Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ основных структурных моделей

    Выделенные в процессе деасфальтизации концентраты асфальтенов и смол (табл. 1.10)являются агломератами наиболее высокомолекулярных соединений, составляющих основу для формирования ядер сложных структурных единиц в исходных остатках. Изучение их состава и свойств позволяет получить необходимые данные для построения общей модели основной структурной единицы нефтяных остатков различных нефтей с целью использования в последующем анализе результатов их превращений на поверхности полидисперсных катализаторов. [c.35]


    Экспериментальные данные о необычной дефектной структуре границ зерен в наноструктурных материалах, полученных интенсивной пластической деформацией, наблюдение искажений кристаллической решетки вблизи границ зерен легли в основу развиваемых модельных представлений об атомной структуре и свойствах этих материалов [12]. Данные представления базируются на концепции неравновесных границ зерен, которая была введена в научную литературу в 70-80-х годах [110,111] и позднее стала широко использоваться при описаниях взаимодействий решеточных дислокаций и границ зерен, для анализа рекристаллизационных и деформационных процессов в поликристаллах [3,172]. Ниже будут кратко рассмотрены основные положения физики неравновесных границ, дано описание структурной модели нанокристаллов и ее развитие для понимания их необычных свойств. [c.87]

    Что является основными источниками а) систематических погрешностей измерения и б) неадекватности структурной модели в рентгеноструктурном анализе  [c.414]

    По совокупности свойств ископаемые угли могуг быть отнесены к высокомолекулярным соединениям, включающим в состав молекулы сотни и даже тысячи атомов с многократным повторением основной структурной группировки атомов. Структура углей характеризуется конденсированными ароматическими системами, имеющими боковые алифатические цепи и кислородсодержащие группы. Результаты рентгеноструктурного анализа свидетельствуют о наличии внутри конденсированной системы сочетаний конденсированных колец, связанных между собой мостиковыми углеродными связями. На рис. 1.1 приведена структурная модель [c.8]

    Проведенный анализ экспериментальных данных позволил установить общие структурные принципы строения нефтяных асфальтенов, на основании которых было произведено определение их основных структурно-групповых параметров, (табл. 7), и предложена гипотетическая модель химического строения асфальтенов (рис. 9). [c.74]

    До последнего времени структурные модели чисто ионных жидкостей пользовались не очень большой популярностью [1—5]. Частично это объясняется отсутствием достаточно полного обзора, в котором были бы рассмотрены подобные исследования [6], но в основном это связано с неудовлетворительным состоянием теории молекулярных жидкостей. До конца 1920-х годов последняя всецело основывалась на теории сжатых газов, что, несомненно, обусловлено влиянием теоремы о непрерывности агрегатных состояний [7]. В последующие 20 лет жидкости при температурах ниже критических рассматривались главным образом как разупорядоченные кристаллы в связи с тем, что рентгеноструктурные исследования показали наличие в них ближнего порядка [8]. В последнее десятилетие, однако, неудовлетворенность некоторым эмпиризмом такого подхода привела к возрождению интереса к теории сжатых газов [9]. Результатом этих колебаний явилось стремление к установлению структуры жидкости не путем сравнения с экспериментом данных, полученных с помощью той или иной гипотетической модели, а путем вычисления распределения частиц, вытекающего из предположений о законах межмолекулярных взаимодействий [10]. Анализ различных способов описания структуры жидкостей показал, что те из них, которые основаны на вычислении распределения, связаны с серьезными математическими затруднениями, а получаемые результаты не дают достаточной информации о природе жидкого состояния .  [c.7]


    В заключение следует отметить, что анализ результатов структурных исследований, проведенных в последние годы, позволяет предложить в качестве основополагающей модели надмолекулярной организации кристаллических полимеров модель дефектного кристалла. Несмотря на то, что эта модель носит пока качественный характер, тем не менее с ее помощью удается удовлетворительно объяснить не только особенности морфологии, но и основные физические свойства полимеров. Несомненно, что эта модель должна стать фундаментом для создания количественных структурных и физических теорий кристаллических полимеров. Вместе с тем, имеющиеся данные о том, что в реальных полимерных материалах могут возникать и разнообразные неравновесные структурные формы, обладающие кинетической стабильностью и существенно влияющие на свойства полимеров, показывают, что возможности структурной модификации далеко не исчерпаны и можно думать, что прогресс в этой области позволит существен-но улучшить свойства полимерных материалов и изделий на их основе. [c.55]

    Легче всего можно получить необходимые сведения о химической кинетике реакционной системы, рассматривая структуру основных классов систем. Под структурой мы понимаем качественные и количественные особенности, которые являются общими для класса систем. Для сложных реакционных систем, которые будут подробно рассматриваться в настоящей статье, структурный подход позволил разработать способ анализа и наглядные модели, которые служат надежной основой при объяснении сложных и простых динамических систем. Эти модели в свою очередь дали возможность ввести новый и эффективный метод определения параметров скорости из экспериментальных данных. Структурный анализ лучше всего осуществляется путем геометрической интерпретации поведения реакционной системы, которую легко наглядно представить. [c.69]

    Предлагаемая структурная модель сочетает спектральный и временной механизмы входной сигнал поступает на набор фильтров, моделирующих работу основной мембраны и рецепторов слухового анализатора. Сигнал с выхода каждого фильтра поступает на блок временной обработки, который выделяет характерные точки временной формы сигнала (например, его максимумы, минимумы или переходы через нуль — в соответствии с механизмами, рассмотренными в 2). После того как временной анализ произведен. [c.183]

    При решении в комплексе столь разнообразных проблем естественно ориентироваться на модели, описывающие основные свойства композитов и имеющие в то же время наиболее простой вид для последующего анализа. Поэтому будем использовать структурную модель армированного материала, основанную на следующих предположениях [114—117]. [c.13]

    Полученные методами вычислительного эксперимента результаты позволяют сделать вывод о том, что рассмотренные потенциалы межмолекулярного взаимодействия приводят к качественно правильному описанию свойств воды в объемной фазе. Для того чтобы избежать растянутого состояния, достаточно увеличить плотность числа частиц, что слабо сказывается на рассчитанных значениях структурных и энергетических характеристик водных систем. Анализ показывает [339], что это заключение справедливо и для ряда других моделей. Поэтому выбор потенциала межмолекулярного взаимодействия для описания молекулярно-статистических характеристик воды определяется, в основном, минимумом времени, затрачиваемого на расчет энергии взаимодействия в системе. Кроме того, для сопоставления результатов, полученных при различных внешних условиях, необходимо использовать одну и ту же модель. [c.121]

    Синтез схем химического превращения ва основе стехиометри ческого анализа реакционной системы. Проведение химических реакций в лабораторных условиях или на пилотных установках на стадии исследования обычно не дает однозначного ответа на вопрос о механизме протекания реакций, а чаще всего позволяет лишь выявить систему конкурирующих гипотез. Поэтому важнейшим этапом является получение надежных кинетических моделей, правильно отражающих структуру химических превращений и основные динамические свойства рассматриваемой химической системы. В основе метода дискриминации кинетических моделей (выбора наиболее вероятного механизма, оценки числа независимых реакций и компонентов) лежит использование понятий структурных и молекулярных видов [14, 15]. [c.449]

    При разработке оптимальной стратегии анализа химико-технологической системы путем использования топологических моделей, отражающих структурные особенности технологической схемы системы, основными исходными данными являются технологическая топология ХТС и математические модели каждого ее элемента, представленные в виде уравнений функциональной связи (1,2). [c.212]


    Основной недостаток логических моделей — отсутствие четких принципов структурной организации фактов в БЗ. Без них большая МПЗ превраш,ается в неструктурированное множество независимых фактов, трудно поддающихся анализу и обработке. Этот недостаток является одной из причин того, что до начала 1980-х годов логические МПЗ использовались преимущественно в тех ПО, где объем знаний невелик и структура знаний относительно проста. [c.49]

    Основные положения предложенной мною конформационной теории белков были сформулированы в общем виде и имели вначале чисто эвристический характер [40, 41]. Создание расчетного метода требовало их детализации и тщательной проверки. Достоинство теории даже в ее первоначальной, быть мо жет, несовершенной форме заключалось в том, что она позволяла всю необходимую работу с первой и до завершающей стадии заранее представить в виде строго последовательного ряда логически связанных между собой шагов, где каждое продвижение вперед опиралось на результаты предшествующих исследований и предваряло последующее. Иными словами, теория, отражавшая вначале чисто субъективное представление автора о структурной организации белка, в то же время представляла собой достаточно четко ориентированную рабочую программу исследования. Одно из положений теории, а именно предположение о согласованности в белковой глобуле всех внутри- и межостаточных взаимодействий, давало возможность разделить задачу на три большие взаимосвязанные части. Цель первой заключалась в кон-формационном анализе свободных остатков стандартных аминокислот, т.е. в оценке ближних взаимодействий валентно-несвязанных атомов. Идеальными моделями для изучения ближних взаимодействий явились молекулы метиламидов М-ацетил-а-аминокислот (СНз-СОМН-С НК-СОЫН-СНз). Вторая часть общей задачи состояла в выяснении влияния средних взаимодействий, т.е. взаимодействий между соседними по цепи остатками. Объектами исследования здесь могли служить любые природные олигопептиды. Цель третьей, завершающей части - изучение роли контактов между удаленными по цепи, но пространственно сближенными в глобуле остатками и априорный расчет трехмерной структуры белка. В дефинициях нелинейной неравновесной термодинамики эти цели могут быть сформулированы следующим образом. Во-первых, определение возможных конформационных флуктуаций у свободных аминокислотных остатков и выявление энергетически наиболее предпочтительных. Во-вторых, нахождение возможных конформационных флуктуаций локальных участков полипептидной цепи и установление среди них бифуркационных флуктуаций, ведущих к структурированию фрагментов за счет средних невалентных взаимодействий. В-третьих, анализ возможных флуктуаций лабильных по средним взаимодействиям участков полипептидной цепи и идентификация бифуркационных флуктуаций, обусловливающих комплементарные взаимодействия конформационно жестких нуклеаций, стабилизацию лабильных участков и, в конечном счете, образование нативной трехмерной структуры молекулы белка. [c.109]

    В настоящей работе проводится, в соответствие с основными принципами математического моделирования и построения знаковых моделей [4], структурный анализ процесса в неподвижном слое катализатора и определение существенности его составляющих.Дана также систематизация моделей стационарных процессов в неподвижном слое катализатора. [c.111]

    Термином статическая модель кристаллической структуры (или, короче, статическая структура кристалла ) принято обозначать совокупность точек, координаты которых соответствуют среднему во времени положению атомных ядер в кристалле. Основной источник сведений о кристаллических структурах — рентгеноструктурный анализ [1]. Этот экспериментальный метод дает не координаты ядер, а координаты максимумов электронной плотности, но последние в пределах реальной погрешности рентгеноструктурного анализа (0,001—0,002 нм) обычно не отличаются от координат ядер (если не говорить об атомах водорода). Это установлено при сравнении результатов рентгеноструктурных исследований с данными структурной нейтронографии [2], которая позволяет непосредственно определять среднее положение атомных ядер. К сожалению, нейтронография пока слишком дорогой и не всегда применимый метод . Поэтому она в основном дополняет рентгеноструктурную информацию (например, такими важными сведениями, как точные координаты протонов). [c.137]

    Электронно - микроскопическими исследованиями было установлено, что для всех образцов характерен -один основной структурный элемент - углеродные глобулы размером 10 нм, внутри когоры.ч методами просвечивающей электронной микроскопии и малоуглового рентгеновского рассеяния было установлено наличие пустот. Также была установлена схож есть искажения графитоподобных слоев шунгитового углерода (ШУ) и фуллеренов. Основываясь на этих данных,авторы предложили фуллереноподобиую структуру ШУ. Для доказательства и обоснования предложенной структуры использовали методику последовательной экстракции фуллеренов С-60 и С-70 этанолом и гексаном.. Анализ экстракта показал присутствие фуллеренов С-60 и С-70 в количестве 0.0001 %. На основании этого была предложена фуллеренная модель щунгитового углерода [28]. [c.24]

    Таким образом, рассмотренные выше модельные представления, базирующиеся на концепции неравновесных границ зерен, позволяют достаточно реалистично в качественной форме и в некоторых случаях даже количественно описать основные структурные особенности наноструктурных ИПД материалов, связанные не только с наличием ультрамелкого зерна, но и с высокими внутренними напряжениями, их повышенной энергией и убыточным объемом, обусловленными специфической дефектной структурой. Можно полагать, что дальнейший прогресс в экспериментальных исследованиях ИПД материалов, направленный на прецизионное измерение плотностей дефектов границ зерен и кристаллической решетки, их типов и пространственных конфигураций позволит уточнить предложенную модель. Вместе с тем развиваемый подход к структуре ИПД материалов является основой для понимания их необычных свойств и будет использован ниже при анализе термического поведения, фундаментальных свойств и деформационного поведения наноструктурных материалов. [c.121]

    Если корреляционная функция точно известна, то, используя ее, можно вычислить макроскопические свойства вещества.-Однако получить информацию о трехмерной структуре жидкой системы непосредственно из корреляционной функции не представляется возможным в силу ее одномерности. Главный метод исследования основной структуры заключается в построении структурной модели таким образом, чтобы рассчитанная по этой модели корреляционная функция соответствовала функции, определенной экспериментально. Этот метод широко используется для обычных жидкостей и особенно применим для нематической и холестерической структур, в которых не существует дальнего порядка. Однако он обладает и некоторыми недостатками. Кривая рассеяния определяется экспериментально только в ограниченной области значений вектора рассеяния 5, тогда как для выполнения фурье-преобразо-ваяия необходимо знать функцию рассеяния в бесконечной о.блас-ти значений вектора рассеяния. Кроме того, надо сделать поправки на нёкогерентность рассеяния и шумовой фон. Эти поправки могут привести к ложным максимумам парной корреляционной функции, которые в свою очередь можно неправильно интерпретировать на основе структурной модели. Тем не менее тщательные измерения дают полезные сведения о природе ближнего порядка.. Этот метод использовался Чистяковым [17] для анализа низкомолекулярных жидкокристаллических систем. Вайнштейн и Чистя- [c.23]

    Описанный подход, однако, дает лишь качественное представление об упругости межкристаллитных участков хотя бы потому, что основной постулат модели Ройсса (строго последовательное соединение кристаллических включений и аморфных прослоек) не выполняется (доля последовательного соединения через проходные цепи ф/ <С 1). Анализ экспериментальных данных для ориентированных волокон полиамид-6 в рамках более реалистического уравнения (VI. 10) привел к значению = 0,02 [263]. Формально [257] это означает, что кристаллические включения имеют форму тонких дисков, ориентированных перпендикулярно направлению вытяжки, тогда как данные структурного анализа, напротив, указывают на наличие продолговатых кристаллитов, ориентированных длинными осями параллельно направлению вытяжки [263]. [c.178]

    В 1950 г., за несколько месяцев до опубликования серии исследований Л. Полинга и Р. Кори, появилась большая работа Л. Брэгга, Дж. Кендрью и М. Перутца [56], которая как бы подвела черту под структурными исследованиями белков и полипептидов начального периода. В этой работе анализируются структурные модели Астбери, Хаггинса, Цана и других авторов и предлагается ряд новых моделей. Однако, по-прежнему, речь идет о возможных типах укладки основной пептидной цепи. Авторы также рассматривают свои первые результаты рентгеноструктурного изучения гемоглобина и миоглобина. При анализе возможных структур пептидного остова Брэгг, Кендрью и Перутц принимают геометрические параметры пептидной группы, близкие к параметрам Хаггинса и согласующиеся с более поздними данными Кори. Так, длина связи С -С считается равной 1,52 А, С -М - 1,36 А и С =0 - 1,24 А. Валентные углы при атоме С приняты тетраэдрическими (109°28 ), а при атоме N - или тетраэдрическими, или тригональными (120°). Длина водородной связи М-Н...С=0 составляет 2,85 А. Ее направленность строго не лимитируется, но авторы по мере возможности стремятся к линейному расположению связей К-Н и С=0. Л. Брэгг, Дж. Кендрью и М. Перутц приняли постулат М. Хаггинса о спиральной симметрии полипептидной цепи с целочисленным порядком винтовой оси, но отвергли его второй постулат о том, что каждый элемент основной цепи должен находиться в одинаковых отношениях с соседними элементами (принцип эквивалентности). Так же как и Хаггинс, они придают огромное значение водородной связи М-Н...С = 0 в формировании структуры основной цепи и считают наиболее стабильными только те из них, которые полностью насыщены ими. Предложенная авторами классификация спиральных структур является общепризнанной и в настоящее время [56]. В основу ее положено разделение структур по симметрии пептидного остова и размеру циклов с водородными связями. [c.19]

    Как построены макро.чолекулы, входящие в состав живых организмов Первые биохимики обнаружили в живых организмах вещества, которые были названы белками, нуклеиновыми кислотами, полисахаридами и сложными липидами. Развитие биохимии в немалой степени зависело от разработки методов выделения и очистки этих соединений. С помощью новых физико-химических методов удалось установить, что их молекулярные массы характеризуются величинами от 10 000 до 100 000 000 и более. В течение долгого времени кажущаяся поистине геркулесовой работа по установлению полной структуры таких молекул представлялась экспериментально вообще неосуществимой. Однако создание ряда новых физических приборов ультрацентрифуг, электрофоретических аппаратов, регистрирующих спектрофотометров, спектропо-ляриметров и аминокислотных анализаторов — позволило определить основные структурные характеристики этих молекул. Усовершенствованная техника анализа и, в частности, хроматографические методы сделали возможным разделение сложных смесей веществ и определение их микроколичеств, что является необходимой предпосылкой для установления ковалентных структур строительных блоков различных макромолекул. Благодаря развитию рентгеноструктурных методов оказалось возможным построить детальные трехмерные модели многих относительно небольших [c.13]

    Основными элементами нового подхода обеспечения промышленной безопасности ОПО НХП, показанными на рис.1 в виде блок-схемы, является структурный компьютерный анализ процессов деформирования и разрушения, протекающих в реальных аппаратах под воздействием условий эксплуатации на основе конечно-элементных моделей высокого уровня сложности. Г[оследние, в свою очередь, могут учитьшать как реальные свойства, так и структурное изменение материала в течение злданного времен . [c.93]

    Из фундаментальных соотношений теории случайных марковских процессов выведены стохастические интегродифференциальные (скачкообразные), разрывные (дискретно-непрерывные), диффузионные и матричные (дискретные в пространстве состояний по времени) модели кинетики механодеструкции, описывающие эволюцию дифференциальных функций числового распределения макромолекул полимеров по длинам. Проведен последовательный анализ выведенных уравнений кинетики механодеструкции. Он показал, что при некоторых упрощающих предположениях решениями этих уравнений являются известные в литературе функции распределения Пуассона, Танга, Кремера-Лансинга и др. С помощью математического аппарата теории дискретных марковских процессов построены модели кинетики структурных превращений в ферритах -шпинелях, активированных в планетарных машинах разработана обобщенная модель кинетики механорасщепления зерен на примере природного полисахарида - крахмала. Из основного кинетического уравнения Паули выведены стохастические модели ряда элементарных химических реакций, протекающих в дисперсных системах при механическом нагружении частиц твердой фазы. Проведен анализ выведенных уравнений и выявлены преимущества статистического метода описания кинетики химических реакций перед феноменологическим. [c.19]

    Дан анализ биохимического производства, рассматриваемого с позиций системного подхода как сложная иерархическая система (БТС) с целым рядом взаимосвязанных подсистем и элементов, обеспечивающих преобразование материальных и энергетических потоков в процессе переработки исходного сырья в целевые продукты микробиологического синтеза. Рассмотрены вопросы выбора глобального и локальных критериев эффективности, а также применения принципов многоуровневой оптимизации при анализе БТС и ее подсистем. Приведены примеры построения математических моделей типовых технологических элементов, составляющих БТС, даны алгоритмы их расчета на ЭВМ и методы анализа надежности функционирования в системе. Детально исследованы условия функционирования основных подсистем БТС ферментации , разделения биосуспензий , биоочистки , рассмотрены принципы их структурного анализа и оптимизации. Рассмотрена иерархическая структура управления биохимическими системами и показана эффективность использования управления на основе ЭВМ в задачах оптимизации процессов биохимических производств. [c.2]

    При отсутствии оператора разделение , т. е. при К=0, Гх=1, получаем тривиальное выражение G = viXi. Использование типовых технологических операторов при анализе и расчете материальных или энергетических балансов для подсистем БТС в условиях стационарного режима их работы позволяет формализовать и автоматизировать с помощью ЭВМ процесс проектирования БТС. Применяемые при этом математические модели подсистем основываются на модулях типовых операторов, составляющих данную систему. В то же время многомерность, высокая степень взаимосвязи и параметрического взаимовлияния элементов в сложных БТС затрудняют применение операторного метода. В этих условиях становится эффективным использование методов расчета БТС, предусматривающих применение потоковых, структурных, информационных и сигнальных графов [13]. Прн этом графы, отражая технологическую топологию и функциональные связи в системе, позволяют разрабатывать алгоритм расчета на ЭВМ многомерных систем и решать задачи анализа и оптимизации сложных БТС, которые связаны в основном с рассмотрением  [c.24]

    Под шлитационным моделированием понимается процесс конструирования модели системы и постановки экспериментов на этой модели с целью изучения поведения системы и оценки различных стратегий, обеспечивающих функционирование данной системы [5-7]. Анализ структурных и технологических особенностей объектов управления химической технологии позволил сформулировать основные общие требования к разрабатываемым алгоритмам имитации поведения объекта в тренажерах. [c.362]

    Характерная особенность всех теоретических исследований пространственного строения ангиотензина II [22, 47-50] - отсутствие какой-либо классификации конформационных состояний молекулы, не говоря уже о такой, которая была бы обоснована с физической точки зрения и охватывала все возможные структурные варианты, систематизированные в соответствии с субординационными взаимоотношениями по таксономическим категориям. Отсутствие классификации - объективный признак непонимания самых существенных свойств изучаемых соединений, определяющих их единство и различие. Без структурной классификации, четко сформулированных принципов общей теории и физической модели (также отсутствующих в обсуждаемых работах) невозможен объективный выбор конформационных состояний. Все оценки оптимальных конформаций в расчетах Галактионова, Шераги, Де Коэна и соавторов вьшолнены на основе относительных величин общей энергии, без количественного анализа вкладов от отдельных внутри- и межостаточных взаимодействий в структурных вариантах всевозможных форм различных типов основной цепи. Поэтому результаты подобных расчетов не гарантированы от случайных пропусков и от неправильных оценок полученных данных. Подтверждением такому заключению является табл, 111,9. Все структуры, найденные в обсуждаемых работах для ангиотензина II, автоматически входили в процедуру изложенного здесь расчета, но не попали в окончательный набор конформаций (см. табл III.9), так как оказались менее предпочтительными по энергии. В то же время найденные в [32] низкоэнергетические конформации молекулы вообще оказались не замеченными авторами работ [22. 47-50]. [c.282]

    Предположение о существовании радикала НОг было высказано Бахом [86]. В дальнейшем оно было вновь выдвинуто Хабером [1916] для объяснения механизма реакции между водородом и кислородом и использовалось многими авторами при изучении кинетики газовых реакций (см. например [240, 304, 244]). Попытки найти доказательства существования радикала НОз предпринимались многими исследователями. Обзор предлагавшихся доказательств существования радикала НОг, опиравшихся на анализ результатов химических исследований и на результаты теоретических расчетов, имеется в работе Минкоффа [2924]. В этой работе им было дано теоретическое доказательство стабильности радикала НО2, основанное на применении полуэмпири-ческого метода Глесстона, Лейдлера и Эйринга [154] для изучения взаимодействия между атомом Н и молекулой О2. В работе [2924] была также предпринята попытка оценить основные частоты колебаний и значения структурных параметров линейной модели радикала НО2. В то же время Минкоффом было отмечено, что более основательно предположение о нелинейном строении радикала НО2. [c.211]

    Основные научные работы — в области биохимии нуклеиновых кислот. До 1964 занимался синтезом физиологически активных гетероциклических соединений пиримидинового ряда. Разработал твердофазный метод химического фракционирования транспортных рибонуклеиновых кислот на полиакрил-гидразидных сорбентах. Создал комплекс методов ультрамикро-биохимического анализа, позволяющий проводить исследование нуклеиновых кислот, белков и ферментов в масштабе отдельной клетки. Занимался изучением транспорта нуклеиновых кислот на модели гигантской одноклеточной водоросли — ацетобулярии и показал, что транспорт кислот не коррелирует с полярным ростом клетки (1973—1974), Осуществил сборку жизнеспособной клетки из отдельных компонентов — цитоплазмы, ядра и клеточной стенки, С 1974 занимается синтезом химических эквивалентов структурных генов белков и их встройкой а [c.613]


Смотреть страницы где упоминается термин Анализ основных структурных моделей: [c.70]    [c.71]    [c.263]    [c.177]    [c.282]    [c.17]    [c.70]    [c.65]    [c.98]    [c.59]    [c.176]    [c.27]    [c.79]    [c.343]    [c.397]    [c.370]    [c.117]   
Смотреть главы в:

Молекулярное строение и свойства полимеров -> Анализ основных структурных моделей




ПОИСК





Смотрите так же термины и статьи:

Анализ структурный

Модель структурная



© 2025 chem21.info Реклама на сайте