от назначения синтетические высокомолекулярные соединения можно получать с высокоэластическими свойствами или в твердом стеклообразном состоянии. Некоторые высокомолекулярные соединения растворимы в различных растворителях и дают ценнейшие для промышленности растворы в [c.437]

    Сборник содержит три статьи о проблемах строения типичных высокомолекулярных соединений в связи с их важнейшими физическими и физико-химическими свойствами. Первая статья (Бекер) посвящена природе твердого состояния линейных полимеров, вторая (Гут, Джемс, Марк) — кинетической теории эластичности каучука, третья (Д. Джи) — термодинамическим исследованиям растворов и гелей каучукоподобных полимеров. [c.296]

    Первые попытки описания свойств высокомолекулярных соединений на основе представлений классической химии привели (20—30-е годы) к коллоидной теории строения высокомолекулярных соединений, так как некоторые особенности растворов высокомолекулярных соединений были близки к свойствам уже хорошо известных в то время коллоидных систем. Так, вязкость растворов высокомолекулярных соединений в десятки и сотни раз превышает вязкость истинных растворов низкомолекулярных соединений. Высоковязкие растворы были известны лишь для тех низкомолекулярных веществ, молекулы которых при растворении ассоциируются в мицеллы — коллоидные частицы (примером может служить коллоидный раствор мыла в воде). По размеру молекул высокомолекулярные соединения тоже близки к коллоидным частицам и очень далеки от молекул низкомолекулярных соединений, образующих истинные растворы (например, раствор мыла в спирте). Такая формальная аналогия между растворами высокомолекулярных соединений и коллоидными растворами привела к тому, что все высокомолекулярные соединения рассматривались как коллоиды. [c.50]

    Способностью к агрегированию в растворах и образованию термодинамически равновесных лиофильных коллоидных систем обладают не только асимметричные по строению молекулы низкомолекулярных ПАВ, но и высокомолекулярные соединения (ВМС), особенно те, в молекулах которых имеются резко различающиеся по полярности участки. Свойства возникающих при этом систем близки к свойствам мицеллярных систем, образованных низкомолекулярными ПАВ, несмотря на то что отдельные частицы могут здесь формироваться при агрегировании всего нескольких крупных молекул во многих случаях, например в растворах глобулярных белков, и одиночные макромолекулы ведут себя как частицы, очень близкие по свойствам мицеллам ПАВ. Полное рассмотрение свойств растворов ВМС, в том числе и лиофильных коллоидных систем, образуемых ими, составляет самостоятельные разделы физической химии растворов и физикохимии ВМС и обычно не включается в современные курсы коллоидной химии. Тем не менее, в рамках данного курса целесообразно привести краткое описание условий образования, строения и свойств подобных систем в их сопоставлении с коллоидными системами, образуемыми низкомолекулярными веществами. [c.236]

    Глава IX РАСТВОРЫ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ 119. Строение макромолекул и свойства высокомолекулярных веществ [c.252]

    По мере развития коллоидной химии неоднократно изменялась ее терминология и оценка важности изучения различных типов систем. Первоначально истинными коллоидами называли клееподобные системы, которые являются растворами высокомолекулярных соединений, а золи золота, иодида серебра, берлинской лазури и других называли случайными коллоидами. Затем большое внимание стало уделяться системам типа золя золота, которые были названы лиофобными коллоидами . После того как работами Г. Штаудингера, В. А. Каргина и других ученых было установлено принципиальное различие в строении частиц и термодинамических свойств лиофобных коллоидов и растворов высокомолекулярных соединений, последние стали исключать из коллоидной химии и изучать отдельно. В настоящее время растворы высокомолекулярных соединений рассматривают как отдельную группу лиофильных коллоидных систем. [c.12]

    Помимо органических, хорошо изученных высокомолекулярных соединений существуют также и неорганические высокомолекулярные вещества. К сожалению, строение их молекул, равно как и свойства их растворов, еще недостаточно изучены. [c.421]

    Примером трехмерного неорганического высокомолекулярного соединения может служить алмаз, состоящий из атомов углерода. В кристалле алмаза каждый атом углерода связан с четырьмя другими ближайшими атомами углерода. Кристалл алмаза можно считать одной гигантской молекулой, лишенной ряда свойств, типичных для обычных молекул. Вследствие такого строения алмаз не способен набухать, не растворяется ни в одном из растворителей и обладает очень большой твердостью. Структура графита и алмаза показана на рис. XIV, 1. [c.421]

    Предлагаемая вниманию читателя книга обобщает современные-представления и результаты экспериментальных исследований в области изучения реологических свойств высокомолекулярных соединений и растворов полимеров в связи с особенностями их строения и состава. [c.9]

    Химические свойства высокомолекулярных соединений сходны со свойствами аналогичных по строению малых молекул. Многочисленные реакции макромолекул описаны в разд. 27.1.4 и 27.4.2, поэтому в данном разделе рассмотрены в основном физические свойства полимеров как в твердом состоянии, так и в растворе [37]. [c.314]

    Еще в начале XX в. высокомолекулярные вещества (смолы, каучуки и т. д.) рассматривали как вещества, состоящие из обычных небольших молекул, образующих в растворах большие агрегаты, наподобие коагулятов. Эта точка зрения была полностью отвергнута в 20-х гг. немецким химиком Г. Штаудингером Еще в 1922 г. он высказал мысль, что высокомолекулярные соединения состоят из больших, многоатомных молекул, названных им макромолекулами. В. 1926 г. на основе изучения свойств таких макромолекул высокополимеров (полистирол и др.) Г. Штаудингер пришел к выводу, что их скелет составлен из углеродных цепей, состоящих из множества углеродных атомов. В дальнейшем он ввел представление и о разветвленном цепном строении высокомолекулярных веществ. [c.257]

    Растворы большинства высокомолекулярных соединений, как было сказано, являются истинными. Однако значительные молекулярные массы и полидисперсность обусловливают нарушение термодинамической обратимости их свойств уже при малых концентрациях. Отличительной особенностью процесса растворения является набухание, предшествующее собственно растворению. В зависимости от первичной структуры полимера (наличия и природы боковых заместителей в звеньях полимерной цепи, регулярности строения макромолекулы) набухание может быть ограниченным и неофаниченным, т.е. завершающимся образованием раствора. [c.90]

    Физическая химия полимеров как самостоятельная область химии высокомолекулярных соединений развилась в 40-е годы на базе классической коллоидной химии [29], традиционным предметом исследования которой были, в частности, лиофильные коллоиды — природные полимеры [30]. Отказ от ряда представлений классической коллоидной химии и учет специфики строения высокомолекулярных соединений стимулировали интенсивное развитие исследований их структуры, физико-химических и механических свойств. Однако дальнейшее развитие представлений о структуре полимеров и свойствах их растворов вновь привело к необходимости рассмотрения гетерогенности этих систем на молекулярном и надмолекулярном уровнях, выражающейся в существовании различных степеней порядка в расположении макромолекул даже в аморфной фазе, существовании многофазных полимерных систем, наличии агрегатов или ассоциатов (мицелл) в термодинамически устойчивых растворах [31]. [c.9]

    Но коллоидная химия, как уже отмечалось (стр. 11—12), ставит своей задачей также изучение систем с физико-химическими свойствами, отличными от перечисленных свойств лиофобных золей. Издавна эти системы, типичными представителями которых являются растворы белков, целлюлозы, каучука, под названием лиофильных золей причислены также к золям, или, иначе, к псевдорастворам, т. е. системам гетерогенным, имеющим мицелляр-ное строение. Такому объединению этих систем послужила общность некоторых свойств, например неспособность частиц проходить через полупроницаемые мембраны (диализ и ультрафильтрация), сравнительно небольшая величина скорости диффузии и осмотического давления, особенно при малых концентрациях растворов высокомолекулярных соединений, а также способность под влиянием внешних факторов коагулировать и пеп-тизироваться. Основную роль в этом объединении сыграла близость степени дисперсности растворенного (взвешенного) компонента тех и других систем для золей 10 —10 смГ , для растворов ВМС примерно 10 —10 см . [c.151]

    Исходя из теории образования нефти как результата длительных превращений органических остатков, основную часть нефти составляют углеводороды различного строения. Однако выходящая на поверхность нефть выносит с собой попутный газ, воду и механические частицы песка, горной породы и т. д. Количество этих компонентов для различных месторождений различно. Эти компоненты нерастворимы, олеофобны и образуют дисперсную систему, которая подвергается разделению. Но и после отделения нерастворимых компонентов, согласно химической природе самой нефти, она не является молекулярным раствором, или ньютоновской жидкостью. Наличие в нефти гетероатомных соединений, а также высокомолекулярных соединений, большинство которых содержат серу, азот, кислород и металлы, сообщает нефти, нефтяным фракциям и остаткам специфические свойства, присущие коллоидным и дисперсным системам. В зависимости от размеров частиц дисперсной фазы такие системы могут быть как ультрагетерогенными (размер частиц от 1 до 100 нм), так и грубодисперсными (размер частиц > 10 ООО нм). [c.28]

    При исследованиях почвы для идентификации выделенных фракций гумусовых веществ широко используются спектрофотометрические данные [28, 29, 44]. Обычно изменение оптической плотности их водных растворов характеризуется монотонно убывающими кривыми с различной крутизной спада в ультрафиолетовой и видимой частях спектра. Сравнительное изучение оптических свойств и химического состава гуминовых кислот различного происхождения позволило установить, что при одинаковом содержании углерода растворы низкомолекулярных соединений имеют меньшую оптическую плотность, чем высокомолекулярных, т. е. оптические свойства растворов, и в частности оптическая плотность гумусовых веществ, определяются их строением. Соответственно, спектры поглощения растворов гуматов, выравненных по содержанию углерода, характеризуют соотношение содержания этого элемента в ароматических ядрах и боковых радикалах. Поэтому большее поглощение световых лучей наблюдается в более зрелых соединениях с высокой конденси-рованностью ароматических углеродных атомов и меньшее — в молодых веществах с преобладанием боковых алифатических цепей [28]. [c.56]

    К лиофильным коллоидным системам относят растворы высокомолекулярных соединений, которые одновременно проявляют и некоторые свойства истинных растворов. Высокомолекулярные соединения принадлежат к другому уровню организаиии вещества — уровню макромолекул. Таким образом, между лиофильными и лиофобными коллоидными системами имеются не менее принципиальные различия и с точки зрения теории строения вещества. [c.157]

    Ценность высокомолекулярных соединений определяется в первую очередь размерами и особенностями строения молекул этих веществ, и разработка научных проблем, связанных с исследованием природы высокомолекулярных соединений, является одной из основных задач современной химии и физики. Эти вопросы тесно связаны с исследованием растворов высокополиме-ров, так как почти все известные методы определения размеров и формы молекул высокомолекулярных веществ основаны на исследовании растворов этих соединений. С другой стороны, растворы высокомолекулярных соединений представляют непосредственный практический интерес. Дело в том, что переработка и применение значительного числа полимеров возможна только путем их предварительного растворения. Поэтому возможность растворить полим ) и получить растворы с необходимыми свойствами часто определяет возможность технического использования полимера. [c.5]

    Описаны особенности гомо- и сополимеризации циклоолефи-нов и фосфорсодержащих метакрилатов, способствующие получению продуктов с уникальным комплексом свойств. Приводятся данные о роли сокатализаторов и строении активных центров в ионно-координационной полимеризации диенов. Представлены результаты по синтезам и свойствам поливинилтетразолов, полиок-симов, фуллеренсодержащих и уретановых полимеров. Обобщены исследования по получению высокомолекулярных соединений в неглубоко замороженных растворах мономеров. [c.4]

    Из вышеприведенного перечня высокомолекулярных соединений можно видеть, что соединения этого класса обладают самыми различными свойствами. Так, натуральные и синтетические каучуки высокоэластичны (обратимо растягиваются на сотни процентов), а большинство синтетических смол жестки, как стекло. Некоторые высокомолекулярные соединения растворяются в различных растворителях и дают ценнейшие для промышленности растворы в виде лаков, клеев и пленкообразо-вателей, другие же не растворяются ни в чем. Одни обладают кислотостойкостью или диэлектрическими свойствами, у других этого нет и т. д. В настоящее время установлено, что свойства высокомолекулярных веществ зависят от условий их получения, температуры испытания, химического строения, размеров и формы молекул, агрегатного состояния, интенсивности меж-молекулярных связей и других факторов [c.166]

    В 1957 г. были выдвинуты новые представления о строении аморфных полимерных тел, согласно которым аморфные полимеры рассматривали как упорядоченные системы, состоящие из молекулярных цепей, собранных в начки [1]. Эта концепция получила экспериментальное подтверждение при исследовании полимеров как в стеклообразном [2—4], так и высокоэлас-тЕческом [5, 6]состояниях. В связи с обнаруженной упорядоченностью в аморфных полимерах возникает совершенно естественный вопрос о природе и условиях возникновения этих структур. Но-видимому, нужно предположить, что-они могут образовываться в условиях, когда реализуется молекулярная подвижность, т. е. в растворах и расплавах. Действительно, уже сравнительно давно на основании изучения ряда свойств растворов полимеров с помощью косвенных методов были высказаны многочисленные предположения о структуре растворов полимеров и о возможности протекания в них агрегационпых процессов. Однако до сих нор в литературе отсутствуют данные прямых экспериментальных исследований структуры высокомолекулярных соединений в растворах и расплавах. Это обстоятельство связано с весьма ограниченным числом удобных и надежных методов исследования подобных объектов. Поэтому задача настоящего исследования заключалась в разработке новых методов для непосредственного изучения структуры полимеров в растворах и изучение их с помощью характера структурообразования макромолекул в растворах. [c.185]


Смотреть страницы где упоминается термин Свойства растворов высокомолекулярных соединений Строение растворов высокомолекулярных соединений: [c.349]    [c.22]    [c.349]    [c.14]    [c.283]   
Смотреть главы в:

Курс коллоидной химии -> Свойства растворов высокомолекулярных соединений Строение растворов высокомолекулярных соединений




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Г лава X Свойства растворов высокомолекулярных соединений . Строение растворов высокомолекулярных соединений

Растворов свойства

Растворы высокомолекулярных соединени

Строение макромолекул и свойства растворов высокомолекулярных соединений нефти



© 2025 chem21.info Реклама на сайте