Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидроксильные группы, методы анализа гидроксильные

    Мелвилл и сотрудники [253] синтезировали ряд разветвленных полимеров путем конденсации макромолекул поли-винилацетата, содержащих концевые гидроксильные группы, с радиоактивным, частично гидролизованным поливинилаце-татом. Важное преимущество этого метода по сравнению с обычным методом привитой сополимеризации заключается в том, что он дает возможность характеризовать боковые цепи до присоединения к основной цепи. Радиохимический анализ показал, что среднее количество разветвлений, приходящееся на одну макромолекулу, колеблется от 5,5 до 40. [c.43]


    Получаемые при анализе масел диеновые числа занижены, так как в присутствии кислорода образуются перекисные соединения. Заниженные значения дают также вещества, содержащие гидроксильные группы для анализа веществ, содержащих кислотные группы, этот метод вообще непригоден. [c.105]

    Этот метод анализа иллюстрируется рис. 46. В основе его лежит использование различий в термической стойкости гидроксильных и ацетильных концевых групп. Предложено несколько вариантов использования этого метода, например деструкция на воздухе с добавлением веществ, ускоряющих разложение гидроксильных групп, и антиоксидантов, предотвращающих окисление [47]. [c.124]

    Вещества, мешающие определению гидроксильных групп методом Фишера (см. гл. IX), мешают также определению нитрилов методом гидролиза. Поскольку спиртовый гидроксил колич ственно этерифицируется, его можно определить независимым методом и внести точные поправки в результаты анализа нитри лов. (При отсутствии аминного азота может быть использован ацидиметрический метод по Смиту и Брайанту [11] с применением хлористого ацетила.) [c.357]

    Спирты и фенолы относятся к соединениям, содержащим одну или несколько гидроксильных групп. В спиртах гидроксильная группа связана с алифатическим атомом углерода, а в фенолах - непосредственно с ароматическим ядром. Различие в строении обусловливает своеобразие химических свойств и методов анализа. [c.54]

    Существуют определенные методы синтеза органических соединений, в которых отдельные атомы являются изотопно-обогащенными (т. е. обладают более высокиМ содержанием редкого изотопа, чем при природном обогащении) (разд. 1.1). При исследовании превращений таких меченых веществ и анализе продуктов превращений часто удается определить точную судьбу отдельного атома или группы во время реакции. Этерификация изучалась с использованием тяжелого нерадиоактивного изотопа 0. Установлено, что при этерификации карбоновой кислоты спиртом, в котором гидроксильная группа обогащена 1 0 ( меченая ), все тяжелые изотопы находятся в эфирном атоме кислорода (но не в карбонильном кислородном атоме) и ни одного — в образовавшейся воде  [c.157]

    При анализе синтезированного препарата на содержание в нем гидроксильных групп по методу ацетилирования уксусным ангидридом в присутствии пиридина была получена величина, равная 40 /,,, в то время как вычисленная величина равна 42,5 /о следовательно, степень чистоты препарата составляет 94 /о. [c.199]


    Метод реакционной хромато-масс-спектрометрии успешно используется для анализа смесей спиртов. Масс-спектры ЭУ спиртов (особенно алифатических и алициклических) недостаточно информативны для определения молекулярной массы, положения гидроксильной группы и строения углеродного скелета молекулы. [c.189]

    Реакция гидроксильных групп с фенилизоцианатом лежит в основе дифференциального кинетического метода анализа двор- [c.23]

    Существуют газохроматографические методы определения гидроксильных групп с помощью анализа на активные атомы водорода. По этому вопросу см. гл. 8, разд. И. [c.55]

    Лучше всего, чтобы меченый стероид или стерин, добавляемый в качестве индикатора в жидкость или высушенный экстракт, имел настолько высокую удельную радиоактивность, что добавляемое его количество было пренебрежимо мало в сравнении с количеством определяемого немеченого соединения в данной пробе. Если же удельная радиоактивность индикаторного соединения меньше этого уровня, то необходимо учитывать как количество добавляемого индикатора, так и его радиоактивность, с тем чтобы впоследствии вычесть эти величины для корректирования полученных результатов анализа. Важным преимуществом метода с использованием меченых индикаторов, особенно ввиду различной реакционной способности гидроксильных групп, отличающихся по положению в молекуле, является то, что образование производного не обязательно должно быть количественным. Степень превращения можно, однако, определить в отдельном опыте путем добавления известного количества меченого соединения известной радиоактивности к высушенному экстракту перед ацетилированием, если при этом не будут допущены потери веществ после добавления индикатора. [c.72]

    В работе [119] описан метод, в котором уксусный ангидрид, меченный изотопом " С, применялся для ацетилирования гидроксильных групп окисленного полиэтилена. Ацетилированные полимеры использовались затем в качестве стандартов в ИК-спектрофото-метрическом анализе. Реакцию вели в смеси (200 15 по объему) [c.76]

    Дальнейшее изучение метода показало, что он не является абсолютным и не позволяет анализировать любое неизвестное соединение с использованием одного и того же калибровочного графика, построенного по результатам анализа подходящего известного соединения [20]. В этом исследовании вещества с различными формами активного водорода анализировали с использованием одной и той же порции меченого реагента. При этом для бензойной кислоты и я-бутанола были получены согласующиеся результаты, а результаты для анилина значительно отличались от соответствующих результатов, полученных с использованием меченого спирта. Растворимые образцы полиэтиленадипината, содержащие в основном концевые гидроксильные группы, хотя и давали прямолинейный калибровочный график, выделяли меньше трития, чем эквивалентное количество я-бутанола. Для того чтобы в анализе анилина количество выделяющегося трития было достаточно близким к количеству трития, выделяемого данным количеством лмина, требовался свежий реагент. Этот анализ проводили с применением модифицированного оборудования, описанного ниже. Такой эффект, связанный с наличием в реагенте остаточных продуктов от предыдущих реакций, не наблюдался в анализе я-бутанола в этом анализе можно было использовать раствор реагента, )/ке использовавшийся в анализах анилина и бензойной кислоты. [c.253]

    Крамм, Ламонт и Мейер [14] использовали ИК-спектрофотомет-эию для определения содержания гидроксильных групп в окисленном полиэтилене. При этом они проводили спектральный анализ полимера, подвергнутого количественному ацетилированию уксусным ангидридом. Для определения содержания ацетильной группы измеряли поглощение при 8,03 мкм. Соответствующая полоса поглощения обусловлена валентными колебаниями связи С 0 и ти-пична для эфиров уксусной кислоты. Результат определения ацетильной группы принимали за содержание гидроксильной группы. Калибровочные данные для этого метода получали путем спектро фотометрического анализа полимеров в ИК-области содержание гидроксильной группы в полимерах предварительно устанавливали путем их ацетилирования уксусным ангидридом, меченным изотопом " С, и последуюнхего радиохимического анализа. [c.27]

    Количественное определение содержания фенольных гидроксильных групп титрованием в неводных растворителях широко распространено в аналитической практике [19, 28—33]. В качестве растворителей обычно применяют диметилформамид, ацетонитрил, пиридин, зтилендиамин, бутиламин, ацетон и смеси бензола с метанолом, изопропанолом или изобутанолом [34—36]. Титрование ведут растворами щелочей или алкоголятов щелочных металлов [35, 37—39] с определением точки эквивалентности визуально [40—42], потенциометрически [40, 43, 44] или с помощью токов высокой частоты [36, 37]. Данный метод позволяет определять суммарное содержание фенолов в присутствии спиртов (за исключением гликолей) с точностью до 0,5—1%, а также дифференцировать одно- и многоатомные фенолы в смеси [45]. При высокочастотном титровании для ряда смесей удается проводить раздельное определение различных фенолов. Так, Б. П. Ершов и В. Л. Покровская рекомендуют методики анализа изомерного состава технических ди- и трикрезольных фракций [46] , а также раздельного определения 2,4-, 2,5- и 3,5-ксиленолов [47, [c.46]


    Предварительно метилируя концевые гидроксильные или карбоксильные группы, можно определить степень полимеризации по числу метоксильных групп. Пригодны также методы, основанные на ацилировании гидроксильных групп. Если ацильный остаток содержит галоген, азот или другой элемент, отсутствующий в самом полимере, определение молекулярной массы полимера сводится к элементарному анализу. Эти меченые концевые группы, могут быть введены в макромолекулу во время самого синтеза полимера (полимеризация в присутствии галогензамещенных перекисей, передача цепи при полимеризации в присутствии ССЦ, СНС1з и т. д.). Во всех случаях необходимо пользоваться такими реакциями, в которых участвуют только концевые группы. Нельзя, [c.545]

    Для изучения окислительных превращений катехинов, например в технологии чая, где они играют ведущую роль, необходимо иметь достаточно простые и надежные методы определения их функциональных групп. Общепринятые в органической химии методы анализа гидроксильных групп основаны на метилировании или ацетилировании (Вейганд, 1950 Черонис, 1960). Полученные производные затем расщепляют с выделением соответственно либо йодистого метила, либо уксусной кислоты. Измеряя количество последних весовым или титрометрическим способом, судят о содержании оксигрупп в исходном веществе. Помимо своей трудоемкости, необходимости применения даже в микромодификации относительно больших навесок вещества эти методы не дают возможности различать положение оксигрупп и таким образом наряду с фенольными оксигруппами определяют и нефенольные. Кроме того, классические методы определения оксигрупп требуют работы с индивидуальными веществами (метоксильные и ацетильные производные перед заключительным определением перекристал-лизовывают до постоянной температуры плавления), а при биохимических анализах исследователю часто приходится иметь дело либо с экстрактами растительного материала, либо со сложными модельными системами. [c.62]

    При анализе смесей, содержащих наряду, с фенолами и спирты, рекомендуется сумму гидроксильных групп определять ацетилированием в присутствии пиридина или хлорной кислоты и в отдельной пробе — содержание спиртов методом фталирования. Фенолы с фталевым ангидридом, как правило, не реагируют. Разница определений указывает на содержание фенольных гидроксильных групп. [c.58]

    Другая отличительная особенность гетерогенной полимеризации заключается в образовании полимеров с чрезвычайно высоким содержанием ненасыщенных концевых групп. Так, поли-оксипропилен, полученный по методике, приведенной в табл. 50, содержит 3,27 10 молей гидроксильных групп в 1 г полимера (определено методом фталирования) и 2,19-Ю " молей двойных связей (бромный анализ) [57]. Анализ ИК-спектров показал, что двойные связи принадлежат аллильным [178] и пропильным [179] эфирным группаМ  [c.202]

    Содержание гидроксильных групп в эпоксидных и полигидр-оксифениленовых смолах определяли путем измерения объема водорода, выделяющегося при взаимодействии гидроксильных групп с алюмогидридом лития [495]. Для определения эпоксидных и гидроксильных групп, а также числа фениленовых колец между эпоксидными группами в сополимерах эпихлоргидрина с дифенилолпропаном использовали [496] пиролитическую масс-снектрометрию. Гидроксильные группы свободных фенолов в эпоксидных смолах, растворенных в диметилформамиде, содержащем серную кислоту и метанол, определяли методом амперометрического титрования с бромат-бромидным раствором [497]. В работе [498] обсуждались методы определения эпоксидных, карбоксильных и гидроксильных групп, а также степени ненасыщенности водорастворимых эпоксидных смол и полиэфиров. Изменение содержания фенольных гидроксильных групп в процессе полимеризации эпихлоргидрина с бисфено-лом А контролировали [499] путем измерения показателя преломления. Содержание сложных эпоксиэфиров и состав жирных кислот в эпоксидных смолах определяли путем проведения омыления [500]. Состав кислотной фракции, в которую входят насыщенные и ненасыщенные кислоты ie и is, был установлен газо-жидкостной хроматографией соответствующих метиловых эфиров. Содержание смолы в слоистых эпоксидных борсодержащих волокнах определяли путем растворения в серной кислоте и взвешивания нерастворимого остатка [501]. Анализ различных полимеров, в частности эпоксидного клея, проводили с использованием ИК-спектроскопии и химических методов [502]. В работе [503] описан метод определения оксида сурьмы в эпоксидных смолах при его содержании до 0,5%. [c.533]

    Определение виниловых эфиров и ацеталей, а также присутствующих в них спиртов, уксусного альдегида и воды представляет довольно сложную аналитическую задачу. В качестве одной из попыток разрешения этой задачи предложена схема полного анализа [54], в которую входят гидролиз, гидрирование, определение гидроксильных групп методом ацетилирования, определение воды по Фишеру и альдегидов реакцией с сульфитом натрия с последующим титрованием серной кислотой. [c.42]

    Предварительно метилируя концевые гидроксильные или карбоксильные группы, можно определить степень полимеризации по числу метоксильных групп. Пригодны также методы, основанные на ацили-ровании гидроксильных групп. Если ацильный остаток содержит галоген, азот или другой элемент, отсутствующий в самом полимере, определение молекулярного веса полимера сводится к элементарному анализу. Эти меченые концевые группы могут быть введены в макромолекулу во время самого синтеза полимера (полимеризация в присутствии галогензамещенных перекисей, передача цепи при полимеризации в присутствии ССЦ, H lg и т. д.). Во всех случаях необходимо пользоваться такими реакциями, в которых участвуют только концевые группы. Нельзя, например, определять молекулярный вес целлюлозных препаратов по числу гидроксильных групп, так как они находятся и на конце цепи и в каждом остатке глюкозы в этом случае следует применять реакции концевых альдегидных групп с каким-нибудь окислителем (нахождение медных чисел и т. д.). [c.414]

    Газо-жндкостная хроматография. В литературе имеются сведения о применении метода газо-жидкостной хроматографии для прямого анализа дифенилолпропана . Разделеление проводили на колонке, заполненной цеолитом 545 с нанесенными на него апиезо-ном Ь и поликарбонатом. Однако прямой анализ другим исследователям не удался из-за разложения дифенилолпропана . Поэтому ими было предложено сначала ацетилировать все реакционноспособные гидроксильные группы в дифенилолпропане, а затем проводить хроматографирование. [c.189]

    Несмотря на разнообразие нефтей, сэдержание углерода и водорода в асфальтенах колеблется в сравнительно узких пределах С 80—86% (масс.), Н 7,3—9,4% (масс.), отношение С Н также сравнительно постоянно и равно 9—П. Различие в содержании гетероатомов значительно больше. По данным Сергиенко содержание кислорода в асфальтенах в зависимости от природы нефти может колебаться от 1 до 9, серы, от О до 9, азота от О до 1,5— 3,0% (масс.). Химические и спектральные методы анализа показали, что кислород в асфальтенах входит в состав гидроксильных, карбонильных, карбоксильных и сложноэфирных групп. В нативных асфальтенах преобладают гидроксильные и карбонильные группы до 80% (масс.). В асфальтена.ч из окисленных битумов преобладают сложноэфирные группы [ 60% (масс.) кислорода] Некоторые исследователи считают, что 1 ера входит в состав суль фидных мостиков между фрагментами молекулы асфальтенов Другие, в том числе Сергиенко, придерхиваются мнения, что ато мы серы включены в циклические структурные элементы, содер жащие кольцо тиофена или тетрагидрэтиофена. Спектральными методами были также обнаружены циклические соединения, содержащие сульфоксидную группу. [c.211]

    ФУНКЦИОНАЛЬНАЯ ГРУППА, структурный фрагмент молекулы, характерный для данного класса орг. соед. и определяющий его хим. св-ва. Напр., св-ва спиртов определяются гл. обр. наличием гидроксильной группы, аминов — аминогруппы, карбоновых к-т — карбоксильной группы. В состав т. н. полифункциональных соед. входят несколько разл. Ф. г. Для качеств, и количеств, определения Ф. г. (функционального анализа) примен. обычно ИК и УФ сшектроскопию, ЯМР, а также методы, основанные на характерных хим. р-циях. См., напр., Азидная группа. Азогруппа, Нитрогруппа, Нитрильная группа. Карбонильная группа. [c.640]

    Функциональный анализ — совокупность физических и химических методов анализа, применяя которые можно качественно и количественно определять в органических соединениях реакцнонноснособные группы атомов (или отдельные атомы), так называемые функциональные группы. Известно около 100 функциональных групп. Напр. 1) Ф. г,, содержащие кислород гидроксильная (гидроксо) —ОН, [c.147]

    Для анализа экдистероидов методом газо-жидкостной хроматографии, а также для проведения их направленных трансформаций возникает необходимость защиты гидроксильных групп. В синтезе триметилсилиловых эфиров экдистероидов наиболее часто используются М,0-бис(триметилсилил)ацетамид и М-(триметил- [c.473]

    Пожалуй, наиболее успешным и практически удобным методом газохроматографического анализа соединений с гидроксильными группами является метод, основанный на образовании силильных эфиров, таких, как триметилсилильные [(СНз)з51—] и трифторме-тилсилильные [( F3)3Si—]. В литературе описано большое число методов силилирования этим методам целиком посвящена по меньшей мере одна книга [50]. Общую картину применяемы с [c.47]

    Обсуждение результатов. Описанный выше метод, позволяющий легко и быстро вьшолнить анализ, оказался применимым для определения большого числа разнообразных соединений с несколькими гидроксильными группами (были изучены около 100 углеводов и родственных им веществ). Количество пиридина не имеет большого значения, и в количественном анализе добавлением этого растворителя можно обеспечить нужный объем реакционной смеси. Сообщалось, что в закрытых сосудах производные сахаров сохраняют свои свойства в течение по меньшей мере нескольких дней. [c.49]

    Реагенты с относительно высокой удельной радиоактивностью нJиpoкo используют в определениях стероидов и стеринов, содержащихся в экстрактах биологических жидкостей, путем ацетилирования гидроксильных групп этих соединений. Концентрации УТИХ соединений в таких экстрактах очень низки, так что в пробе может содержаться менее 1 мкг анализируемого соединения. В анализируемых объектах присутствуют первичные, вторичные и третичные гидроксильные группы, а некоторые стероиды (например, гидрокортизон) могут содержать гидроксильные группы исех трех типов. Кроме ожидаемых трудностей из-за различий в реакционной способности, обусловленных этими тремя типами гидроксильных групп, анализ таких соединений затрудняют и значительные различия в скорости ацетилирования вторичных гидроксильных групп, которая зависит от положения такой группы в молекуле [89]. Поскольку в анализируемых образцах содержатся лишь микро- или полумикроколичества соединений с гидроксильными группами, для их определения лучше всего подходят методы с использованием двух радиоактивных изотопов. Один —сравнительный изотоп — служит для определения количества производного, выделенного с помощью хроматографии, а второй — индикаторный изотоп — позволяет установить выход определяемого сослинения, степень превращения и чистоту продукта. Сравиитель-Н1.п" изотоп всегда находится в ангидриде, которым обрабатывают [c.71]

    Еще один метод определения гидроксильных групп в стероидах ( и в дру1их соелинениях), в котором используется лишь уксусный ангидрил, меченньп1 изотопом получил название анализ по отношению производных [106]. В этом методе к пробе добавляют [c.74]


Смотреть страницы где упоминается термин Гидроксильные группы, методы анализа гидроксильные: [c.591]    [c.98]    [c.451]    [c.185]    [c.194]    [c.118]    [c.85]    [c.604]    [c.98]    [c.54]    [c.55]    [c.70]    [c.74]   
Instrumental Methods of Organic Functional Group Analysis (1972) -- [ c.0 ]

Инструментальные методы анализа функциональных групп органических соединений (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гидроксильная группа

групп методы анализа



© 2025 chem21.info Реклама на сайте