Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование радикалов в окисляющихся спиртах

    Сущность процесса заключается в том, что при взаимодействии триэтилалюминия с этиленом имеет место реакция роста цепи, в результате которой получаются высшие алкилы алюминия с прямой цепью. Эти алюминийалкилы затем окисляются воздухом с образованием алкоголятов алюминия, гидролиз которых дает высшие первичные спирты. При проведении реакции управляемой полимеризации получается смесь алюминийалкилов с различным содержанием атомов углерода в цепи. Так как мономерной единицей процесса управляемой полимеризации является этилен, то в результате окисления смеси алюминийалкилов получается смесь спиртов с четным числом углеродных атомов в молекуле, отличающихся друг от друга на 2 атома углерода. Получаемые спирты представляют собой смесь, содержащую свыше 40% спиртов Се—Сю и примерно столько же спиртов Сю—0,8-Длину спиртового радикала можно регулировать, изменяя на стадии полимеризации соотношение между триэтилалюминием и этиленом. [c.194]


    Перенос заряда, индуцированный фотохимическим способом, может приводить к образованию ион-радикалов или карбониевых ионов. Многие ароматические вещества растворяются в борной, фосфорной и других кислотах, которые при комнатной температуре и ниже образуют стекловидные растворы. При облучении этих растворов ароматическая молекула часто превращается в соответствующий ион-радикал. Это видно из УФ-спектров [3] и спектров ЭПР [33]. Передает молекула электрон или нет — не зависит от ее потенциала ионизации. Дифенил или антрацен, которые в растворе не окисляются бромом, при облучении ультрафиолетовым светом легко отдают электрон в стекловидном растворе борной кислоты. С другой стороны, тетрафенилэтилен с метоксигруппами в пара-положении устойчив при облучении, но в то же время реакция с бромом в спирте или нитрометане приводит к потере двух электронов. Бук и др. [12] обнаружили, что основность молекулы в возбужденном состоянии является определяющей для скорости процесса фотоионизации. [c.158]

    Определенный, хотя и гораздо меньший (йи/ п= 1,6—2,0), кинетический изотопный эффект измерен при окислении цикло-гексанола ионами церия, марганца и кобальта в сильнокислых растворах, так что в случае этих более сильных окислителей реакционный процесс гораздо больше напоминает уравненпе (17), в котором образуется алкоксильный радикал. Действительно, перхлоратом кобальта, имеющим очень высокий редокс-потен-циал ( о=1.8в), даже третичные спирты могут быть окислены до продуктов, которые определенно получаются при медленном образовании и быстром расщеплении алкоксильных радикалов [14]. Медленно восстанавливающийся даже водой ион кобальта можно стабилизировать, используя концентрированную минеральную кислоту при окислении ионом Со наблюдается обратная зависимость от кислотности, что можно сопоставить со следующим уравнением  [c.72]

    Образование Н—00—Н возможно лишь при реакции взаимодействия с кислородом, реагирующим в условиях, при которых возможно образование радикала К, например при комнатной температуре лишь при диссоциации углеводорода. Однако при высоких температурах диссоциация на радикалы и присоединение радикалов по приводимой выше схеме является проблемой почти для всех органических веществ. Риче подчеркивает, что внедрение кислорода между углеродом и водородом при умеренных температурах можно предвидеть для всех веществ, у которых имеет место активация >тлерод—водородной связи по причине особой молекулярной структуры. Риче отмечает, что большей частью действие кислорода сильно отличается от действия озона кислород во многих случаях не действует на органические вещества по двойной связи очень часто вместо двойной связи он входит по связи углерода с водородом в соседстве с кислородом. Двойная связь может присоединять кислород, несмотря на то, что она активирует связь углерода с водородом. Алкильные группы обычно трудно окисляются соседство ароматической группы (толуол) или кислородных атомов (спирты, эфиры) может активировать реакцию (присутствие этиленовой группы оказывает аналогичное действие). Тетралин и циклогексен окис-ля отся, как известно, в перекиси (I) и (И). [c.580]


    Ингибирование в массе и в азеотропной смеси с водой осуществлялось гидрохиноном. Известно [7], что гидрохинон в водном растворе радиационно окисляется в бензохинон через семихиион. Радиолиз аллилового спирта частично идет с разрывом связи С — О и образованием радикала НО [8, 9]. Таким образом , и при полимеризации в массе будет иметь место окисление гидрохинона. Образующийся в качестве промежуточного продукта стабильный семихиноидиый радикал должен был бы действовать как эф-фективный ингибитор полимеризации, протекающей с очень короткой кинетической 2 цепью. Выведенная формула ингибирования соответствует экспериментальной зависимости при значении a 35 до величины да ж 0,9 ири полимеризации в массе и при значении ku i 25 до величины т a 0,44 в азеотропной смеси с во- дой. Условия облучения те же, что и в растворе. Скорость конверсии в исследованном интервале начальных концентраций ингибитора оставалась постоянной по крайней мере до лг 50 вес.% выхода полимера, а индукционный период отсутствовал. Последнее объясняется тем, что при выбранной мощности дозы количество [c.85]

    Электрохимическое окисление метилбензолов в ацетонитриле приводит к образованию бензильных карбениевых ионов, которые взаимодействуют с ацетонитрилом или остаточной водой. Эберсон и сотр. [5, 7] обнаружили, что окисление толуола, ксилолов, дурола и гексаметилбензола в водном ацетонитриле в присутствии перхлората натрия приводит к соответствующим бензильным ацетамидам и спиртам. Преимущественно образуется амид, относительный выход которого возрастает при переходе от толуола к гексаметилбензолу. Даже в 5%-ном водном ацетонитриле амид остается доминирующим продуктом. Анодный предел системы ацетонитрил — перхлорат натрия намного превышает анодные потенциалы, применяемые в этих экспериментах, поэтому считается, что перенос электрона осуществляется с субстрата. Вероятна реализация механизма с участием катион-радикального интермедиата. Анодно-генерированный катион-радикал претерпевает депротонирование и дает бензильный радикал, который затем участвует в гетерогенном [реакция (6-За)] и(или) гомогенном переносе электрона [реакция (6-36)] с образованием бензильного катиона (бензил-радикал окисляется легче, чем исходный толуол [8]). В результате нуклеофильной атаки молекулы растворителя (ацетонитрила) [c.264]

    Работами [21, 22] показано, что ароматические углеводороды способны образовььвать ассоциаты друг с другом и с сероорганическими соединеииями, углеводородный радикал которых представлен ароматическим циклом. Образование таких ассоциатов также может препятствовать разделению ароматических углеводородов и сероорганических соединений. Разделить эти компоненты можно, окисляя последние по Гинсбергу. Образовавшиеся кислородсодержащие соединения (сульфоны, сульфоксиды) извлекаются с силикагеля после удаления обессеренных таким образом ароматических углеводородов вместе со смолами. Они обладают намного большей диэлектрической постоянной, чем соответствующие им по строению серосодержащие соединения (например, для амил-меркаптана е=4,7, для амилового спирта е=15,8). Поэтому при х,роматографии на силикагеле они адсорбируются в.месте со смолами и ароматические фракции десорбируются без сернистых компонентов. По данным [23], их удаление мало сказывается на физико-химических показателях ароматических фракций. [c.18]

    В первом с лучае распад по О—0-связи происходит с выбросом атома водорода и приводит к образованию еще ацетальдегида и ацетона. Как мы видели, однако, Б.аанделл и Скирроу [36] (см. стр. 405), окисляя бутен-2, специально искали кетоны (в том числе и ацетон), но не смогли их обнарул ить. Во втором случае распад по О—О-связи должен привести к образованию альдегида и алкоксильного радикала, для которого естественней всего предположить дальнейшее превращение в соответствующий спирт. Но тогда в составе продуктов окисления как олефинов, так и парафинов, должны быть и альдегиды и спирты. Альдегиды были обнаружены при окислении углеводородов обоих этих классов. Что же касается спиртов, то относительно их образования в ходе окисления олефинов существуют противоречивые данные. Так, например, при окислении пропилена Мюллен и Скирроу [35] нашли спирты (правда, только [c.411]

    Натрий передает электрон ароматическому кольцу, окисляясь при этом до N3+, что приводит к образованию ион-радикала 47 [279]. Большой объем информации получен об этих частицах из спектров ЭПР [280]. Ион-радикал отщепляет протон от спирта, давая радикал, который восстанавливается до карбаниона под действием второго атома натрия. И наконец, анион 48 присоединяет еще один протон. Таким образом, спирт служит источником протонов, так как для большинства субстратов кислотность аммиака оказывается недостаточной. В отсутствие спирта часто получаются продукты димеризации анион-радикала 47. Имеются доказательс1ва ]281], что по крайней мере в некоторых случаях, например в реакциях бифенила, ион-радикал, аналогичный 47, превращается в аналогичный аниону [c.186]

    В связи с особой актуальностью охраны окружающей среды от загрязнения химическими реагентами большое внимание уделяется изучению способности ПАВ к биологическому разрушению в водной, почвенной и других средах. Биологическим разложением называют любое изменение (трансформацию) молекулы химического соединения, ведущее к упрощению структуры и изменению его различных свойств (физико-химических, токсикологических и др.) под влиянием живых организмов. Различают первичное и полное биологическое разложение. Так, гидрологическое отщепление от молекулы ПАВ активной сульфогруппы приводит к утрате веществом поверхностной активности, а с ней и способности к пенообразованию. В данном случае приемлемое для окружающей среды биоразложение совпадает с первичным разложением. Полное биоразложение — это распад вещества до простых неорганических соединений с образованием воды, углекислого газа, азота, аммиака и др. Известно, что алкилсульфаты разрушаются в результате гидролиза с образованием соответствующих спиртов которые окисляются до жирных кислот. В свою очередь последние подвергаются деструкции путем а- и р-окисле-ния. Вторичные жирные спирты (ВЖС) могут разлагаться по такому механизму ВЖС- спирт->кетон->оксикетон- дион альдегид-V кислота. Деструкция анионных ПАВ,, ведущая к потере поверхностной активности, может происходить либо путем отщепления от молекулы вещества гидрофильной группы, либо в результате последовательного окисления алкильного радикала. Отщепление гидрофильной, группы у синтетических алкилсульфатов, алкилсульфена-тов и алкиларилсульфенатов осуществляется в результате каталитического воздействия ферментов сульфатаз. [c.93]


    Алкильные радикалы окисляются ионами-окислителями до олефинов и спиртов или сложных эфиров. Во многих случаях в качестве промежуточных частиц образуются карбокатионы, что доказывает состав продуктов окисления. Окисление неопентильного радикала ацетатом меди в уксусной кислоте приводит к образованию изомерных 2-метилбутенон и /и/>еш-амилацетата, что согласуется с реакциями, в которых участвуют промежуточные карбокатионы  [c.316]

    Реакция была впервые описана Шульбах и Вольфом [55] и в дальнейшем изучалась в лаборатории авторов [216]. При использовании натриевого производного фенилацетилена выход диина составляет 67 % и падает до 20 %, если применять литиевую соль, что, вероятно, обусловлено более высокой степенью ковалентности последнего. Предварительные опыты по конденсации октина-1 и тетрагидропиранилового эфира пропаргилового спирта с использованием натриевой соли и перманганата не увенчались успехом, как, впрочем, и попытки окислить перманганатом фенилацетиленид натрия в диглиме или диметилформамиде вместо жидкого аммиака. Как показал Наст [173], окислительную конденсацию можно осуществить в жидком аммиаке, применив комплексы Си + и Ре +. Вполне допустимо, что конденсация протекает через стадии образования аниона и радикала. [c.293]

    Общие свойства. Присутствие рибита, содержащего много гидроксильных групп, делает рибофлавин хорошо растворимым в воде. Флавиннуклеотиды, содержащие, кроме того, фосфатную, а в случае FAD и сахарную группы, еще лучше растворимы в воде. Свободный рибофлавин растворим в полярных органических растворителях, таких, как ацетон или спирты, но нерастворим в хлороформе. Он легко восстанавливается, а его восстановленная форма вновь легко окисляется. Это свойство используется при биологическом функционировании флавиновых коферментов и в электронтранспортной цепи. (гл. 10). Восстановление происходит в две одноэлектронные стадии, т. е. через образование полухинонового радикала (6.22). [c.231]

    В рассмотренных выше примерах гомогенно-каталитических реакций примесь катализатора (называемого в этом случае положительным катализатором) ускоряет реакцию. Известны также случаи, когда катализатор, не только ускоряет реакцию, но и изменяет ее направление, т. е. вызывает преимущественное образование какого-либо определенного продукта. Так, например, если продуктами окисления пропана СдНв в чистых пропано-кислородных или пропано-воздушных смесях при температурах 350° С являются вода, окись углерода, СО2, метиловый спирт СН3ОН, формальдегид НСНО и уксусный альдегид СНдСНО, кислоты, перекиси, а также продукты крекинга — пропилен СдНе, метан СН4 и водород, то в присутствии гомогенного катализатора — бромистого водорода — главным продуктом реакции, на образование которого расходуется до 70% окислившегося пропана, является ацетон (СНз)2СО [228, 284, 1279]. Кроме того, в присутствии бромистого водорода температура, при которой протекает реакция, снижается до 180—220° С. Механизм направляющего реакцию каталитического действия НВг не выяснен во всех деталях. Однако можно предполагать, что в значительной мере оно связано с реакцией образующегося в ходе окисления пропана радикала ИО- с молекулой НВг [c.36]

    Боланд и Купер [18] показали, что при облучении в спиртовом растворе антрахинон-2,6-дисульфонат-ион отрывает атом водорода от а-углерода молекулы спирта. При этом образуются радикал красителя типа семихинона и радикал спирта. В дальнейшем Бридж и Портер [24] показали, что отрыв-атома водорода является первичным актом реакции. Краситель регенерируется в результате реакции с молекулярным кислородом, а свободный радикал субстрата-растворителя в дальнейшем окисляется до радикала перекиси, промежуточной между альдегидом и кислотой [см. уравнение (3)]. Аналогичная работа Боланда и Купера, проведенная на других субстратах в водных растворах, показала, что реакции глюкозидов и дисахаридов, представляющие окислительное расщепление глюкозидных связей, также могут быть объяснены с точки зрения образования промежуточного радикала перекиси [105]  [c.316]

    Формально эта реакция аналогична индуцированному, спиртом разложению перекисей. Диарилдисульфиды более реакционноспособны, чем диалкилдисульфиды. Их взаимодействие с а-оксиалкильными радикалами, полу.чаем ,ши фотолизом бензофенона или ацетофенона в присутствии вторичного спирта [244—247] (или эфира [248]), привлекло внимание многих исследователей. Дисульфиды не оказывают влияния на скорость образования оксидифениЛметильного радикала, но повышают скорость его исчезновения [249]. а-Оксиал-кильный радикал может вновь окисляться до исходного кетона или восстановиться в карбинол под действием меркаптана, образующегося в этой реакции [c.230]

    И этиловый спирт будет окисляться нецепным путем при /° 100°, а изопропиловый—при 1 37°. Окисление изопропилового опирта при облучении УФ-светом в присутствии антрахинона сопровождается образованием антрагидро-хинонового радикала (обнаружен методом ЭПР) [69], что подтверждает радикальный механизм фотосенсибилизированного окисления. Ряд особенностей фотоокисления спиртов связан с превращениями фотосенсибилизаторов, в качестве которых чаще всего используются антрахинон, его производные и бен-зофенон. Бекстрем обнаружил [67], что скорость фотоокисления изопропилового спирта (сенсибилизатор—бензофенон) обратно пропорциональна парциальному давлению кислорода. Зависимость скорости окисления спирта от его концентрации и интенсивности (/) света (сенсибилизатор—антрахинон) выражается формулой [69] [c.42]

    Сущность процесса заключается в следующем. Вначале при взаимодействии триэтилалюминия с этиленом идет реакция роста цепи в результате получаются высшие алюминийтриалкилы с прямой алкильной цепью. Их затем окисляют воздухом с образованием н-алкилалкоголятов алюминия, гидролизом которых получают в итоге смесь высших первичных спиртов с четным числом атомов С в молекуле. Получаемые спирты представляют собой в основном смесь спиртов Се— ie длину углеводородного радикала можно регулировать, изменяя на стадии полимеризации соотношение между триэтилалюминием и этиленом. [c.67]

    Некоторые гидразилы в силу своей электронной ненасыщенно-сти способны окислять воду. Так, водорастворимый гидразил II медленно реагирует с водой уже при pH = 5. В щелочных средах эта реакция ускоряется и приводит к образованию пероксида водорода и соответствующего гидразина [104]. Процесс, по-видимому, протекает через образование промежуточного комплекса радикала II с НО -ионом с последующим переходом электрона с гидроксил-иона на II. В присутствии сильного акцептора электронов, например ацетона, последний восстанавливается в изопропиловый спирт, а гидроксильный радикал рекомбинирует с гидразилом [c.291]

    Алкилнитриты в условиях К. р. могут окисляться до алкилнитратов и нодвергаться гидролизу с образованием спиртов, к-рые далее окисляются азотной к-той, давая гл. обр. карбоновые к-ты. Рекомбина ция В- и обычно присутствующей в смеси радикало-додобной окиси азота - NO приводит к нихрозосоедц- [c.347]


Смотреть страницы где упоминается термин Образование радикалов в окисляющихся спиртах: [c.200]    [c.160]    [c.129]    [c.285]    [c.100]    [c.479]    [c.100]    [c.308]    [c.45]    [c.167]    [c.605]    [c.452]    [c.248]   
Смотреть главы в:

Механизм жидкофазного окисления кислородосодержащих соединений -> Образование радикалов в окисляющихся спиртах




ПОИСК





Смотрите так же термины и статьи:

Спирты образование



© 2024 chem21.info Реклама на сайте