Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры и реакционноспособные олигомеры

    К межмолекулярным реакциям относится также отверждение жидких реакционноспособных олигомеров. Б результате они необратимо превращаются в твердые нерастворимые и неплавкие трехмерные полимеры. Отверждение происходит в результате взаимодействия реакционноспособных групп олигомеров между собой или со специальными добавками отвердителями) под действием катализаторов, тепла, УФ-света, излучений высокой энергии. При- мером такой реакции может служить процесс отверждения эпоксидного полимера, имеющего строение [c.61]


    ОТВЕРЖДЕНИЕ, необратимое превращение жидких реакционноспособных олигомеров н(нлн) мономеров в твердые неплавкие и нерастворимые сетчатые полимеры. Процесс получения эластичных сетчатых полимеров (резин) из каучуков наз. вулканизацией. В результате О. фиксируется структура и обеспечивается заданный комплекс св-в реактопластов (см. Пластические массы, Композиционные материалы), гер>-метиков, клеев (см. Клеи синтетические), лаков (см. Лакокрасочные покрытия), компаундов полимерных. [c.423]

    ФОРМИРОВАНИЕ СОПОЛИМЕРОВ ИЗ РЕАКЦИОННОСПОСОБНЫХ ОЛИГОМЕРОВ И ПОЛИМЕРОВ [c.77]

    Широкие возможности конструирования полимерной цепи предоставляет поликонденсация на основе реакционноспособных олигомеров и полимеров. [c.77]

    Отвердителями эпоксидных смол могут служить также полимеры и олигомеры, содержащие реакционноспособные по отношению к эпоксидным функциональные группы — гидроксильные (фенолоформальдегидные смолы), карбоксильные (полиэфиры), аминные (полиамиды) и др. [c.219]

    Отверждение — процесс, при котором жидкие (или используемые в виде расплавов и растворов) реакционноспособные олигомеры необратимо превращаются в твердые, нерастворимые и неплавкие трехмерные полимеры. [c.114]

    Применение вместо мономеров реакционноспособных олигомеров (см. с. 263) позволяет получать сетчатые полимеры более однородного строения, которое, к тому же, поддается регулированию. [c.227]

    Изделия из термореактивных полимеров получают химической реакцией отверждения реакционноспособных олигомеров. В отверждаемых полимерах формируется пространственная сетка, состоящей из сравнительно низкомолекулярных цепей, соединенных узлами. [c.128]

    Такие покрытия с сетчатой структурой обладают высокой твердостью и химической стойкостью Для получения сетчатых структур обычно используют реакционноспособные олигомеры, растворы которых при достаточно высокой концентрации имеют относительно невысокую вязкость Таким образом, в процессе формирования покрытия за счет химических реакций происходит увеличение молекулярной массы полимера, и в итоге покрытие можно рассматривать как одну гигантскую молекулу [c.50]

    Реакция Фриделя — Крафтса может быть использована для синтеза ароматических реакционноспособных олигомеров [1]. В литературе имеются указания [2] на возможность применения ее для получения фосфорсодержащих полимеров при совместной поликонденсации хлорметилированных ароматических соединений с триарилфосфатами. Эти соединения имеют незамещенные активированные положения в фенильных ядрах и поэтому могут участвовать в реакциях алкилирования. Однако конкретные данные по условиям проведения такой реакции отсутствуют. С другой стороны, от введения фосфора в олигомер следует ожидать повышения огнестойких свойств продуктов, полученных на основе таких фосфорсодержащих олигомеров. [c.53]


    Отверждение и применение. Использование О., как и др. реакционноспособных олигомеров, создает ряд преимуществ и, в частности, возможность совмещения в одной операции процессов полимеризации и изготовления изделий. В технике отверждение достигается путем радикальной полимеризации или сополимеризации О. Переход от жидкого олигоэфиракрилата к пространственно-сетчатому полимеру наблюдается при очень малых степенях превращения (0,25—1%) и сопровождается скачкообразным нарастанием вязкости и потерей текучести. Элементарные реакции протекают в диффузионной области. Начальная скорость полимеризации в изотермич. условиях зависит от физич. свойств О., гл. обр. от вязкости и способности молекул О. к ассоциации. С увеличением глубины полимеризации скорость определяется плотностью пространственной сетки и гибкостью ее межузловых цепей плотность и гибкость, в свою очередь, зависят гл. обр. от размера молекул и природы исходного О. [c.235]

    Использование смол др. типов, совмещение диановых Э. с. с различными реакционноспособными олигомерами и полимерами, участвующими в образовании трехмерной сетки, а также подбор рецептуры позволя- [c.499]

    НЕКОТОРЫЕ СВОЙСТВА ПОЛИМЕРОВ НА ОСНОВЕ РЕАКЦИОННОСПОСОБНЫХ ОЛИГОМЕРОВ [c.288]

    В сборник включены обзорные статьи по наиболее актуальным и интересным вопросам химии и физико-химии полимеров. Отдельные статьи посвящены успехам в области сополимеризации винил-хлорида, стабилизации эластомеров, а также структуре и свойствам гребнеобразных полимеров, расположению по типам функциональности в реакционноспособных олигомерах, большим деформациям в кристаллических полимерах. Рассмотрены методы исследования полимеров с помощью парамагнитного зонда и ИК-спектроскопии. [c.2]

    В последние два десятилетия широкое распространение получили синтетические низкомолекулярные полимеры с концевыми функциональными группами, известные под названием полимеризационно-способных или реакционноспособных олигомеров [230, с. 13]. Поскольку степень полимеризации этих соединений составляет обычно 10—50, термин олигомеры в данном случае носит чисто условный характер и лишь подчеркивает их низкую, по сравнению с обычными полимерами, молекулярную массу. - [c.231]

    Упомянутые выше трудности можно преодолеть, изготавлиэая литьевые изделия из реакционноспособных олигомеров. Две (над большее число) низковязкие жидкости, реакционноспособные, rip отношению друг к другу, предварительно смешивают и впрыскивают в большую литьевую форму. В процессе заполнения формы происходит реакция полимеризации, которая приводит к образованию либо линейного, либо разветвленного, либо пространственно-сшитого полимера. Реакция может завершаться и после заполнения формы и даже после удаления изделия из горячей формы. Поэтому давления, требуемые для заполнения форм при литье полимеризующихся материалов, обычно невелики. Кроме того, не составляет труда гомогенизация жидких реагентов, поскольку их вязкости равны около 0,1 Па-с. Легко также контролировать процесс. Можно использовать простые смесительные головки .  [c.541]

    Очевидно, что экономичность процесса литья под давлением реакционноспособных олигомеров определяется скоростью протекания реакции полимеризации. Иными словами, этот процесс не может конкурировать с литьем под давлением термопластов, но может быть сравним с формованием методом заливки. Отсюда видно, что не все полимеризующиеся системы следует перерабатывать литьем под давлением. Со времени промышленного освоения процесса, т. е. с начала 70-х годов, наиболее часто используют линейные или пространственно-сшитые полиуретаны — продукты взаимодействия двух- или трехатомных спиртов и ди- или триизоцианатов. Используют также наполненные волокнами полиэфиры. В дальнейшем, когда процесс литья под давлением будет лучше изучен и начнут чаще применять форполимеры, можно будет надеяться на более широкое использование сшивающихся полимеров. Пока эта проблема находится в начальной стадии своего развития. [c.542]

    Используя принципы моделирования, разработанные для литья под давлением реакционноспособных олигомеров, можно с помощью выражений (14.2-24) и (14.2-25) описать стадию полимеризации при прессовании. Разумеется, выражение (14.2-24) применимо лишь для линейной и обратимой ступенчатой полимеризации. Кроме того, мы сделали допущение, что в начале реакции полимеризации температурное поле в материале однородно. Поэтому выражение (14.2-25) учитывает теплопередачу только в направлении нормали к боковой поверхности изделия. Бройер и Макоска [60] предложили числовое решение задачи теплопередачи для более распространенного варианта прессования — прессования реактопластов, сопровождающегося образованием сетчатого полимера. [c.553]


    Энтелис С. Г., Евреинов В. В., Кузаев А. И. Реакционноспособные олигомеры. Распределение по типам функциональности. В кн. Успехи химии и физики полимеров. М., Химия , 1973, с. 201—238. [c.209]

    ВИИ высоких температур. Показано, что в зависимости от природы модифицирующих компонентов, возможно формирование регулярных структур, обеспечивающих получение покрытий с заданными характеристиками (твёрдость, влагопоглощение, вязкость и другие свойства).Оптимизированы составы композиционных материалов на основе аминоформальдегидных олигомеров и хлорированных полимеров модифицированных четвертичными аммониевыми основаниями, алкилсульфонатами, карбоксиметилцел-люлозой и фосфатами аммония. Исследованы процессы межфазного взаимодействия на границе раздела модифицированное связующее - наполнитель. Показано, что введение в состав композиции модифицирующих добавок приводит к увеличению адсорбционного взаимодействия и смачивания и улучшает комплекс технологических и эксплуатационных характеристик. Исследовано влияние высоких температур на огнезащитные свойства разработанных материалов. Установлено, что наибольший коэффициент вспучивания и наилучшие огнезащитные свойства имеют композиционные материалы, содержащие в качестве основных компонентов - аминоальдегидный олигомер и поливи-нилацетат, а в качестве вспучивающих систем - фосфаты аммония и уротропин - хлор-сульфированный полиэтилен, модифицированный хлорпарафинами, а в качестве вспучивающих компонентов - полифосфат аммония и пентаэритрид. Разработаны технологические процессы получения огнезащитных материалов. Получены покрытия на субстратах различной природы (дерево, металл, кабельные покрытия) и разработана технология их нанесения. Проведен комплекс натурных испытаний при действии открытого пламени. Установлено, что огнезащитные материаты на основе реакционноспособных олигомеров могут быть успешно использованы для защиты металлов, при этом коэффициент вспучивания достигает 10-20 кратного увеличения толщины покрытия при эффективности огнезащиты - 0,5 часа. Состав на основе хлорсульфированного полиэтилена успешно прошёл испытания в качестве огнезащитного покрытия кабельных изделий. [c.91]

    Л.С. модифицируют разл. способами. Так, их карбоксили-руют, для чего, напр,, эмульсионную полимеризацию проводят в присут, метакриловой к-ты (см. Карбоксилатиые каучуки). Получаемые карбоксилатные Л. с. отличаются повыш. агрегативной стабильностью, способностью давать прочные вулканизаты в присут. двухвалентных катионов (Zn, Са, Mg) без использования обычных вулканизующих агентов пленки из этих латексов характеризуются высокой адгезией. Выпускается широкий ассортимент карбоксилатных Л. с. на основе разл. полимеров. Изменяя состав мономеров в процессе синтеза, получают латексы с неоднородными по составу глобулами. Готовые латексы модифицируют прививкой к полимерам мономеров, содержащих функциональные группы, реакционноспособными олигомерами, совмещением полимеров разл. латексов. [c.579]

    Наиб, широко О. используют в качестве связующих для наполненных, особенно слоистых пластиков (см. Пластические. массы), таких, как клеи синтетические и лаки (см., напр., Алкидные смолы, Кремнийорганические лаки, Полиэфирные лаки. Эпоксидные лаки), в компаундах полимерных, для получения пенопластов (напр., пенофенопластов), герметиков. Получил распространение прием временной пластификации высокомол. полимеров реакционноспособными О., что позволило упростить переработку полимера в изделие и модифицировать его св-ва. Из реакционноспособньгх О. наиб, практич. значение имеют меламино-формальдегидные смолы, мочевино-формальдегидные смолы, феноло-альдегид-ные смолы, алкидные смолы, эпоксидные смолы, олигомеры акриловые. [c.376]

    П. при заданном избыгке одного из мономеров - способ регулирования мол. массы полимеров и получения реакционноспособных полимеров или олигомеров (блоков) с определенным типом функц. групп их затем используют в синтезе высокомол. полимеров. Так поступают, напр., при синтезе полиуретанов вначале из дикарбоиовых к-т и избытка гликолей получают сложные полиэфиры с концевыми [c.633]

    Широкие синтетические возможности полимерного дизайна серосодержащих полимеров открывает синтез на основе а,о>олигоариленсульфиддигалогенидов реакционноспособных олигомеров различных типов с концевыми амино-, циано-, тиольными группами, ненасыщенными изопропенильными, малеинимидными и другими группировками [37], позволяющими осуществлять последующую химическую модификацию, структурирование при более низких температурах без выделения нежелательных побочных продуктов и разрабатывать различные блок-сополимерные системы с ценным комплексом свойств. [c.191]

    Полученные результаты оказались интересными с нескольких точек зрения [31]. Во-первых, они позволяют понять превращения в полиариленкарборанах при повышенных температурах, приводящие к образованию частосетчатых трехмерных систем, обеспечивающих материалам на их основе длительную работоспособность при повышенных температурах. Во-вторых, они показывают, что карбораны-12 можно рассматривать как ингибиторы термической и термоокислительной деструкции, так как радикальные продукты деструкции органических фрагментов полимера, взаимодействуя с карборановыми группами, переходят в неактивную форму. Карборановые группы с борцентрированными радикалами способны образовывать новые устойчивые связи типа В-С, нельзя также исключать и образование В-В-связей по реакции рекомбинации. Вообще же карборансодержащую полимерную матрицу при повышенных температурах можно представить себе как систему с определенным динамическим равновесием, в которой термический разрыв имеющихся химических связей компенсируется образованием новых. Необходимым следствием полученных результатов является также и то, что, ставя задачу получения наиболее термостойких систем, карборановые группы следует вводить в полимерные системы в сочетании с ароматическими соединениями, чтобы обеспечить условия протекания описанных выше превращений. И наконец, найденная реакция прямого арилирования карборанов-12 позволяет по-новому, значительно проще, решать проблему синтеза карборансодержащих мономеров и реакционноспособных олигомеров. Для этого необходимо вводить в реакцию термической конденсации с карбораном-12 соответствующие ароматические соединения. [c.281]

    Химический метод получения блок-сополимеров можно осуществить как в ряду полимернзационных, так и поликонденсациоиных полимеров. В обоих случаях реакция протекает за счет функциональных концевых групп полимеров или олигомеров. В полимеры, полученные радикальной полимеризацией, эти группы можно ввести с инициатором. В случае по-лнконденсационных тюлимеров, всегда содержащих концевые функциональные группы, задача облегчается и состоит лишь в соответствующем подборе полимеров с взаимно реакционноспособными концевыми группами. [c.8]

    Надежные результаты укрепления и гидрофобизации карбонатных пород достигаются пропиткой их КОС (табл. 12). В камень вводят либо раствор кремнийорганического полимера, растворитель из которого испаряется, либо мономеры, которые полимеризуются внутри капилляров, пор и трещин камня, либо реакционноспособные олигомеры. Благодаря низкой вязкости достаточно концентрированных растворов кремнийорганических полимеров достигается глубинная пропитка каменных материалов растворами кремнийорганических полимеров. КОС образуют пленки, обладающие высокой стойкостью к внешним воздействиям (перепады влажности и температуры, УФ-облучение). Высокая гидрофобность поверхностей, обработанных КОС, особенно важна для объектов, находящихся на открытом воздухе. Как правило, обработка камня кремнийорганическими препаратами не изменяет оптических свойств поверхности, в отличие, например, от ПБМА, который зажиряет поверхность. [c.94]

    Энтелис С.Г., Евреинов В В., Кузаев А.И. Реакционноспособные олигомеры. Распределение по типам функциональности // Успехи химии и физики полимеров. М. Хгшия, 1973. 360 с. [c.345]

    В вулканизованных каучуках резко ограничена подвижность вблизи узлов, и можно выделить собственный сигнал (показанный на рис. XII. 3) от сульфидных межцепных мостиков. По мере учащения поперечных связей — независимо от метода получения сшитого полимера последовательной вулканизацией (в широком понимании этого слова) или отверждением реакционноспособных олигомеров (олигоэфиракрилаты, эпоксидные системы, роливсаны и т. д.) ситуация с подвижностями меняется по глубине реакции. Следить за реакцией удобно с помощью некоторых вариантов крутильных маятников. Когда сетка становится настолько густой, что расстояние между ее узлами приближается к размеру одного сегмента эквивалентной линейной макромолекулы, происходит химическое стеклование, напоминающее фазовый переход часто сшитый полимер в определенной мере аналогичен ковалентному паракристаллу, в понимании Хоземанна [50]. [c.311]

    Механизм межфазного взаимодействия в системах полимер — наполнитель весьма сложен и полностью не выяснен, хотя в последнее время эту проблему интенсивно исстедуют [3, 4. 59] на примере линейных кристаллических и в меньшей мере аморфных полимеров. В случае эпоксидных полимеров исследование взаимодействия полимер-наполнитель осложняется тем, что, во-первых, подобные материалы образуются в результате отверждения низкомолекулярных олигомеров в присутствии наполнителя, т. е. наполнитель может влиять не только на надмолекулярную, но и на молекулярную структуру полимера, а также на процесс отверждения олигомерного связуюш.его, вступая в химические реакции, с реакционноспособными группами эпоксидных олигомеров отвердителей. Во-вторых, поскольку процесс образования эпоксидного полимера из олигомера и отвердителя происходит в присутствии наполнителя, трудно разделить влияние технологических факторов и поверхностные эффекты. Кроме того, образующиеся прн отверждении сильно-сшитые системы неплавки и нерастворимы, что также сильно затрудняет их исследование. [c.84]

    ПОЛИКАРБОРАНЫ (карборансодержащие полимеры), содержат в макромолекуле карборановые группы (см. карбораны). Наиб, полно исследованы П. с о-, м- и я-карбора-новыми-(12) группами. Эти группы активно взаимод. с Ог воздуха при 300 °С и выше с образовгшием трехмерных неорг. структур, в основном со связями В—В и В—С, обладающих высокой термостойкостью. Практич. интерес представляют карборансодержащие феноло-формальд. и эпоксидные смолы, а также др. реакционноспособные олигомеры. Продукты их отверждения и послед, термообработки сочетают орг. и неорг. сетки и характеризуются высокими термо- и теплостойкостью, большим коксовым остатком (90—95% пря 1000 °С). Получ. обычными методами синтеза полимеров. Примен. основа термостойких клеев связующие композиц. материалов, в т. ч. углеграфитовых. [c.461]

    Получены термоотверждаемые композиции для поверхностных покрытий, содержащие значительную долю диспергированного полимера с реакционноспособными группами либо присоединенными к поверхности частиц полимера, либо являющимися компонентами растворимых цепей привитого стабилизатора. Такие композиции отверждаются за счет взаимодействия с комплементарными реакционноспособными группами, введенными в растворимый полимер или олигомер, находящиеся в непрерывной фазе. [c.306]

    ОТВЕРЖДЕНИЕ ( uring, Aushartung, dur issement) — процесс, при к-ром жидкие (или используемые в виде расплавов и р-ров) реакционноспособные олигомеры необратимо превращаются в твердые, нерастворимые и неплавкие трехмерные полимеры. [Термин отверждение используют обычно применительно к процессам образования трехмерных полимеров при переработке пластмасс, лаков, клеев, герметиков, компаундов. Образование трехмерных полимеров в результате соединения (сшивания) поперечными связями ранее синтезированных макромолекул эластомеров наз. вулканизацией.] [c.266]

    Большинство П. в.— реакционноспособные олигомеры разветвленного пли линейного строения (алкидные, феноло-формальдегидные, полиэфирные и эпоксидные смолы, нек-рые сополимеры акрилатов и др.). В качестве П. в. используют также сравнительно низкомолекулярпые полимеры, обычно не содержащие реакционноспособных групп (нитроцеллюлозу, термопластичные полиакрилаты, перхлорвиниловые смолы п др. хлорсодержащие полпмеры). [c.325]

    При П. нек-рых ненасыщенных и гетероциклич. чюединений наблюдается образование низкомолекулярных продуктов. Одни из них нереакционноспособны напр., 1,4-диоксан при П. окиси этилена, паральдегид и метальдегид при П. ацетальдегида), др. являются реакционноспособными олигомерами (напр., триоксан и тетраоксан при П. формальдегида). На кинетику П. эти побочные процессы влияют только в том случае, если скорость их образования сравнима со скоростью П. Если равновесие в системе с реакционноспособными олигомерами устанавливается быстро, то образование полимера наблюдается только после достижения равновесных концентраций этих олигомеров. [c.308]

    В сборник включены обзорные статьи по наиболее актуальным разделай химии и физико-химии полимеров. Рассмотрены вопросы, связанные с физической модификацией полимеров, кинетикой и механизмом полимеризации эпоксидов. Отдельные статьи посвящены применению методов ЯМР и ЭПР для изучения строения и свойств полимеров, современным представлениям о механизме разрзшгения полимеров. Подробно рассмотрены методы синтеза и свойства полимеров с системой сопряженных связей и реакционноспособных олигомеров, проблемы, связанные с получением пищевых полимеров, и другие вопросы. [c.2]

    Превращение жидких или Легкоплавких олигомеров в высокополимеры может осуществляться в сравнительно мягких условиях и не сопровождаться большими усадками и внутренними напряжениями. Это позволяет получать из реакционноспособных олигомеров крупногабаритные изделия, защитные покрытия, электроизоляционные материалы, литьевые пластмассы, волокна и эластомеры без применения высоких давлений, повышенных температур, растворителей. Использование олигомеров не только упрощает технологию переработки полимеров, но и дает возможность создавать новые материалы и технологические методы для решения сложных задач, выдвигаемых современной техникой. Применение олигомеров с реак-цнонноспособными группами позволяет по-новому подойти к проблеме модификации свойств промышленных полимеров. Благодаря хорошей совместимости олигомеров с высокополимерами возможно создание полимер-олигомерных композиций, в которых олигомер сначала выполняет роль временного пластификатора. После отверждения таких композиций олигомер образует с линейным высокополимером привитой сополимер или систему, в которой линейный полимер замурован в сетке, возникающей в результате отверждения полифунк-ционального олигомера. Такой принцип модификации позволяет создавать новые материалы, сочетаюпще свойства линейных и сетчатых полимеров [c.254]

    Физико-механические свойства сетчатых полимеров определяются особенностями их структуры и частотой сетки. При исследовании свойств сетчатых полимеров следует различать сетчатые полимеры со статистическим распределением поперечных связей (вулканизованные каз чуки, сетчатые полимеры на основе сополимеров, содержащих реакционноспособные группы, например сополимеры бутадиена с акриловой кислотой, олигоэфирмалеинаты и др.) и сетчатые полимеры регулярного строения, полученные на основе реакционноспособных олигомеров, содержащих концевые функциональные группы. Величина межузловых цепей таких полимеров определяется, как правило, молекулярным весом исходного олигомера (полиэфир-акрилаты).  [c.293]


Смотреть страницы где упоминается термин Полимеры и реакционноспособные олигомеры: [c.219]    [c.420]    [c.376]    [c.565]    [c.52]    [c.95]    [c.117]    [c.420]    [c.149]    [c.308]    [c.326]    [c.162]   
Смотреть главы в:

Упрочненные газонаполненные пластмассы  -> Полимеры и реакционноспособные олигомеры




ПОИСК





Смотрите так же термины и статьи:

Олигомеры

Реакционноспособность



© 2025 chem21.info Реклама на сайте