Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеноструктурный анализ и дифракция электронов

    Обратимся к распределению молекул во льду. Структура льда или обыкновенного льда, подробно изучена методами рентгеноструктурного анализа, дифракции электронов и нейтронов. Первые два метода определяют положение атомов кислорода. Установлено, что лед кристаллизуется в гексагональной сингонии и что расположение атомов кислорода во льду изоморфно положению атомов кремния в р-тридимите. [c.410]


    В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-про-никающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров. [c.6]

    Имеется ряд очень важных физических методов, используемых в конформационном анализе, которые будут рассмотрены здесь лишь очень кратко. К ним относятся рентгеноструктурный анализ, дифракция электронов и микроволновая спектроскопия. Эти методы дают сведения о полной структуре молекулы, а не только о конформации ее отдельных частей. Значение этих методов для структурных исследований трудно переоценить однако они трудоемки и требуют высокой специальной квалификации исследователя. Для химика-органика они, как правило, недоступны. По каждому из этих методов опубликованы прекрасные обзоры. [c.166]

    Симметричное относительно центра двухплоскостное строение ферроцена (строение тина сэндвич ) (предложенное Р. Б. Вудвордом, 1952 г.) было подтверждено рентгеноструктурным анализом, дифракцией электронов и исследованием инфракрасных спектров и спектров комбинационного рассеяния. Атом железа расположен в центре меноду двумя параллельными циклопентадиеновыми кольцами на равном расстоянии от всех десяти атомов углерода. Межатомные расстояния С—С каждого цикла равны друг другу (1,41 А) (рис. 57). [c.318]


    В табл. 5 показаны длины связей в различных диацетиленовых соединениях, измеренные спектроскопически, с помощью рентгеноструктурного анализа и электронной дифракции [422, 424]. [c.73]

    А. РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ, ДИФРАКЦИЯ НЕЙТРОНОВ, ДИФРАКЦИЯ ЭЛЕКТРОНОВ [c.81]

    Устойчивые соединения, в которых центральный ион металла имеет координационное число семь, известны. Несколько примеров приведено в табл. 1.2. Данные, полученные методами рентгеноструктурного анализа и электронной дифракции, показывают, что эти соединения могут иметь две различные структуры. Гептафторид иода [3] и [4] имеют пентагонально [c.224]

    Другим современным методом, служащим для построения диаграмм состояния, является метод рентгеноструктурного анализа. Рентгеноструктурный анализ является одним из наиболее совершенных методов изучения всех превращений, сопровождающихся изменением кристаллической решетки. Поэтому он особенно полезен при исследовании полиморфных превращений, образования и распада твердых растворов, а также образования химических соединений. Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения. Рентгеноструктурный анализ применяется для качественного и количественного фазового анализа гетерогенных систем, для исследования изменений в твердых растворах, определения типа твердого раствора и границ растворимости. Рентгеноструктурный анализ является дифракционным структурным методом он основан на взаимодействии рентгеновского излучения с электронами вещества, в результате которого возникает дифракция рентгеновского излучения. Основную информацию в рентгеноструктурном анализе получают из рентгенограмм. Типы рентгенограмм сильно зависят от природы и состава фаз. Между типом рентгенограммы и типом диаграммы состояния существует определенная связь. Особенно полезны рентгенографические данные для построения той части диаграмм, которые описывают равновесные процессы в твердом состоянии, где процессы установления равновесных состояний протекают очень медленно. [c.235]

    Если два трехмерных набора атомов в молекуле могут претерпевать взаимное превращение только путем свободного вращения вокруг связей, их называют конформациями-, в противном случае два набора атомов называют конфигурациями [135]. Конфигурациям соответствуют изомеры, которые можно разделить рассмотренными выше методами. Конформациям соответствуют конформеры, которые быстро превращаются друг в друга и не поддаются разделению. Вместо термина конфор-мер иногда пользуются терминами конформационный изомер и ротамер . Известно много методов определения конформаций [136], в том числе рентгеноструктурный анализ и дифракция электронов, ИК-, КР-, УФ-, ЯМР- [137] и микроволновая спек- [c.176]

    Неравномерность зависимости интенсивности от угла рассеяния позволяет использовать дифракционный эффект для структурных исследований веществ в любом агрегатном состоянии. Сказанное в одинаковой мере относится к дифракции рентгеновских лучей, электронов и нейтронов. Помимо рентгеноструктурного анализа кристаллов наибольшее распространение и признание получили рентгенография стекол и особенно электронография газов и паров. [c.174]

    Структуру кристаллов изучают в разделах естествознания, называемых кристаллофизикой и кристаллохимией. Содержанием кристаллохимии является установление зависимости условий образования и физико-химических свойств кристаллов от их структуры и состава, изучение энергетики и выяснение природы химической связи в кристаллах. Основным методом исследований в кристаллохимии является рентгеноструктурный анализ, использующий явление дифракции рентгеновского излучения на кристаллах, открытое М. Лауэ и др. (1912). В последние десятилетия получили широкое распространение методы электронографии (дифракция быстролетящих электронов на кристаллической решетке) и нейтронографии (дифракция медленных, тепловых нейтронов на кристаллах). Каждый из этих методов обладает спецификой применения, ввиду чего совокупность их позволяет проводить структурные исследования самых различных образцов, существенно различающихся по своей природе. [c.319]

    Межатомные расстояния (длины связей) в молекулах и кристаллах можно определить методами спектроскопии (включая микроволновую спектроскопию), рентгеноструктурного анализа, методами дифракции электронов и нейтронов, методом ядерного магнитного резонанса. Описание этих методов выходит за рамки данной книги. За последние сорок лет были определены длины связей для многих сотен веществ, и полученные значения оказались весьма полезными при рассмотрении электронных структур молекул и кристаллов. [c.163]

    Молекулярная биология изучает биологические структуры и их функции на молекулярном и атомном уровне. Как научное направление молекулярная биология начала развиваться в период 1930—1940 гг., когда были достигнуты успехи в понимании тонкой структуры и свойств небольших молекул благодаря применению спектральных и магнитных методов, в первую очередь дифракции рентгеновских лучей на кристаллах (рентгеноструктурный анализ) и дифракции электронов молекулами газа этим успехам способствовал и прогресс в теории, связанный с появлением квантовой механики. Первые рентгенограммы фибриллярных белков и целлюлозы были получены в 1918 г., кристаллов глобулярных белков —в 1934 г. но только много лет спустя удалось полностью расшифровать строение белковых молекул. [c.428]


    Вследствие коротких длин волн электронов, например 0,06 А при У = 40 кВ, максимальная интерференция электронов наблюдается при очень малых углах дифракции (9), благодаря чему на картине монокристалла, полученной с помощью анализа электронной дифракции, значительно больше рефлексов, чем при рентгеноструктурном анализе (рис. 29.2). [c.137]

    При применении анализа электронной дифракции продолжительность экспозиции для получения фотоснимка составляет несколько секунд, тогда как в рентгеноструктурном анализе это занимает несколько часов. [c.138]

    Количество образца, которое нужно для получения фотографии в анализе электронной дифракции, составляет примерно 10 г. Оптимальная толщина полимерного образца для электронной дифракции не превышает нескольких сотен ангстрем, тогда как при использовании рентгеноструктурного анализа образцы должны иметь толщину порядка нескольких миллиметров. [c.138]

    Рентгеноструктурный анализ множества кристаллических структур позволил подробно изучить геометрию различных групп атомов, включая хорошо определенные значения длин и углов между связями. Стереохимические законы оказали большую помощь при определении новых кристаллических структур, в частности природных макромолекул, которые состоят из малых основных единиц. В современном кристаллографическом анализе используются данные дифрактометров и быстродействующие электронно-вычислительные машины, что позволило определить строение белков. Данные дифракции рентгеновских лучей были использованы при установлении структуры дезоксирибонуклеиновой кислоты и при изучении водородной связи, которой обусловлена устойчивость этой структуры. [c.583]

    С помощью таких соотношений обычно удается выразить фазовые углы для наиболее сильных брэгговских отражений, обычно около 10 на атом (не считая атомы водорода), что, таким образом, дает возможность рассчитать карту распределения электронной плотности с хорошим приближением. Аналогичные методы существуют и для нецентросимметричных кристаллов. Разработка высокопроизводительных компьютерных программ одновременно с появлением автоматических дифрактометров и высокоскоростных компьютеров привело к прорыву в 1970-х в области рентгеновской дифракции, которая стала основным методом структурного анализа. В настоящее время нормальной практикой считается, когда первое сообщение о синтезе нового вещества сопровождается данными рентгеноструктурного анализа. [c.410]

    Факты соответствуют орбитальному представлению о молекуле бензола. С помощью рентгеноструктурного анализа и метода дифракции электронов показано, что бензол (рис. 10.4) представляет собой совершенно плоскую [c.311]

    То, что анион действительно представляет собой резонансный гибрид, подтверждается данными по длинам связей. Так, например, в муравьиной кислоте и меется одна двойная и одна простая связи углерод — кислород. Поэтому можно ожидать, что эти связи будут иметь разную длину. Формиат натрия, если он действительно представляет собой резонансный гибрид, должен содержать две эквивалентные связи углерод — кислород можно ожидать, что они будут иметь одинаковую длину, промежуточную между длинами двойной и простой связей. Данные рентгеноструктурного анализа и дифракции электронов показывают, что эти предположения справедливы. В муравьиной кислоте одна связь углерод— кислород имеет длину 1,36 А (13,6-10 нм) (простая связь), а другая— 1,23 А (12,3-10 нм) (двойная [c.570]

    Атом обладает способностью рассеивать падающее на него излучение. Лучи света, потоки электронов, нейтронов, рентгеновское излучение — все известные виды излучения, падая на атом, рассеиваются им. Лучи, рассеянные отдельными атомами, усиливают или ослабляют друг друга в зависимости от взаимного расположения. Это явление называется дифракцией излучения на атомах. Ясно, что дифракция излучения приносит нам сведения о строении вещества. Определяя направления и интенсивность рассеянных лучей, можно получить ценные сведения о строении молекулы, и прежде всего о ее геометрии, т. е. о взаимном расположении центров атомов. Наиболее плодотворным в последнем отношении способом исследования является метод рентгеноструктурного анализа кристаллов органических веществ. [c.352]

    К интерференционно-дифракционным методам относятся дифракция рентгеновских лучей под большими и малыми углами. (рентгенография, рентгеноструктурный анализ), дифракция электронов (электронография), дифракция нейтронов (нейтронография) и рассеяние света. [c.75]

    Хассел с помощью рентгеноструктурного анализа, дифракции электронов и измерения дипольных моментов показал, что простые соединения ряда циклогексана во всех состояниях, даже в газовой фазе, имеют главным образом конформацию кресла . Другая ненапряженная, хотя и менее стабильная конформация циклогексана называется формо1 1 ванны ( лодки ). В действительности эта форма представляет собой набор одинаковых конформаций, превращающихся друг в друга в результате такого согласован- [c.52]

    К оптическим и дифракционным методам относятся методы, основанные на взаимодействии электромагнитного излучения различной длины волны или потока частиц различной энергии с исследуемым веществом. Это оптическая и электронная микроскопия, рентгеноструктурный анализ (дифракция рентгеновских лучей) под обычными (>30°) и малыми (<5°) углами, рентгеновская микрорадиография, нейтроно- и электронография, электронная и ионная эмиссионная микроскопия (электронный и ионный проекторы). [c.24]

    Структуры В4Н10, В5Н9, В5Н11, ВбНю и ВюНи, которые были надежно установлены методами рентгеноструктурного анализа, дифракции нейтронов и электронов, а также ядерного магнитного резонанса, показаны на рис. 13.4. Расстояния В—Н в ВюНн измерены с очень высокой точностью нейтронно-дифракционными ме- [c.344]

    Полная структурная характеристика молекул основана на дифракции рентгеновских лучей. Сообидение о первой структуре карбонила металла Ре2(С0)д появилось в 1927 г. за последние 60 лет в указатели были включены еш,е 4600 структур, причем 857о из этого числа приходится на последнее десятилетие [77]. Установление структуры такого большого числа соединений стало возможным благодаря развитию быстрых рутинных автоматизированных методов рентгеноструктурного анализа. Дифракция нейтронов в настоящее время становится важным инструментом, особенно для изучения гидридов переходных металлов [78]. Напомним, что дифракция нейтронов на большинстве элементов происходит примерно одинаково, тогда как рассеивание рентгеновского излучения зависит от электронной плотности, которая определяется атомным номером элемента. [c.25]

    Система RYSALIS j ] определяет трехмерную структуру белка по распределению плотности электронов (РПЭ). ЭС интерпретирует информацию по дифракции рентгеновских лучей, включающую информацию о положении и интенсивности рассеянных волн, и выводит атомную структуру. ЭС использует знания о составе белка и рентгеноструктурном анализе, а также эвристики, чтобы с помощью анализа РПЭ получать и проверять гипотезы относительно правдоподобных белковых структур. HYSALIS использует архитектуру типа доски объявлений , содержащей независимые источники знаний для выдвижения и проверки многоуровневой структуры гипотез. ЭС написана на языке ЛИСП. [c.262]

    Строение бензохииона подтверждено рентгеноструктурным анализом методом дифракции электронов определены длины связей и валентные углы в его молекуле. Ниже приведены длины связей в молекулах бензохииона и некоторых других соединений (в нм)  [c.87]

    Отражение рентгеновских лучей от атомов происходит в результате взаимодействия излучения с электронами, поэтому определяемые рентгенографически центры атомов являются центрами тяжести электронных оболочек. Лля многоэлектронных атомов эти центры практически совпадают с ядрами, для легких атомов положения ядер могут заметно отличаться. Положение протонов, у которых отсутствуют электронные оболочки, вообще ие может быть установлено рентгеноструктурным анализом. Для решения этой задачи используют метод исследования, основанный на дифракции нейтронов. Пучки нейтронов получают с помощью атомного реактора. В отличие от рентгеновских лучей нейтроны не взаимодействуют со спаренными электронами , но они отражакугся атомными ядрами. [c.154]

    Рассматриваются вопросы структурной кристаллографии и теории дифракции рентгеновского излучения, методы решения проблемы начальных фаз , наиболее существенные приложения структурных исследований в химии. Сравниваются возможности трех дифракционных методов рентгеновского, нейтронографического и электронографического. Во втором издании расширены ключевые разделы современного рентгеноструктурного анализа кинематические схемы дифрактомеров, основы статистического определения начальных фаз (знаков) структурных амплитуд, распределение электронной плотности в межъядерном пространстве по прецизионным данным. [c.2]

    Физические свойства вещества зависят от атомного состава, структуры, характера движения и взаимодействия частиц. Для определения этих параметров используются разнообразные физические методы исследования. К ним относятся методы, основанные на явлении дифракции рентгеновского излучения, электронов п нейтронов. Явление дифракции рентгеновских лучей на монокристаллах было открыто М. Лауз в 1912 г. Оно явилось началом рентгеноструктурного анализа твердых тел, жидкостей и газов. Советские ученые А. Ф. Иоффе, С. Т. Конобеевский, Н. Е. Успенский, Н. Я. Селяков одними из первых применили рентгеноструктурный метод для определения геометрических размеров кристаллических решеток и их пространственной симметрии, нахождения координат атомов кристалла, обнаружения преимущественных ориентировок (текстур), возникающих при деформации твердых тел, исследования внутренних напряжений, построения диаграмм состояния. Их основополагающие работы в этой области получили дальнейшее развитие в трудах Г. В. Курдюмова, Г. С. Жданова, Н. В. Белова, В. И. Данилова, В. И. Ивероновой, А. И. Китайгородского, Б. К. Вайнштейна и др. [c.4]

    Дифракционные методы. В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вешество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Поэтому есть принципиальная возможность для решения обратной задачи дифракции, т. е. установление структуры вещества по его дифракционной картине. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами а электроны — электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов. [c.195]

    Для доказательства строения дифенилена Лотроп привел данные анализа, превращение углеводорода во фталевую кислоту при окислении хромовой кислотой и восстановление до дифенила при гидрировании над медью, нагретой до красного каления. Он установил, что молекула обладает по меньшей мере одной плоскостью симметрии, поскольку из иодидов 4,4 - и 5,5 -диметилдифенилен-2,2 -иодония получается один и тот же углеводород, а именно 2,7-диметилдифениле1Н. Маловероятная возможность, что углеводород представляет собой бенз]1иклооктатетраен, была исключена, когда был осуществлен синтез последнего соединения. Измерения дифракции электронов и рентгеноструктурный анализ полностью подтвердили строение дифенилена. Так, среднее расстояние С—С в шестичленных кольцах оказалось равным 1,39 А, а длина связи Сд—Сщ— равной 1,52 А (Мак, 1961). [c.508]

    В 1912 г. Лауэ предположил, что длина волны рентгеновских лучей может быть примерно равной расстоянию между атомами в кристалле таким образом, кристалл может служить дифракционной решеткой для рентгеновских лучей. Этот опыт был проведен Фридрихом и Книппингом, которые действительно наблюдали дифракцию. Вскоре Брэгг (1913 г.) улучшил эксперимент Лауэ в основном путем замены монохроматического излучения полихроматическим и тем, что дал физическую интерпретацию теории рассеяния Лауэ. Брэгг также определил структуру ряда простых кристаллов, включая Na l, s l и ZnS. Со времени возникновения рентгеновской кристаллографии как науки рентгеноструктурный анализ монокристаллов превратился в наиболее широко применяемый и самый мощный метод определения расположения атомов в твердом теле. После 50-х годов с появлением быстродействующих электронно-вычислительных машин, способных обрабатывать рентгенографические данные, стал возможен более детальный анализ структуры таких сложных соединений, как белки. [c.565]

    Этот метод, основанный на дифракции электронов, в ОСНОЮО аналогичен рентгеноструктурному анализу, однако имеет перед ним ряд существенных преимуществ [34]  [c.173]

    Большая часть информации о структуре и стереохимии ациклических и циклических алканов была получена спектроскопическими методами. Рентгеноструктурный анализ был распространен на совсем небольшие алканы благодаря проведению измерений при очень низких температурах. Конформации молекул в кристаллическом состоянии определяют рентгеноструктурным методом, однако эти конформации не обязательно соответствуют конформациям в растворах или газовой фазе. В газовой фазе для относительно небольших или высокосимметричных алканов можно использовать дифракцию электронов. Этот метод имеет то преимущество, что позволяет получить дополнительную информацию о конформациях с высокой энергией путем проведения исследований при различных температурах. Ценную информацию о конформациях в газовой фазе дает микроволновая спектроскопия, особенно в тех случаях, когда имеются изотопнозамещенные алканы. [c.75]

    В течение длительного времени велись споры по поводу значения ( -орбиталей серы для строения и реакционной способности тиофенов. Результаты ранней работы Шомакера и Полинга [11] по изучению геометрии тиофена методом дифракции электронов были подтверждены работой [12] и уточнены с помощью микроволновой спектроскопии [см. формулу (1)]. Метод микроволновой спектроскопии дает очень точные данные [13]. Его результаты подчеркивают удивительно высокую степень двоесвязанности связи С—8, что не следует из обычной кекулевской структуры. С помощью-рентгеноструктурного анализа получены ценные данные о геометрии многочисленных производных тиофена [14], сопоставлены также данные микроволновой спектроскопии для широкого ряда гомо-и гетероциклических аналогов тиофена [15]. Квантовохимические [c.230]


Смотреть страницы где упоминается термин Рентгеноструктурный анализ и дифракция электронов: [c.394]    [c.25]    [c.27]    [c.144]    [c.299]    [c.253]    [c.453]    [c.983]    [c.110]    [c.397]    [c.414]   
Смотреть главы в:

Стереохимия соединений углерода -> Рентгеноструктурный анализ и дифракция электронов




ПОИСК





Смотрите так же термины и статьи:

Анализ рентгеноструктурный

Дифракция

Дифракция электронов

Рентгеноструктурный анализ дифракция

Электронная дифракция



© 2025 chem21.info Реклама на сайте